001/*
002 * Copyright (C) 2011 The Guava Authors
003 *
004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
005 * in compliance with the License. You may obtain a copy of the License at
006 *
007 * http://www.apache.org/licenses/LICENSE-2.0
008 *
009 * Unless required by applicable law or agreed to in writing, software distributed under the License
010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
011 * or implied. See the License for the specific language governing permissions and limitations under
012 * the License.
013 */
014
015package com.google.common.primitives;
016
017import static com.google.common.base.Preconditions.checkArgument;
018import static com.google.common.base.Preconditions.checkNotNull;
019import static com.google.common.base.Preconditions.checkPositionIndexes;
020
021import com.google.common.annotations.GwtCompatible;
022import com.google.errorprone.annotations.CanIgnoreReturnValue;
023import java.math.BigInteger;
024import java.util.Arrays;
025import java.util.Comparator;
026
027/**
028 * Static utility methods pertaining to {@code long} primitives that interpret values as
029 * <i>unsigned</i> (that is, any negative value {@code x} is treated as the positive value {@code
030 * 2^64 + x}). The methods for which signedness is not an issue are in {@link Longs}, as well as
031 * signed versions of methods for which signedness is an issue.
032 *
033 * <p>In addition, this class provides several static methods for converting a {@code long} to a
034 * {@code String} and a {@code String} to a {@code long} that treat the {@code long} as an unsigned
035 * number.
036 *
037 * <p>Users of these utilities must be <i>extremely careful</i> not to mix up signed and unsigned
038 * {@code long} values. When possible, it is recommended that the {@link UnsignedLong} wrapper class
039 * be used, at a small efficiency penalty, to enforce the distinction in the type system.
040 *
041 * <p>See the Guava User Guide article on <a
042 * href="https://github.com/google/guava/wiki/PrimitivesExplained#unsigned-support">unsigned
043 * primitive utilities</a>.
044 *
045 * @author Louis Wasserman
046 * @author Brian Milch
047 * @author Colin Evans
048 * @since 10.0
049 */
050@GwtCompatible
051public final class UnsignedLongs {
052  private UnsignedLongs() {}
053
054  public static final long MAX_VALUE = -1L; // Equivalent to 2^64 - 1
055
056  /**
057   * A (self-inverse) bijection which converts the ordering on unsigned longs to the ordering on
058   * longs, that is, {@code a <= b} as unsigned longs if and only if {@code flip(a) <= flip(b)} as
059   * signed longs.
060   */
061  private static long flip(long a) {
062    return a ^ Long.MIN_VALUE;
063  }
064
065  /**
066   * Compares the two specified {@code long} values, treating them as unsigned values between {@code
067   * 0} and {@code 2^64 - 1} inclusive.
068   *
069   * <p><b>Note:</b> this method is now unnecessary and should be treated as deprecated; use the
070   * equivalent {@link Long#compareUnsigned(long, long)} method instead.
071   *
072   * @param a the first unsigned {@code long} to compare
073   * @param b the second unsigned {@code long} to compare
074   * @return a negative value if {@code a} is less than {@code b}; a positive value if {@code a} is
075   *     greater than {@code b}; or zero if they are equal
076   */
077  @SuppressWarnings("InlineMeInliner") // Integer.compare unavailable under GWT+J2CL
078  public static int compare(long a, long b) {
079    return Longs.compare(flip(a), flip(b));
080  }
081
082  /**
083   * Returns the least value present in {@code array}, treating values as unsigned.
084   *
085   * @param array a <i>nonempty</i> array of unsigned {@code long} values
086   * @return the value present in {@code array} that is less than or equal to every other value in
087   *     the array according to {@link #compare}
088   * @throws IllegalArgumentException if {@code array} is empty
089   */
090  public static long min(long... array) {
091    checkArgument(array.length > 0);
092    long min = flip(array[0]);
093    for (int i = 1; i < array.length; i++) {
094      long next = flip(array[i]);
095      if (next < min) {
096        min = next;
097      }
098    }
099    return flip(min);
100  }
101
102  /**
103   * Returns the greatest value present in {@code array}, treating values as unsigned.
104   *
105   * @param array a <i>nonempty</i> array of unsigned {@code long} values
106   * @return the value present in {@code array} that is greater than or equal to every other value
107   *     in the array according to {@link #compare}
108   * @throws IllegalArgumentException if {@code array} is empty
109   */
110  public static long max(long... array) {
111    checkArgument(array.length > 0);
112    long max = flip(array[0]);
113    for (int i = 1; i < array.length; i++) {
114      long next = flip(array[i]);
115      if (next > max) {
116        max = next;
117      }
118    }
119    return flip(max);
120  }
121
122  /**
123   * Returns a string containing the supplied unsigned {@code long} values separated by {@code
124   * separator}. For example, {@code join("-", 1, 2, 3)} returns the string {@code "1-2-3"}.
