public final class ConcurrentHashMultiset<E> extends AbstractCollection<E> implements Serializable
Multiset
operations (exceptions where noted). Null elements are not supported.
See the Guava User Guide article on
Multiset
.
Multiset.Entry<E>
Modifier and Type | Method and Description |
---|---|
boolean |
add(E element)
Ensures that this collection contains the specified element (optional
operation).
|
int |
add(E element,
int occurrences)
Adds a number of occurrences of the specified element to this multiset.
|
boolean |
addAll(Collection<? extends E> elementsToAdd)
Adds all of the elements in the specified collection to this collection
(optional operation).
|
void |
clear()
Removes all of the elements from this collection (optional operation).
|
boolean |
contains(Object element)
Returns true if this collection contains the specified element.
|
int |
count(Object element)
Returns the number of occurrences of
element in this multiset. |
static <E> ConcurrentHashMultiset<E> |
create()
Creates a new, empty
ConcurrentHashMultiset using the default
initial capacity, load factor, and concurrency settings. |
static <E> ConcurrentHashMultiset<E> |
create(Iterable<? extends E> elements)
Creates a new
ConcurrentHashMultiset containing the specified elements, using
the default initial capacity, load factor, and concurrency settings. |
static <E> ConcurrentHashMultiset<E> |
create(MapMaker mapMaker)
Creates a new, empty
ConcurrentHashMultiset using mapMaker
to construct the internal backing map. |
Set<Multiset.Entry<E>> |
createEntrySet() |
Set<E> |
elementSet()
Returns the set of distinct elements contained in this multiset.
|
Set<Multiset.Entry<E>> |
entrySet()
Returns a view of the contents of this multiset, grouped into
Multiset.Entry instances, each providing an element of the multiset and
the count of that element. |
boolean |
equals(Object object)
Indicates whether some other object is "equal to" this one.
|
int |
hashCode()
Returns a hash code value for the object.
|
boolean |
isEmpty()
Returns true if this collection contains no elements.
|
Iterator<E> |
iterator()
Returns an iterator over the elements contained in this collection.
|
boolean |
remove(Object element)
Removes a single instance of the specified element from this
collection, if it is present (optional operation).
|
int |
remove(Object element,
int occurrences)
Removes a number of occurrences of the specified element from this multiset.
|
boolean |
removeAll(Collection<?> elementsToRemove)
Removes all of this collection's elements that are also contained in the
specified collection (optional operation).
|
boolean |
removeExactly(Object element,
int occurrences)
Removes exactly the specified number of occurrences of
element , or makes no
change if this is not possible. |
boolean |
retainAll(Collection<?> elementsToRetain)
Retains only the elements in this collection that are contained in the
specified collection (optional operation).
|
int |
setCount(E element,
int count)
Adds or removes occurrences of
element such that the count(java.lang.Object) of the
element becomes count . |
boolean |
setCount(E element,
int expectedOldCount,
int newCount)
Sets the number of occurrences of
element to newCount , but only if
the count is currently expectedOldCount . |
int |
size()
Returns the number of elements in this collection.
|
Object[] |
toArray()
Returns an array containing all of the elements in this collection.
|
<T> T[] |
toArray(T[] array)
Returns an array containing all of the elements in this collection;
the runtime type of the returned array is that of the specified array.
|
String |
toString()
Returns a string representation of this collection.
|
containsAll
clone, finalize, getClass, notify, notifyAll, wait, wait, wait
containsAll
public static <E> ConcurrentHashMultiset<E> create()
ConcurrentHashMultiset
using the default
initial capacity, load factor, and concurrency settings.public static <E> ConcurrentHashMultiset<E> create(Iterable<? extends E> elements)
ConcurrentHashMultiset
containing the specified elements, using
the default initial capacity, load factor, and concurrency settings.
This implementation is highly efficient when elements
is itself a Multiset
.
elements
- the elements that the multiset should contain@Beta public static <E> ConcurrentHashMultiset<E> create(MapMaker mapMaker)
ConcurrentHashMultiset
using mapMaker
to construct the internal backing map.
