001/* 002 * Copyright (C) 2009 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 005 * in compliance with the License. You may obtain a copy of the License at 006 * 007 * http://www.apache.org/licenses/LICENSE-2.0 008 * 009 * Unless required by applicable law or agreed to in writing, software distributed under the License 010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express 011 * or implied. See the License for the specific language governing permissions and limitations under 012 * the License. 013 */ 014 015package com.google.common.primitives; 016 017import static com.google.common.base.Preconditions.checkArgument; 018import static com.google.common.base.Preconditions.checkNotNull; 019import static com.google.common.base.Preconditions.checkPositionIndexes; 020import static java.util.Objects.requireNonNull; 021 022import com.google.common.annotations.GwtIncompatible; 023import com.google.common.annotations.J2ktIncompatible; 024import com.google.common.annotations.VisibleForTesting; 025import com.google.errorprone.annotations.CanIgnoreReturnValue; 026import com.google.j2objc.annotations.J2ObjCIncompatible; 027import java.lang.reflect.Field; 028import java.nio.ByteOrder; 029import java.security.AccessController; 030import java.security.PrivilegedActionException; 031import java.security.PrivilegedExceptionAction; 032import java.util.Arrays; 033import java.util.Comparator; 034import org.jspecify.annotations.Nullable; 035import sun.misc.Unsafe; 036 037/** 038 * Static utility methods pertaining to {@code byte} primitives that interpret values as 039 * <i>unsigned</i> (that is, any negative value {@code b} is treated as the positive value {@code 040 * 256 + b}). The corresponding methods that treat the values as signed are found in {@link 041 * SignedBytes}, and the methods for which signedness is not an issue are in {@link Bytes}. 042 * 043 * <p>See the Guava User Guide article on <a 044 * href="https://github.com/google/guava/wiki/PrimitivesExplained">primitive utilities</a>. 045 * 046 * @author Kevin Bourrillion 047 * @author Martin Buchholz 048 * @author Hiroshi Yamauchi 049 * @author Louis Wasserman 050 * @since 1.0 051 */ 052@J2ktIncompatible 053@GwtIncompatible 054public final class UnsignedBytes { 055 private UnsignedBytes() {} 056 057 /** 058 * The largest power of two that can be represented as an unsigned {@code byte}. 059 * 060 * @since 10.0 061 */ 062 public static final byte MAX_POWER_OF_TWO = (byte) 0x80; 063 064 /** 065 * The largest value that fits into an unsigned byte. 066 * 067 * @since 13.0 068 */ 069 public static final byte MAX_VALUE = (byte) 0xFF; 070 071 private static final int UNSIGNED_MASK = 0xFF; 072 073 /** 074 * Returns the value of the given byte as an integer, when treated as unsigned. That is, returns 075 * {@code value + 256} if {@code value} is negative; {@code value} itself otherwise. 076 * 077 * <p><b>Java 8+ users:</b> use {@link Byte#toUnsignedInt(byte)} instead. 078 * 079 * @since 6.0 080 */ 081 public static int toInt(byte value) { 082 return value & UNSIGNED_MASK; 083 } 084 085 /** 086 * Returns the {@code byte} value that, when treated as unsigned, is equal to {@code value}, if 087 * possible. 088 * 089 * @param value a value between 0 and 255 inclusive 090 * @return the {@code byte} value that, when treated as unsigned, equals {@code value} 091 * @throws IllegalArgumentException if {@code value} is negative or greater than 255 092 */ 093 @CanIgnoreReturnValue 094 public static byte checkedCast(long value) { 095 checkArgument(value >> Byte.SIZE == 0, "out of range: %s", value); 096 return (byte) value; 097 } 098 099 /** 100 * Returns the {@code byte} value that, when treated as unsigned, is nearest in value to {@code 101 * value}. 102 * 103 * @param value any {@code long} value 104 * @return {@code (byte) 255} if {@code value >= 255}, {@code (byte) 0} if {@code value <= 0}, and 105 * {@code value} cast to {@code byte} otherwise 106 */ 107 public static byte saturatedCast(long value) { 108 if (value > toInt(MAX_VALUE)) { 109 return MAX_VALUE; // -1 110 } 111 if (value < 0) { 112 return (byte) 0; 113 } 114 return (byte) value; 115 } 116 117 /** 118 * Compares the two specified {@code byte} values, treating them as unsigned values between 0 and 119 * 255 inclusive. For example, {@code (byte) -127} is considered greater than {@code (byte) 127} 120 * because it is seen as having the value of positive {@code 129}. 