Class AbstractNetwork<N,E>
 java.lang.Object

 com.google.common.graph.AbstractNetwork<N,E>

 Type Parameters:
N
 Node parameter typeE
 Edge parameter type
 All Implemented Interfaces:
Network<N,E>
,PredecessorsFunction<N>
,SuccessorsFunction<N>
 Direct Known Subclasses:
ImmutableNetwork
@Beta public abstract class AbstractNetwork<N,E> extends java.lang.Object implements Network<N,E>
This class provides a skeletal implementation ofNetwork
. It is recommended to extend this class rather than implementNetwork
directly.The methods implemented in this class should not be overridden unless the subclass admits a more efficient implementation.
 Since:
 20.0
 Author:
 James Sexton


Constructor Summary
Constructors Constructor Description AbstractNetwork()

Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description java.util.Set<E>
adjacentEdges(E edge)
Returns the edges which have anincident node
in common withedge
.Graph<N>
asGraph()
Returns a live view of this network as aGraph
.int
degree(N node)
Returns the count ofnode
'sincident edges
, counting selfloops twice (equivalently, the number of times an edge touchesnode
).java.util.Optional<E>
edgeConnecting(EndpointPair<N> endpoints)
Returns the single edge that directly connectsendpoints
(in the order, if any, specified byendpoints
), if one is present, orOptional.empty()
if no such edge exists.java.util.Optional<E>
edgeConnecting(N nodeU, N nodeV)
Returns the single edge that directly connectsnodeU
tonodeV
, if one is present, orOptional.empty()
if no such edge exists.E
edgeConnectingOrNull(EndpointPair<N> endpoints)
Returns the single edge that directly connectsendpoints
(in the order, if any, specified byendpoints
), if one is present, ornull
if no such edge exists.E
edgeConnectingOrNull(N nodeU, N nodeV)
Returns the single edge that directly connectsnodeU
tonodeV
, if one is present, ornull
if no such edge exists.java.util.Set<E>
edgesConnecting(EndpointPair<N> endpoints)
Returns the set of edges that each directly connectendpoints
(in the order, if any, specified byendpoints
).java.util.Set<E>
edgesConnecting(N nodeU, N nodeV)
Returns the set of edges that each directly connectnodeU
tonodeV
.boolean
equals(java.lang.Object obj)
Returnstrue
iffobject
is aNetwork
that has the same elements and the same structural relationships as those in this network.boolean
hasEdgeConnecting(EndpointPair<N> endpoints)
Returns true if there is an edge that directly connectsendpoints
(in the order, if any, specified byendpoints
).boolean
hasEdgeConnecting(N nodeU, N nodeV)
Returns true if there is an edge that directly connectsnodeU
tonodeV
.int
hashCode()
Returns the hash code for this network.int
inDegree(N node)
Returns the count ofnode
'sincoming edges
in a directed network.protected boolean
isOrderingCompatible(EndpointPair<?> endpoints)
int
outDegree(N node)
Returns the count ofnode
'soutgoing edges
in a directed network.java.lang.String
toString()
Returns a string representation of this network.protected void
validateEndpoints(EndpointPair<?> endpoints)
Throws an IllegalArgumentException if the ordering ofendpoints
is not compatible with the directionality of this graph.
Methods inherited from class java.lang.Object
clone, finalize, getClass, notify, notifyAll, wait, wait, wait

Methods inherited from interface com.google.common.graph.Network
adjacentNodes, allowsParallelEdges, allowsSelfLoops, edgeOrder, edges, incidentEdges, incidentNodes, inEdges, isDirected, nodeOrder, nodes, outEdges, predecessors, successors




Constructor Detail

AbstractNetwork
public AbstractNetwork()


Method Detail

asGraph
public Graph<N> asGraph()
Description copied from interface:Network
Returns a live view of this network as aGraph
. The resultingGraph
will have an edge connecting node A to node B if thisNetwork
has an edge connecting A to B.If this network
allows parallel edges
, parallel edges will be treated as if collapsed into a single edge. For example, theNetwork.degree(Object)
of a node in theGraph
view may be less than the degree of the same node in thisNetwork
.

degree
public int degree(N node)
Description copied from interface:Network
Returns the count ofnode
'sincident edges
, counting selfloops twice (equivalently, the number of times an edge touchesnode
).For directed networks, this is equal to
inDegree(node) + outDegree(node)
.For undirected networks, this is equal to
incidentEdges(node).size()
+ (number of selfloops incident tonode
).If the count is greater than
Integer.MAX_VALUE
, returnsInteger.MAX_VALUE
.

inDegree
public int inDegree(N node)
Description copied from interface:Network
Returns the count ofnode
'sincoming edges
in a directed network. In an undirected network, returns theNetwork.degree(Object)
.If the count is greater than
Integer.MAX_VALUE
, returnsInteger.MAX_VALUE
.

outDegree
public int outDegree(N node)
Description copied from interface:Network
Returns the count ofnode
'soutgoing edges
in a directed network. In an undirected network, returns theNetwork.degree(Object)
.If the count is greater than
Integer.MAX_VALUE
, returnsInteger.MAX_VALUE
.