If this MapMaker
is configured to use entry eviction of any kind, this eviction
applies to all occurrences of a given element as a single unit. However, most updates to the
multiset do not count as map updates at all, since we're usually just mutating the value
stored in the map, so MapMaker.expireAfterAccess(long, java.util.concurrent.TimeUnit)
makes sense (evict the entry that
was queried or updated longest ago), but MapMaker.expireAfterWrite(long, java.util.concurrent.TimeUnit)
doesn't, because
the eviction time is measured from when we saw the first occurrence of the object.
The returned multiset is serializable but any serialization caveats
given in MapMaker
apply.
Finally, soft/weak values can be used but are not very useful: the values are created internally and not exposed externally, so no one else will have a strong reference to the values. Weak keys on the other hand can be useful in some scenarios.
GenericMapMaker
class)
since 7.0)public int count(@Nullable Object element)
element
in this multiset.public int size()
If the data in the multiset is modified by any other threads during this method, it is undefined which (if any) of these modifications will be reflected in the result.
size
in interface Collection<E>
public Object[] toArray()
java.util.AbstractCollection
The returned array will be "safe" in that no references to it are maintained by this collection. (In other words, this method must allocate a new array even if this collection is backed by an array). The caller is thus free to modify the returned array.
This method acts as bridge between array-based and collection-based APIs.
This implementation returns an array containing all the elements
returned by this collection's iterator, in the same order, stored in
consecutive elements of the array, starting with index 0
.
The length of the returned array is equal to the number of elements
returned by the iterator, even if the size of this collection changes
during iteration, as might happen if the collection permits
concurrent modification during iteration. The size
method is
called only as an optimization hint; the correct result is returned
even if the iterator returns a different number of elements.
This method is equivalent to:
List<E> list = new ArrayList<E>(size());
for (E e : this)
list.add(e);
return list.toArray();
toArray
in interface Collection<E>
toArray
in class AbstractCollection<E>
public <T> T[] toArray(T[] array)
java.util.AbstractCollection
If this collection fits in the specified array with room to spare (i.e., the array has more elements than this collection), the element in the array immediately following the end of the collection is set to null. (This is useful in determining the length of this collection only if the caller knows that this collection does not contain any null elements.)
If this collection makes any guarantees as to what order its elements are returned by its iterator, this method must return the elements in the same order.
Like the Collection.toArray()
method, this method acts as bridge between
array-based and collection-based APIs. Further, this method allows
precise control over the runtime type of the output array, and may,
under certain circumstances, be used to save allocation costs.
Suppose x is a collection known to contain only strings. The following code can be used to dump the collection into a newly allocated array of String:
String[] y = x.toArray(new String[0]);Note that toArray(new Object[0]) is identical in function to toArray().
This implementation returns an array containing all the elements
returned by this collection's iterator in the same order, stored in
consecutive elements of the array, starting with index 0
.
If the number of elements returned by the iterator is too large to
fit into the specified array, then the elements are returned in a
newly allocated array with length equal to the number of elements
returned by the iterator, even if the size of this collection
changes during iteration, as might happen if the collection permits
concurrent modification during iteration. The size
method is
called only as an optimization hint; the correct result is returned
even if the iterator returns a different number of elements.
This method is equivalent to:
List<E> list = new ArrayList<E>(size());
for (E e : this)
list.add(e);
return list.toArray(a);
toArray
in interface Collection<E>
toArray
in class AbstractCollection<E>
array
- the array into which the elements of this collection are to be
stored, if it is big enough; otherwise, a new array of the same
runtime type is allocated for this purpose.public int add(E element, int occurrences)
add
in interface Multiset<E>
element
- the element to addoccurrences
- the number of occurrences to addIllegalArgumentException
- if occurrences
is negative, or if
the resulting amount would exceed Integer.MAX_VALUE
public int remove(@Nullable Object element, int occurrences)
remove
in interface Multiset<E>
element
- the element whose occurrences should be removedoccurrences
- the number of occurrences of the element to removeIllegalArgumentException
- if occurrences
is negativepublic boolean removeExactly(@Nullable Object element, int occurrences)
element
, or makes no
change if this is not possible.