121 * 122 * @param a the first {@code byte} to compare 123 * @param b the second {@code byte} to compare 124 * @return a negative value if {@code a} is less than {@code b}; a positive value if {@code a} is 125 * greater than {@code b}; or zero if they are equal 126 */ 127 public static int compare(byte a, byte b) { 128 return toInt(a) - toInt(b); 129 } 130 131 /** 132 * Returns the least value present in {@code array}, treating values as unsigned. 133 * 134 * @param array a <i>nonempty</i> array of {@code byte} values 135 * @return the value present in {@code array} that is less than or equal to every other value in 136 * the array according to {@link #compare} 137 * @throws IllegalArgumentException if {@code array} is empty 138 */ 139 public static byte min(byte... array) { 140 checkArgument(array.length > 0); 141 int min = toInt(array[0]); 142 for (int i = 1; i < array.length; i++) { 143 int next = toInt(array[i]); 144 if (next < min) { 145 min = next; 146 } 147 } 148 return (byte) min; 149 } 150 151 /** 152 * Returns the greatest value present in {@code array}, treating values as unsigned. 153 * 154 * @param array a <i>nonempty</i> array of {@code byte} values 155 * @return the value present in {@code array} that is greater than or equal to every other value 156 * in the array according to {@link #compare} 157 * @throws IllegalArgumentException if {@code array} is empty 158 */ 159 public static byte max(byte... array) { 160 checkArgument(array.length > 0); 161 int max = toInt(array[0]); 162 for (int i = 1; i < array.length; i++) { 163 int next = toInt(array[i]); 164 if (next > max) { 165 max = next; 166 } 167 } 168 return (byte) max; 169 } 170 171 /** 172 * Returns a string representation of x, where x is treated as unsigned. 173 * 174 * @since 13.0 175 */ 176 public static String toString(byte x) { 177 return toString(x, 10); 178 } 179 180 /** 181 * Returns a string representation of {@code x} for the given radix, where {@code x} is treated as 182 * unsigned. 183 * 184 * @param x the value to convert to a string. 185 * @param radix the radix to use while working with {@code x} 186 * @throws IllegalArgumentException if {@code radix} is not between {@link Character#MIN_RADIX} 187 * and {@link Character#MAX_RADIX}. 188 * @since 13.0 189 */ 190 public static String toString(byte x, int radix) { 191 checkArgument( 192 radix >= Character.MIN_RADIX && radix <= Character.MAX_RADIX, 193 "radix (%s) must be between Character.MIN_RADIX and Character.MAX_RADIX", 194 radix); 195 // Benchmarks indicate this is probably not worth optimizing. 196 return Integer.toString(toInt(x), radix); 197 } 198 199 /** 200 * Returns the unsigned {@code byte} value represented by the given decimal string. 201 * 202 * @throws NumberFormatException if the string does not contain a valid unsigned {@code byte} 203 * value 204 * @throws NullPointerException if {@code string} is null (in contrast to {@link 205 * Byte#parseByte(String)}) 206 * @since 13.0 207 */ 208 @CanIgnoreReturnValue 209 public static byte parseUnsignedByte(String string) { 210 return parseUnsignedByte(string, 10); 211 } 212 213 /** 214 * Returns the unsigned {@code byte} value represented by a string with the given radix. 215 * 216 * @param string the string containing the unsigned {@code byte} representation to be parsed. 217 * @param radix the radix to use while parsing {@code string} 218 * @throws NumberFormatException if the string does not contain a valid unsigned {@code byte} with 219 * the given radix, or if {@code radix} is not between {@link Character#MIN_RADIX} and {@link 220 * Character#MAX_RADIX}. 221 * @throws NullPointerException if {@code string} is null (in contrast to {@link 222 * Byte#parseByte(String)}) 223 * @since 13.0 224 */ 225 @CanIgnoreReturnValue 226 public static byte parseUnsignedByte(String string, int radix) { 227 int parse = Integer.parseInt(checkNotNull(string), radix); 228 // We need to throw a NumberFormatException, so we have to duplicate checkedCast. =( 229 if (parse >> Byte.SIZE == 0) { 230 return (byte) parse; 231 } else { 232 throw new NumberFormatException("out of range: " + parse); 233 } 234 } 235 236 /** 237 * Returns a string containing the supplied {@code byte} values separated by {@code separator}. 