125   *
126   * @param separator the text that should appear between consecutive values in the resulting string
127   *     (but not at the start or end)
128   * @param array an array of unsigned {@code long} values, possibly empty
129   */
130  public static String join(String separator, long... array) {
131    checkNotNull(separator);
132    if (array.length == 0) {
133      return "";
134    }
135
136    // For pre-sizing a builder, just get the right order of magnitude
137    StringBuilder builder = new StringBuilder(array.length * 5);
138    builder.append(toString(array[0]));
139    for (int i = 1; i < array.length; i++) {
140      builder.append(separator).append(toString(array[i]));
141    }
142    return builder.toString();
143  }
144
145  /**
146   * Returns a comparator that compares two arrays of unsigned {@code long} values <a
147   * href="http://en.wikipedia.org/wiki/Lexicographical_order">lexicographically</a>. That is, it
148   * compares, using {@link #compare(long, long)}), the first pair of values that follow any common
149   * prefix, or when one array is a prefix of the other, treats the shorter array as the lesser. For
150   * example, {@code [] < [1L] < [1L, 2L] < [2L] < [1L << 63]}.
151   *
152   * <p>The returned comparator is inconsistent with {@link Object#equals(Object)} (since arrays
153   * support only identity equality), but it is consistent with {@link Arrays#equals(long[],
154   * long[])}.
155   *
156   * <p><b>Java 9+ users:</b> Use {@link Arrays#compareUnsigned(long[], long[])
157   * Arrays::compareUnsigned}.
158   */
159  public static Comparator<long[]> lexicographicalComparator() {
160    return LexicographicalComparator.INSTANCE;
161  }
162
163  enum LexicographicalComparator implements Comparator<long[]> {
164    INSTANCE;
165
166    @Override
167    public int compare(long[] left, long[] right) {
168      int minLength = Math.min(left.length, right.length);
169      for (int i = 0; i < minLength; i++) {
170        if (left[i] != right[i]) {
171          return UnsignedLongs.compare(left[i], right[i]);
172        }
173      }
174      return left.length - right.length;
175    }
176
177    @Override
178    public String toString() {
179      return "UnsignedLongs.lexicographicalComparator()";
180    }
181  }
182
183  /**
184   * Sorts the array, treating its elements as unsigned 64-bit integers.
185   *
186   * @since 23.1
187   */
188  public static void sort(long[] array) {
189    checkNotNull(array);
190    sort(array, 0, array.length);
191  }
192
193  /**
194   * Sorts the array between {@code fromIndex} inclusive and {@code toIndex} exclusive, treating its
195   * elements as unsigned 64-bit integers.
196   *
197   * @since 23.1
198   */
199  public static void sort(long[] array, int fromIndex, int toIndex) {
200    checkNotNull(array);
201    checkPositionIndexes(fromIndex, toIndex, array.length);
202    for (int i = fromIndex; i < toIndex; i++) {
203      array[i] = flip(array[i]);
204    }
205    Arrays.sort(array, fromIndex, toIndex);
206    for (int i = fromIndex; i < toIndex; i++) {
207      array[i] = flip(array[i]);
208    }
209  }
210
211  /**
212   * Sorts the elements of {@code array} in descending order, interpreting them as unsigned 64-bit
213   * integers.
214   *
215   * @since 23.1
216   */
217  public static void sortDescending(long[] array) {
218    checkNotNull(array);
219    sortDescending(array, 0, array.length);
220  }
221
222  /**
223   * Sorts the elements of {@code array} between {@code fromIndex} inclusive and {@code toIndex}
224   * exclusive in descending order, interpreting them as unsigned 64-bit integers.
225   *
226   * @since 23.1
227   */
228  public static void sortDescending(long[] array, int fromIndex, int toIndex) {
229    checkNotNull(array);
230    checkPositionIndexes(fromIndex, toIndex, array.length);
231    for (int i = fromIndex; i < toIndex; i++) {
232      array[i] ^= Long.MAX_VALUE;
233    }
234    Arrays.sort(array, fromIndex, toIndex);
235    for (int i = fromIndex; i < toIndex; i++) {
236      array[i] ^= Long.MAX_VALUE;
237    }
238  }
239
240  /**
241   * Returns dividend / divisor, where the dividend and divisor are treated as unsigned 64-bit
242   * quantities.
243   *
244   * <p><b>Java 8+ users:</b> use {@link Long#divideUnsigned(long, long)} instead.
