Class StatsAccumulator
- java.lang.Object
-
- com.google.common.math.StatsAccumulator
-
@GwtIncompatible public final class StatsAccumulator extends Object
A mutable object which accumulates double values and tracks some basic statistics over all the values added so far. The values may be added singly or in groups. This class is not thread safe.- Since:
- 20.0
- Author:
- Pete Gillin, Kevin Bourrillion
-
-
Constructor Summary
Constructors Constructor Description StatsAccumulator()
Creates a new accumulator.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description void
add(double value)
Adds the given value to the dataset.void
addAll(double... values)
Adds the given values to the dataset.void
addAll(int... values)
Adds the given values to the dataset.void
addAll(long... values)
Adds the given values to the dataset.void
addAll(Stats values)
Adds the given statistics to the dataset, as if the individual values used to compute the statistics had been added directly.void
addAll(StatsAccumulator values)
Adds the given statistics to the dataset, as if the individual values used to compute the statistics had been added directly.void
addAll(Iterable<? extends Number> values)
Adds the given values to the dataset.void
addAll(Iterator<? extends Number> values)
Adds the given values to the dataset.void
addAll(DoubleStream values)
Adds the given values to the dataset.void
addAll(IntStream values)
Adds the given values to the dataset.void
addAll(LongStream values)
Adds the given values to the dataset.long
count()
Returns the number of values.double
max()
Returns the highest value in the dataset.double
mean()
Returns the arithmetic mean of the values.double
min()
Returns the lowest value in the dataset.double
populationStandardDeviation()
Returns the population standard deviation of the values.double
populationVariance()
Returns the population variance of the values.double
sampleStandardDeviation()
Returns the corrected sample standard deviation of the values.double
sampleVariance()
Returns the unbiased sample variance of the values.Stats
snapshot()
Returns an immutable snapshot of the current statistics.double
sum()
Returns the sum of the values.
-
-
-
Constructor Detail
-
StatsAccumulator
public StatsAccumulator()
Creates a new accumulator.
-
-
Method Detail
-
add
public void add(double value)
Adds the given value to the dataset.
-
addAll
public void addAll(Iterable<? extends Number> values)
Adds the given values to the dataset.- Parameters:
values
- a series of values, which will be converted todouble
values (this may cause loss of precision)
-
addAll
public void addAll(Iterator<? extends Number> values)
Adds the given values to the dataset.- Parameters:
values
- a series of values, which will be converted todouble
values (this may cause loss of precision)
-
addAll
public void addAll(double... values)
Adds the given values to the dataset.- Parameters:
values
- a series of values
-
addAll
public void addAll(int... values)
Adds the given values to the dataset.- Parameters:
values
- a series of values
-
addAll
public void addAll(long... values)
Adds the given values to the dataset.- Parameters:
values
- a series of values, which will be converted todouble
values (this may cause loss of precision for longs of magnitude over 2^53 (slightly over 9e15))
-
addAll
public void addAll(DoubleStream values)
Adds the given values to the dataset. The stream will be completely consumed by this method.- Parameters:
values
- a series of values- Since:
- 33.4.0 (but since 28.2 in the JRE flavor)
-
addAll
public void addAll(IntStream values)
Adds the given values to the dataset. The stream will be completely consumed by this method.- Parameters:
values
- a series of values- Since:
- 33.4.0 (but since 28.2 in the JRE flavor)
-
addAll
public void addAll(LongStream values)
Adds the given values to the dataset. The stream will be completely consumed by this method.- Parameters:
values
- a series of values, which will be converted todouble
values (this may cause loss of precision for longs of magnitude over 2^53 (slightly over 9e15))- Since:
- 33.4.0 (but since 28.2 in the JRE flavor)
-
addAll
public void addAll(Stats values)
Adds the given statistics to the dataset, as if the individual values used to compute the statistics had been added directly.
-
addAll
public void addAll(StatsAccumulator values)
Adds the given statistics to the dataset, as if the individual values used to compute the statistics had been added directly.- Since:
- 28.2
-
count
public long count()
Returns the number of values.
-
mean
public double mean()
Returns the arithmetic mean of the values. The count must be non-zero.If these values are a sample drawn from a population, this is also an unbiased estimator of the arithmetic mean of the population.
