N
- Node parameter type@Beta public interface Graph<N>
A graph is composed of a set of nodes and a set of edges connecting pairs of nodes.
There are three main interfaces provided to represent graphs. In order of increasing
complexity they are: Graph
, ValueGraph
, and Network
. You should generally
prefer the simplest interface that satisfies your use case. See the
"Choosing the right graph type" section of the Guava User Guide for more details.
Graph
supports the following use cases (definitions of
terms):
Graph
explicitly does not support parallel edges, and forbids implementations or
extensions with parallel edges. If you need parallel edges, use Network
.
Graph
The implementation classes that `common.graph` provides are not public, by design. To create
an instance of one of the built-in implementations of Graph
, use the GraphBuilder
class:
MutableGraph<Integer> graph = GraphBuilder.undirected().build();
GraphBuilder.build()
returns an instance of MutableGraph
, which is a subtype
of Graph
that provides methods for adding and removing nodes and edges. If you do not
need to mutate a graph (e.g. if you write a method than runs a read-only algorithm on the graph),
you should use the non-mutating Graph
interface, or an ImmutableGraph
.
You can create an immutable copy of an existing Graph
using ImmutableGraph.copyOf(Graph)
:
ImmutableGraph<Integer> immutableGraph = ImmutableGraph.copyOf(graph);
Instances of ImmutableGraph
do not implement MutableGraph
(obviously!) and are
contractually guaranteed to be unmodifiable and thread-safe.
The Guava User Guide has more information on (and examples of) building graphs.
See the Guava User Guide for the common.graph
package ("Graphs Explained") for
additional documentation, including:
Modifier and Type | Method and Description |
---|---|
Set<N> |
adjacentNodes(Object node)
Returns the nodes which have an incident edge in common with
node in this graph. |
boolean |
allowsSelfLoops()
Returns true if this graph allows self-loops (edges that connect a node to itself).
|
int |
degree(Object node)
Returns the count of
node 's incident edges, counting self-loops twice (equivalently,
the number of times an edge touches node ). |
Set<EndpointPair<N>> |
edges()
Returns all edges in this graph.
|
boolean |
equals(Object object)
For the default
Graph implementations, returns true if this == object
(reference equality). |
int |
hashCode()
For the default
Graph implementations, returns System.identityHashCode(this) . |
int |
inDegree(Object node)
Returns the count of
node 's incoming edges (equal to predecessors(node).size() )
in a directed graph. |
boolean |
isDirected()
Returns true if the edges in this graph are directed.
|
ElementOrder<N> |
nodeOrder()
Returns the order of iteration for the elements of
nodes() . |
Set<N> |
nodes()
Returns all nodes in this graph, in the order specified by
nodeOrder() . |
int |
outDegree(Object node)
Returns the count of
node 's outgoing edges (equal to successors(node).size() )
in a directed graph. |
Set<N> |
predecessors(Object node)
Returns all nodes in this graph adjacent to
node which can be reached by traversing
node 's incoming edges against the direction (if any) of the edge. |
Set<N> |
successors(Object node)
Returns all nodes in this graph adjacent to
node which can be reached by traversing
node 's outgoing edges in the direction (if any) of the edge. |
Set<N> nodes()
nodeOrder()
.Set<EndpointPair<N>> edges()
boolean isDirected()
source node
to a target node
, while
undirected edges connect a pair of nodes to each other.boolean allowsSelfLoops()
UnsupportedOperationException
.ElementOrder<N> nodeOrder()
nodes()
.Set<N> adjacentNodes(Object node)
node
in this graph.IllegalArgumentException
- if node
is not an element of this graphSet<N> predecessors(Object node)
node
which can be reached by traversing
node
's incoming edges against the direction (if any) of the edge.
In an undirected graph, this is equivalent to adjacentNodes(Object)
.
IllegalArgumentException
- if node
is not an element of this graphSet<N> successors(Object node)
node
which can be reached by traversing
node
's outgoing edges in the direction (if any) of the edge.
In an undirected graph, this is equivalent to adjacentNodes(Object)
.
This is not the same as "all nodes reachable from node
by following outgoing
edges". For that functionality, see Graphs.reachableNodes(Graph, Object)
.
IllegalArgumentException
- if node
is not an element of this graphint degree(Object node)
node
's incident edges, counting self-loops twice (equivalently,
the number of times an edge touches node
).
For directed graphs, this is equal to inDegree(node) + outDegree(node)
.
For undirected graphs, this is equal to adjacentNodes(node).size()
+ (1 if node
has an incident self-loop, 0 otherwise).
If the count is greater than Integer.MAX_VALUE
, returns Integer.MAX_VALUE
.
IllegalArgumentException
- if node
is not an element of this graphint inDegree(Object node)
node
's incoming edges (equal to predecessors(node).size()
)
in a directed graph. In an undirected graph, returns the degree(Object)
.
If the count is greater than Integer.MAX_VALUE
, returns Integer.MAX_VALUE
.
IllegalArgumentException
- if node
is not an element of this graphint outDegree(Object node)
node
's outgoing edges (equal to successors(node).size()
)
in a directed graph. In an undirected graph, returns the degree(Object)
.
If the count is greater than Integer.MAX_VALUE
, returns Integer.MAX_VALUE
.
IllegalArgumentException
- if node
is not an element of this graphboolean equals(@Nullable Object object)
Graph
implementations, returns true if this == object
(reference equality). External implementations are free to define this method as they see fit,
as long as they satisfy the Object.equals(Object)
contract.
To compare two Graph
s based on their contents rather than their references, see
Graphs.equivalent(Graph, Graph)
.
int hashCode()
Graph
implementations, returns System.identityHashCode(this)
.
External implementations are free to define this method as they see fit, as long as they
satisfy the Object.hashCode()
contract.Copyright © 2010-2016. All Rights Reserved.