238 * For example, {@code join(":", (byte) 1, (byte) 2, (byte) 255)} returns the string {@code 239 * "1:2:255"}. 240 * 241 * @param separator the text that should appear between consecutive values in the resulting string 242 * (but not at the start or end) 243 * @param array an array of {@code byte} values, possibly empty 244 */ 245 public static String join(String separator, byte... array) { 246 checkNotNull(separator); 247 if (array.length == 0) { 248 return ""; 249 } 250 251 // For pre-sizing a builder, just get the right order of magnitude 252 StringBuilder builder = new StringBuilder(array.length * (3 + separator.length())); 253 builder.append(toInt(array[0])); 254 for (int i = 1; i < array.length; i++) { 255 builder.append(separator).append(toString(array[i])); 256 } 257 return builder.toString(); 258 } 259 260 /** 261 * Returns a comparator that compares two {@code byte} arrays <a 262 * href="http://en.wikipedia.org/wiki/Lexicographical_order">lexicographically</a>. That is, it 263 * compares, using {@link #compare(byte, byte)}), the first pair of values that follow any common 264 * prefix, or when one array is a prefix of the other, treats the shorter array as the lesser. For 265 * example, {@code [] < [0x01] < [0x01, 0x7F] < [0x01, 0x80] < [0x02]}. Values are treated as 266 * unsigned. 267 * 268 * <p>The returned comparator is inconsistent with {@link Object#equals(Object)} (since arrays 269 * support only identity equality), but it is consistent with {@link 270 * java.util.Arrays#equals(byte[], byte[])}. 271 * 272 * @since 2.0 273 */ 274 public static Comparator<byte[]> lexicographicalComparator() { 275 return LexicographicalComparatorHolder.BEST_COMPARATOR; 276 } 277 278 @VisibleForTesting 279 static Comparator<byte[]> lexicographicalComparatorJavaImpl() { 280 return LexicographicalComparatorHolder.PureJavaComparator.INSTANCE; 281 } 282 283 /** 284 * Provides a lexicographical comparator implementation; either a Java implementation or a faster 285 * implementation based on {@link Unsafe}. 286 * 287 * <p>Uses reflection to gracefully fall back to the Java implementation if {@code Unsafe} isn't 288 * available. 289 */ 290 @VisibleForTesting 291 static class LexicographicalComparatorHolder { 292 static final String UNSAFE_COMPARATOR_NAME = 293 LexicographicalComparatorHolder.class.getName() + "$UnsafeComparator"; 294 295 static final Comparator<byte[]> BEST_COMPARATOR = getBestComparator(); 296 297 @SuppressWarnings("SunApi") // b/345822163 298 @VisibleForTesting 299 enum UnsafeComparator implements Comparator<byte[]> { 300 INSTANCE; 301 302 static final boolean BIG_ENDIAN = ByteOrder.nativeOrder().equals(ByteOrder.BIG_ENDIAN); 303 304 /* 305 * The following static final fields exist for performance reasons. 306 * 307 * In UnsignedBytesBenchmark, accessing the following objects via static final fields is the 308 * fastest (more than twice as fast as the Java implementation, vs ~1.5x with non-final static 309 * fields, on x86_32) under the Hotspot server compiler. The reason is obviously that the 310 * non-final fields need to be reloaded inside the loop. 311 * 312 * And, no, defining (final or not) local variables out of the loop still isn't as good 313 * because the null check on the theUnsafe object remains inside the loop and 314 * BYTE_ARRAY_BASE_OFFSET doesn't get constant-folded. 315 * 316 * The compiler can treat static final fields as compile-time constants and can constant-fold 317 * them while (final or not) local variables are run time values. 318 */ 319 320 static final Unsafe theUnsafe = getUnsafe(); 321 322 /** The offset to the first element in a byte array. */ 323 static final int BYTE_ARRAY_BASE_OFFSET = theUnsafe.arrayBaseOffset(byte[].class); 324 325 static { 326 // fall back to the safer pure java implementation unless we're in 327 // a 64-bit JVM with an 8-byte aligned field offset. 328 if (!