Non-finite values
If the dataset contains
Double.NaN
then the result isDouble.NaN
. If it contains bothDouble.POSITIVE_INFINITY
andDouble.NEGATIVE_INFINITY
then the result isDouble.NaN
. If it containsDouble.POSITIVE_INFINITY
and finite values only orDouble.POSITIVE_INFINITY
only, the result isDouble.POSITIVE_INFINITY
. If it containsDouble.NEGATIVE_INFINITY
and finite values only orDouble.NEGATIVE_INFINITY
only, the result isDouble.NEGATIVE_INFINITY
.- Throws:
IllegalStateException
- if the dataset is empty
-
sum
public final double sum()
Returns the sum of the values.Non-finite values
If the dataset contains
Double.NaN
then the result isDouble.NaN
. If it contains bothDouble.POSITIVE_INFINITY
andDouble.NEGATIVE_INFINITY
then the result isDouble.NaN
. If it containsDouble.POSITIVE_INFINITY
and finite values only orDouble.POSITIVE_INFINITY
only, the result isDouble.POSITIVE_INFINITY
. If it containsDouble.NEGATIVE_INFINITY
and finite values only orDouble.NEGATIVE_INFINITY
only, the result isDouble.NEGATIVE_INFINITY
.
-
populationVariance
public final double populationVariance()
Returns the population variance of the values. The count must be non-zero.This is guaranteed to return zero if the dataset contains only exactly one finite value. It is not guaranteed to return zero when the dataset consists of the same value multiple times, due to numerical errors. However, it is guaranteed never to return a negative result.
Non-finite values
If the dataset contains any non-finite values (
Double.POSITIVE_INFINITY
,Double.NEGATIVE_INFINITY
, orDouble.NaN
) then the result isDouble.NaN
.- Throws:
IllegalStateException
- if the dataset is empty
-
populationStandardDeviation
public final double populationStandardDeviation()
Returns the population standard deviation of the values. The count must be non-zero.This is guaranteed to return zero if the dataset contains only exactly one finite value. It is not guaranteed to return zero when the dataset consists of the same value multiple times, due to numerical errors. However, it is guaranteed never to return a negative result.
Non-finite values
If the dataset contains any non-finite values (
Double.POSITIVE_INFINITY
,Double.NEGATIVE_INFINITY
, orDouble.NaN
) then the result isDouble.NaN
.- Throws:
IllegalStateException
- if the dataset is empty
-
sampleVariance
public final double sampleVariance()
Returns the unbiased sample variance of the values. If this dataset is a sample drawn from a population, this is an unbiased estimator of the population variance of the population. The count must be greater than one.This is not guaranteed to return zero when the dataset consists of the same value multiple times, due to numerical errors. However, it is guaranteed never to return a negative result.
Non-finite values
If the dataset contains any non-finite values (
Double.POSITIVE_INFINITY
,Double.NEGATIVE_INFINITY
, orDouble.NaN
) then the result isDouble.NaN
.- Throws:
IllegalStateException
- if the dataset is empty or contains a single value
-
sampleStandardDeviation
public final double sampleStandardDeviation()
Returns the corrected sample standard deviation of the values. If this dataset is a sample drawn from a population, this is an estimator of the population standard deviation of the population which is less biased thanpopulationStandardDeviation()
(the unbiased estimator depends on the distribution). The count must be greater than one.This is not guaranteed to return zero when the dataset consists of the same value multiple times, due to numerical errors. However, it is guaranteed never to return a negative result.
Non-finite values
If the dataset contains any non-finite values (
Double.POSITIVE_INFINITY
,Double.NEGATIVE_INFINITY
, orDouble.NaN
) then the result isDouble.NaN
.- Throws:
IllegalStateException
- if the dataset is empty or contains a single value
-
min
public double min()
Returns the lowest value in the dataset. The count must be non-zero.Non-finite values
If the dataset contains
Double.NaN
then the result isDouble.NaN
. If it containsDouble.NEGATIVE_INFINITY
and notDouble.NaN
then the result isDouble.NEGATIVE_INFINITY
. If it containsDouble.POSITIVE_INFINITY
and finite values only then the result is the lowest finite value. If it containsDouble.POSITIVE_INFINITY
only then the result isDouble.POSITIVE_INFINITY
.- Throws:
IllegalStateException
- if the dataset is empty
-
max
public double max()
Returns the highest value in the dataset. The count must be non-zero.Non-finite values
If the dataset contains
Double.NaN
then the result isDouble.NaN
. If it containsDouble.POSITIVE_INFINITY
and notDouble.NaN
then the result isDouble.POSITIVE_INFINITY
. If it containsDouble.NEGATIVE_INFINITY
and finite values only then the result is the highest finite value. If it containsDouble.NEGATIVE_INFINITY
only then the result isDouble.NEGATIVE_INFINITY
.- Throws:
IllegalStateException
- if the dataset is empty
-
-