245   *
246   * @param dividend the dividend (numerator)
247   * @param divisor the divisor (denominator)
248   * @throws ArithmeticException if divisor is 0
249   */
250  public static long divide(long dividend, long divisor) {
251    if (divisor < 0) { // i.e., divisor >= 2^63:
252      if (compare(dividend, divisor) < 0) {
253        return 0; // dividend < divisor
254      } else {
255        return 1; // dividend >= divisor
256      }
257    }
258
259    // Optimization - use signed division if dividend < 2^63
260    if (dividend >= 0) {
261      return dividend / divisor;
262    }
263
264    /*
265     * Otherwise, approximate the quotient, check, and correct if necessary. Our approximation is
266     * guaranteed to be either exact or one less than the correct value. This follows from fact that
267     * floor(floor(x)/i) == floor(x/i) for any real x and integer i != 0. The proof is not quite
268     * trivial.
269     */
270    long quotient = ((dividend >>> 1) / divisor) << 1;
271    long rem = dividend - quotient * divisor;
272    return quotient + (compare(rem, divisor) >= 0 ? 1 : 0);
273  }
274
275  /**
276   * Returns dividend % divisor, where the dividend and divisor are treated as unsigned 64-bit
277   * quantities.
278   *
279   * <p><b>Java 8+ users:</b> use {@link Long#remainderUnsigned(long, long)} instead.
280   *
281   * @param dividend the dividend (numerator)
282   * @param divisor the divisor (denominator)
283   * @throws ArithmeticException if divisor is 0
284   * @since 11.0
285   */
286  public static long remainder(long dividend, long divisor) {
287    if (divisor < 0) { // i.e., divisor >= 2^63:
288      if (compare(dividend, divisor) < 0) {
289        return dividend; // dividend < divisor
290      } else {
291        return dividend - divisor; // dividend >= divisor
292      }
293    }
294
295    // Optimization - use signed modulus if dividend < 2^63
296    if (dividend >= 0) {
297      return dividend % divisor;
298    }
299
300    /*
301     * Otherwise, approximate the quotient, check, and correct if necessary. Our approximation is
302     * guaranteed to be either exact or one less than the correct value. This follows from the fact
303     * that floor(floor(x)/i) == floor(x/i) for any real x and integer i != 0. The proof is not
304     * quite trivial.
305     */
306    long quotient = ((dividend >>> 1) / divisor) << 1;
307    long rem = dividend - quotient * divisor;
308    return rem - (compare(rem, divisor) >= 0 ? divisor : 0);
309  }
310
311  /**
312   * Returns the unsigned {@code long} value represented by the given decimal string.
313   *
314   * <p><b>Java 8+ users:</b> use {@link Long#parseUnsignedLong(String)} instead.
315   *
316   * @throws NumberFormatException if the string does not contain a valid unsigned {@code long}
317   *     value
318   * @throws NullPointerException if {@code string} is null (in contrast to {@link
319   *     Long#parseLong(String)})
320   */
321  @CanIgnoreReturnValue
322  public static long parseUnsignedLong(String string) {
323    return parseUnsignedLong(string, 10);
324  }
325
326  /**
327   * Returns the unsigned {@code long} value represented by a string with the given radix.
328   *
329   * <p><b>Java 8+ users:</b> use {@link Long#parseUnsignedLong(String, int)} instead.
330   *
331   * @param string the string containing the unsigned {@code long} representation to be parsed.
332   * @param radix the radix to use while parsing {@code string}
333   * @throws NumberFormatException if the string does not contain a valid unsigned {@code long} with
334   *     the given radix, or if {@code radix} is not between {@link Character#MIN_RADIX} and {@link
335   *     Character#MAX_RADIX}.
336   * @throws NullPointerException if {@code string} is null (in contrast to {@link
337   *     Long#parseLong(String)})
338   */
339  @CanIgnoreReturnValue
340  public static long parseUnsignedLong(String string, int radix) {
341    checkNotNull(string);
342    if (string.length() == 0) {
343      throw new NumberFormatException("empty string");
344    }
345    if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX) {
346      throw new NumberFormatException("illegal radix: " + radix);
347    }
348
349    int maxSafePos = ParseOverflowDetection.maxSafeDigits[radix] - 1;
350    long value = 0;
351    for (int pos = 0; pos < string.length(); pos++) {
352      int digit = Character.digit(string.charAt(pos), radix);
353      if (digit == -1) {
354        throw new NumberFormatException(string);
355      }
356      if (pos > maxSafePos && ParseOverflowDetection.overflowInParse(value, digit, radix)) {
357        throw new NumberFormatException("Too large for unsigned long: " + string);
358      }
359      value = (value * radix) + digit;
360    }
361
362    return value;
363  }
364
365  /**
366   * Returns the unsigned {@code long} value represented by the given string.