This method, in contrast to remove(Object, int)
, has no effect when the
element count is smaller than occurrences
.
element
- the element to removeoccurrences
- the number of occurrences of element
to removetrue
if the removal was possible (including if occurrences
is zero)public int setCount(E element, int count)
element
such that the count(java.lang.Object)
of the
element becomes count
.setCount
in interface Multiset<E>
element
- the element to add or remove occurrences of; may be null
only if explicitly allowed by the implementationcount
- the desired count of the element in this multisetelement
in the multiset before this callIllegalArgumentException
- if count
is negativepublic boolean setCount(E element, int expectedOldCount, int newCount)
element
to newCount
, but only if
the count is currently expectedOldCount
. If element
does not appear
in the multiset exactly expectedOldCount
times, no changes will be made.setCount
in interface Multiset<E>
element
- the element to conditionally set the count of; may be null
only if explicitly allowed by the implementationexpectedOldCount
- the expected present count of the element in this multisetnewCount
- the desired count of the element in this multisettrue
if the change was successful. This usually indicates
that the multiset has been modified, but not always: in the case that
expectedOldCount == newCount
, the method will return true
if
the condition was met.IllegalArgumentException
- if expectedOldCount
or newCount
is negativepublic Set<Multiset.Entry<E>> createEntrySet()
public boolean isEmpty()
java.util.AbstractCollection
This implementation returns size() == 0.
isEmpty
in interface Collection<E>
public void clear()
java.util.AbstractCollection
This implementation iterates over this collection, removing each element using the Iterator.remove operation. Most implementations will probably choose to override this method for efficiency.
Note that this implementation will throw an UnsupportedOperationException if the iterator returned by this collection's iterator method does not implement the remove method and this collection is non-empty.
clear
in interface Collection<E>
public boolean contains(@Nullable Object element)
java.util.AbstractCollection
This implementation iterates over the elements in the collection, checking each element in turn for equality with the specified element.
contains
in interface Multiset<E>
contains
in interface Collection<E>
contains
in class AbstractCollection<E>
element
- element whose presence in this collection is to be testedpublic Iterator<E> iterator()
java.util.AbstractCollection
iterator
in interface Multiset<E>
iterator
in interface Iterable<E>
iterator
in interface Collection<E>
iterator
in class AbstractCollection<E>
public boolean add(@Nullable E element)
java.util.AbstractCollection
Collections that support this operation may place limitations on what elements may be added to this collection. In particular, some collections will refuse to add null elements, and others will impose restrictions on the type of elements that may be added. Collection classes should clearly specify in their documentation any restrictions on what elements may be added.
If a collection refuses to add a particular element for any reason other than that it already contains the element, it must throw an exception (rather than returning false). This preserves the invariant that a collection always contains the specified element after this call returns.
This implementation always throws an UnsupportedOperationException.
add
in interface Multiset<E>
add
in interface Collection<E>
add
in class AbstractCollection<E>
element
- element whose presence in this collection is to be ensuredpublic boolean remove(@Nullable Object element)
java.util.AbstractCollection
This implementation iterates over the collection looking for the specified element. If it finds the element, it removes the element from the collection using the iterator's remove method.
Note that this implementation throws an UnsupportedOperationException if the iterator returned by this collection's iterator method does not implement the remove method and this collection contains the specified object.
remove
in interface Multiset<E>
remove
in interface Collection<E>
remove
in class AbstractCollection<E>
element
- element to be removed from this collection, if presentpublic boolean addAll(Collection<? extends E> elementsToAdd)
This implementation iterates over the specified collection, and adds each object returned by the iterator to this collection, in turn.
Note that this implementation will throw an UnsupportedOperationException unless add is overridden (assuming the specified collection is non-empty).
This implementation is highly efficient when elementsToAdd
is itself a Multiset
.
addAll
in interface Collection<E>
addAll
in class AbstractCollection<E>
elementsToAdd
- collection containing elements to be added to this collectionAbstractCollection.add(Object)
public boolean removeAll(Collection<?> elementsToRemove)
java.util.AbstractCollection
This implementation iterates over this collection, checking each element returned by the iterator in turn to see if it's contained in the specified collection. If it's so contained, it's removed from this collection with the iterator's remove method.
Note that this implementation will throw an UnsupportedOperationException if the iterator returned by the iterator method does not implement the remove method and this collection contains one or more elements in common with the specified collection.
removeAll
in interface Multiset<E>
removeAll
in interface Collection<E>
removeAll
in class AbstractCollection<E>
elementsToRemove
- collection containing elements to be removed from this collectionAbstractCollection.remove(Object)
,
AbstractCollection.contains(Object)
public boolean retainAll(Collection<?> elementsToRetain)
java.util.AbstractCollection
This implementation iterates over this collection, checking each element returned by the iterator in turn to see if it's contained in the specified collection. If it's not so contained, it's removed from this collection with the iterator's remove method.