adjacentEdges
public java.util.Set<E> adjacentEdges(E edge)
Description copied from interface:Network
Returns the edges which have anincident node
in common withedge
. An edge is not considered adjacent to itself. Specified by:
adjacentEdges
in interfaceNetwork<N,E>

edgesConnecting
public java.util.Set<E> edgesConnecting(N nodeU, N nodeV)
Description copied from interface:Network
Returns the set of edges that each directly connectnodeU
tonodeV
.In an undirected network, this is equal to
edgesConnecting(nodeV, nodeU)
.The resulting set of edges will be parallel (i.e. have equal
Network.incidentNodes(Object)
). If this network does notallow parallel edges
, the resulting set will contain at most one edge (equivalent toedgeConnecting(nodeU, nodeV).asSet()
). Specified by:
edgesConnecting
in interfaceNetwork<N,E>

edgesConnecting
public java.util.Set<E> edgesConnecting(EndpointPair<N> endpoints)
Description copied from interface:Network
Returns the set of edges that each directly connectendpoints
(in the order, if any, specified byendpoints
).The resulting set of edges will be parallel (i.e. have equal
Network.incidentNodes(Object)
). If this network does notallow parallel edges
, the resulting set will contain at most one edge (equivalent toedgeConnecting(endpoints).asSet()
).If this network is directed,
endpoints
must be ordered. Specified by:
edgesConnecting
in interfaceNetwork<N,E>

edgeConnecting
public java.util.Optional<E> edgeConnecting(N nodeU, N nodeV)
Description copied from interface:Network
Returns the single edge that directly connectsnodeU
tonodeV
, if one is present, orOptional.empty()
if no such edge exists.In an undirected network, this is equal to
edgeConnecting(nodeV, nodeU)
. Specified by:
edgeConnecting
in interfaceNetwork<N,E>

edgeConnecting
public java.util.Optional<E> edgeConnecting(EndpointPair<N> endpoints)
Description copied from interface:Network
Returns the single edge that directly connectsendpoints
(in the order, if any, specified byendpoints
), if one is present, orOptional.empty()
if no such edge exists.If this graph is directed, the endpoints must be ordered.
 Specified by:
edgeConnecting
in interfaceNetwork<N,E>

edgeConnectingOrNull
@CheckForNull public E edgeConnectingOrNull(N nodeU, N nodeV)
Description copied from interface:Network
Returns the single edge that directly connectsnodeU
tonodeV
, if one is present, ornull
if no such edge exists.In an undirected network, this is equal to
edgeConnectingOrNull(nodeV, nodeU)
. Specified by:
edgeConnectingOrNull
in interfaceNetwork<N,E>

edgeConnectingOrNull
@CheckForNull public E edgeConnectingOrNull(EndpointPair<N> endpoints)
Description copied from interface:Network
Returns the single edge that directly connectsendpoints
(in the order, if any, specified byendpoints
), if one is present, ornull
if no such edge exists.If this graph is directed, the endpoints must be ordered.
 Specified by:
edgeConnectingOrNull
in interfaceNetwork<N,E>

hasEdgeConnecting
public boolean hasEdgeConnecting(N nodeU, N nodeV)
Description copied from interface:Network
Returns true if there is an edge that directly connectsnodeU
tonodeV
. This is equivalent tonodes().contains(nodeU) && successors(nodeU).contains(nodeV)
, and toedgeConnectingOrNull(nodeU, nodeV) != null
.In an undirected graph, this is equal to
hasEdgeConnecting(nodeV, nodeU)
. Specified by:
hasEdgeConnecting
in interfaceNetwork<N,E>

hasEdgeConnecting
public boolean hasEdgeConnecting(EndpointPair<N> endpoints)
Description copied from interface:Network
Returns true if there is an edge that directly connectsendpoints
(in the order, if any, specified byendpoints
).Unlike the other
EndpointPair
accepting methods, this method does not throw if the endpoints are unordered and the graph is directed; it simply returnsfalse
. This is for consistency withGraph.hasEdgeConnecting(EndpointPair)
andValueGraph.hasEdgeConnecting(EndpointPair)
. Specified by:
hasEdgeConnecting
in interfaceNetwork<N,E>

validateEndpoints
protected final void validateEndpoints(EndpointPair<?> endpoints)
Throws an IllegalArgumentException if the ordering ofendpoints
is not compatible with the directionality of this graph.

isOrderingCompatible
protected final boolean isOrderingCompatible(EndpointPair<?> endpoints)

equals
public final boolean equals(@CheckForNull java.lang.Object obj)
Description copied from interface:Network
Returnstrue
iffobject
is aNetwork
that has the same elements and the same structural relationships as those in this network.Thus, two networks A and B are equal if all of the following are true:
 A and B have equal
directedness
.  A and B have equal
node sets
.  A and B have equal
edge sets
.  Every edge in A and B connects the same nodes in the same direction (if any).
Network properties besides
directedness
do not affect equality. For example, two networks may be considered equal even if one allows parallel edges and the other doesn't. Additionally, the order in which nodes or edges are added to the network, and the order in which they are iterated over, are irrelevant.A reference implementation of this is provided by
equals(Object)
.  A and B have equal

hashCode
public final int hashCode()
Description copied from interface:Network
Returns the hash code for this network. The hash code of a network is defined as the hash code of a map from each of itsedges
to theirincident nodes
.A reference implementation of this is provided by
hashCode()
.

toString
public java.lang.String toString()
Returns a string representation of this network. Overrides:
toString
in classjava.lang.Object