367   *
368   * <p>Accepts a decimal, hexadecimal, or octal number given by specifying the following prefix:
369   *
370   * <ul>
371   *   <li>{@code 0x}<i>HexDigits</i>
372   *   <li>{@code 0X}<i>HexDigits</i>
373   *   <li>{@code #}<i>HexDigits</i>
374   *   <li>{@code 0}<i>OctalDigits</i>
375   * </ul>
376   *
377   * @throws NumberFormatException if the string does not contain a valid unsigned {@code long}
378   *     value
379   * @since 13.0
380   */
381  @CanIgnoreReturnValue
382  public static long decode(String stringValue) {
383    ParseRequest request = ParseRequest.fromString(stringValue);
384
385    try {
386      return parseUnsignedLong(request.rawValue, request.radix);
387    } catch (NumberFormatException e) {
388      NumberFormatException decodeException =
389          new NumberFormatException("Error parsing value: " + stringValue);
390      decodeException.initCause(e);
391      throw decodeException;
392    }
393  }
394
395  /*
396   * We move the static constants into this class so ProGuard can inline UnsignedLongs entirely
397   * unless the user is actually calling a parse method.
398   */
399  private static final class ParseOverflowDetection {
400    private ParseOverflowDetection() {}
401
402    // calculated as 0xffffffffffffffff / radix
403    static final long[] maxValueDivs = new long[Character.MAX_RADIX + 1];
404    static final int[] maxValueMods = new int[Character.MAX_RADIX + 1];
405    static final int[] maxSafeDigits = new int[Character.MAX_RADIX + 1];
406
407    static {
408      BigInteger overflow = new BigInteger("10000000000000000", 16);
409      for (int i = Character.MIN_RADIX; i <= Character.MAX_RADIX; i++) {
410        maxValueDivs[i] = divide(MAX_VALUE, i);
411        maxValueMods[i] = (int) remainder(MAX_VALUE, i);
412        maxSafeDigits[i] = overflow.toString(i).length() - 1;
413      }
414    }
415
416    /**
417     * Returns true if (current * radix) + digit is a number too large to be represented by an
418     * unsigned long. This is useful for detecting overflow while parsing a string representation of
419     * a number. Does not verify whether supplied radix is valid, passing an invalid radix will give
420     * undefined results or an ArrayIndexOutOfBoundsException.
421     */
422    static boolean overflowInParse(long current, int digit, int radix) {
423      if (current >= 0) {
424        if (current < maxValueDivs[radix]) {
425          return false;
426        }
427        if (current > maxValueDivs[radix]) {
428          return true;
429        }
430        // current == maxValueDivs[radix]
431        return (digit > maxValueMods[radix]);
432      }
433
434      // current < 0: high bit is set
435      return true;
436    }
437  }
438
439  /**
440   * Returns a string representation of x, where x is treated as unsigned.
441   *
442   * <p><b>Java 8+ users:</b> use {@link Long#toUnsignedString(long)} instead.
443   */
444  public static String toString(long x) {
445    return toString(x, 10);
446  }
447
448  /**
449   * Returns a string representation of {@code x} for the given radix, where {@code x} is treated as
450   * unsigned.
451   *
452   * <p><b>Java 8+ users:</b> use {@link Long#toUnsignedString(long, int)} instead.
453   *
454   * @param x the value to convert to a string.
455   * @param radix the radix to use while working with {@code x}
456   * @throws IllegalArgumentException if {@code radix} is not between {@link Character#MIN_RADIX}
457   *     and {@link Character#MAX_RADIX}.
458   */
459  public static String toString(long x, int radix) {
460    checkArgument(
461        radix >= Character.MIN_RADIX && radix <= Character.MAX_RADIX,
462        "radix (%s) must be between Character.MIN_RADIX and Character.MAX_RADIX",
463        radix);
464    if (x == 0) {
465      // Simply return "0"
466      return "0";
467    } else if (x > 0) {
468      return Long.toString(x, radix);
469    } else {
470      char[] buf = new char[64];
471      int i = buf.length;
472      if ((radix & (radix - 1)) == 0) {
473        // Radix is a power of two so we can avoid division.
474        int shift = Integer.numberOfTrailingZeros(radix);
475        int mask = radix - 1;
476        do {
477          buf[--i] = Character.forDigit(((int) x) & mask, radix);
478          x >>>= shift;
479        } while (x != 0);
480      } else {
481        // Separate off the last digit using unsigned division. That will leave
482        // a number that is nonnegative as a signed integer.
483        long quotient;
484        if ((radix & 1) == 0) {
485          // Fast path for the usual case where the radix is even.
486          quotient = (x >>> 1) / (radix >>> 1);
487        } else {
488          quotient = divide(x, radix);
489        }
490        long rem = x - quotient * radix;
491        buf[--i] = Character.forDigit((int) rem, radix);
492        x = quotient;
493        // Simple modulo/division approach
494        while (x > 0) {
495          buf[--i] = Character.forDigit((int) (x % radix), radix);
496          x /= radix;
497        }
498      }
499      // Generate string
500      return new String(buf, i, buf.length - i);
501    }
502  }
503}