Note that this implementation will throw an UnsupportedOperationException if the iterator returned by the iterator method does not implement the remove method and this collection contains one or more elements not present in the specified collection.
retainAll
in interface Multiset<E>
retainAll
in interface Collection<E>
retainAll
in class AbstractCollection<E>
elementsToRetain
- collection containing elements to be retained in this collectionAbstractCollection.remove(Object)
,
AbstractCollection.contains(Object)
public Set<E> elementSet()
Multiset
If the element set supports any removal operations, these necessarily cause all occurrences of the removed element(s) to be removed from the multiset. Implementations are not expected to support the add operations, although this is possible.
A common use for the element set is to find the number of distinct
elements in the multiset: elementSet().size()
.
elementSet
in interface Multiset<E>
public Set<Multiset.Entry<E>> entrySet()
Multiset
Multiset.Entry
instances, each providing an element of the multiset and
the count of that element. This set contains exactly one entry for each
distinct element in the multiset (thus it always has the same size as the
Multiset.elementSet()
). The order of the elements in the element set is
unspecified.
The entry set is backed by the same data as the multiset, so any change
to either is immediately reflected in the other. However, multiset changes
may or may not be reflected in any Entry
instances already
retrieved from the entry set (this is implementation-dependent).
Furthermore, implementations are not required to support modifications to
the entry set at all, and the Entry
instances themselves don't
even have methods for modification. See the specific implementation class
for more details on how its entry set handles modifications.
public boolean equals(@Nullable Object object)
The equals
method implements an equivalence relation
on non-null object references:
x
, x.equals(x)
should return
true
.
x
and y
, x.equals(y)
should return true
if and only if
y.equals(x)
returns true
.
x
, y
, and z
, if
x.equals(y)
returns true
and
y.equals(z)
returns true
, then
x.equals(z)
should return true
.
x
and y
, multiple invocations of
x.equals(y)
consistently return true
or consistently return false
, provided no
information used in equals
comparisons on the
objects is modified.
x
,
x.equals(null)
should return false
.
The equals
method for class Object
implements
the most discriminating possible equivalence relation on objects;
that is, for any non-null reference values x
and
y
, this method returns true
if and only
if x
and y
refer to the same object
(x == y
has the value true
).
Note that it is generally necessary to override the hashCode
method whenever this method is overridden, so as to maintain the
general contract for the hashCode
method, which states
that equal objects must have equal hash codes.
This implementation returns true
if object
is a multiset
of the same size and if, for each element, the two multisets have the same
count.
equals
in interface Multiset<E>
equals
in interface Collection<E>
equals
in class Object
object
- the reference object with which to compare.true
if this object is the same as the obj
argument; false
otherwise.Object.hashCode()
,
HashMap
public int hashCode()
HashMap
.
The general contract of hashCode
is:
hashCode
method
must consistently return the same integer, provided no information
used in equals
comparisons on the object is modified.
This integer need not remain consistent from one execution of an
application to another execution of the same application.
equals(Object)
method, then calling the hashCode
method on each of
the two objects must produce the same integer result.
Object.equals(java.lang.Object)
method, then calling the hashCode
method on each of the
two objects must produce distinct integer results. However, the
programmer should be aware that producing distinct integer results
for unequal objects may improve the performance of hash tables.
As much as is reasonably practical, the hashCode method defined by
class Object
does return distinct integers for distinct
objects. (This is typically implemented by converting the internal
address of the object into an integer, but this implementation
technique is not required by the
JavaTM programming language.)
This implementation returns the hash code of Multiset.entrySet()
.
hashCode
in interface Multiset<E>
hashCode
in interface Collection<E>
hashCode
in class Object
Object.equals(java.lang.Object)
,
System.identityHashCode(java.lang.Object)
public String toString()
String.valueOf(Object)
.
This implementation returns the result of invoking toString
on
Multiset.entrySet()
.
toString
in interface Multiset<E>
toString
in class AbstractCollection<E>
Copyright © 2010-2014. All Rights Reserved.