("64".equals(System.getProperty("sun.arch.data.model")) 329 && (BYTE_ARRAY_BASE_OFFSET % 8) == 0 330 // sanity check - this should never fail 331 && theUnsafe.arrayIndexScale(byte[].class) == 1)) { 332 throw new Error(); // force fallback to PureJavaComparator 333 } 334 } 335 336 /** 337 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package. Replace with a simple 338 * call to Unsafe.getUnsafe when integrating into a jdk. 339 * 340 * @return a sun.misc.Unsafe 341 */ 342 private static Unsafe getUnsafe() { 343 try { 344 return Unsafe.getUnsafe(); 345 } catch (SecurityException e) { 346 // that's okay; try reflection instead 347 } 348 try { 349 return AccessController.doPrivileged( 350 new PrivilegedExceptionAction<Unsafe>() { 351 @Override 352 public Unsafe run() throws Exception { 353 Class<Unsafe> k = Unsafe.class; 354 for (Field f : k.getDeclaredFields()) { 355 f.setAccessible(true); 356 Object x = f.get(null); 357 if (k.isInstance(x)) { 358 return k.cast(x); 359 } 360 } 361 throw new NoSuchFieldError("the Unsafe"); 362 } 363 }); 364 } catch (PrivilegedActionException e) { 365 throw new RuntimeException("Could not initialize intrinsics", e.getCause()); 366 } 367 } 368 369 @Override 370 // Long.compareUnsigned is available under Android, which is what we really care about. 371 @SuppressWarnings("Java7ApiChecker") 372 public int compare(byte[] left, byte[] right) { 373 int stride = 8; 374 int minLength = Math.min(left.length, right.length); 375 int strideLimit = minLength & ~(stride - 1); 376 int i; 377 378 /* 379 * Compare 8 bytes at a time. Benchmarking on x86 shows a stride of 8 bytes is no slower 380 * than 4 bytes even on 32-bit. On the other hand, it is substantially faster on 64-bit. 381 */ 382 for (i = 0; i < strideLimit; i += stride) { 383 long lw = theUnsafe.getLong(left, BYTE_ARRAY_BASE_OFFSET + (long) i); 384 long rw = theUnsafe.getLong(right, BYTE_ARRAY_BASE_OFFSET + (long) i); 385 if (lw != rw) { 386 if (BIG_ENDIAN) { 387 return Long.compareUnsigned(lw, rw); 388 } 389 390 /* 391 * We want to compare only the first index where left[index] != right[index]. This 392 * corresponds to the least significant nonzero byte in lw ^ rw, since lw and rw are 393 * little-endian. Long.numberOfTrailingZeros(diff) tells us the least significant 394 * nonzero bit, and zeroing out the first three bits of L.nTZ gives us the shift to get 395 * that least significant nonzero byte. 396 */ 397 int n = Long.numberOfTrailingZeros(lw ^ rw) & ~0x7; 398 return ((int) ((lw >>> n) & UNSIGNED_MASK)) - ((int) ((rw >>> n) & UNSIGNED_MASK)); 399 } 400 } 401 402 // The epilogue to cover the last (minLength % stride) elements. 403 for (; i < minLength; i++) { 404 int result = UnsignedBytes.compare(left[i], right[i]); 405 if (result != 0) { 406 return result; 407 } 408 } 409 return left.length - right.length; 410 } 411 412 @Override 413 public String toString() { 414 return "UnsignedBytes.lexicographicalComparator() (sun.misc.Unsafe version)"; 415 } 416 } 417 418 enum PureJavaComparator implements Comparator<byte[]> { 419 INSTANCE; 420 421 @Override 422 public int compare(byte[] left, byte[] right) { 423 int minLength = Math.min(left.length, right.length); 424 for (int i = 0; i < minLength; i++) { 425 int result = UnsignedBytes.compare(left[i], right[i]); 426 if (result != 0) { 427 return result; 428 } 429 } 430 return left.length - right.length; 431 } 432 433 @Override 434 public String toString() { 435 return "UnsignedBytes.lexicographicalComparator() (pure Java version)"; 436 } 437 } 438 439 /** 440 * Returns the Unsafe-using Comparator, or falls back to the pure-Java implementation if unable 441 * to do so. 442 */ 443 static Comparator<byte[]> getBestComparator() { 444 Comparator<byte[]> arraysCompareUnsignedComparator = 445 ArraysCompareUnsignedComparatorMaker.INSTANCE.tryMakeArraysCompareUnsignedComparator(); 446 if (arraysCompareUnsignedComparator != null) { 447 return arraysCompareUnsignedComparator; 448 } 449 450 try { 451 Class<?> theClass = Class.forName(UNSAFE_COMPARATOR_NAME); 452 453 // requireNonNull is safe because the class is an enum. 454 Object[] constants = requireNonNull(theClass.getEnumConstants()); 455 456 // yes, UnsafeComparator does implement Comparator<byte[]> 457 @SuppressWarnings("unchecked") 458 Comparator<byte[]> comparator = (Comparator<byte[]>) constants[0]; 459 return comparator; 460 } catch (Throwable t) { // ensure we really catch *everything* 461 return lexicographicalComparatorJavaImpl(); 462 } 463 } 464 } 465 466 private enum ArraysCompareUnsignedComparatorMaker { 467 INSTANCE { 468 /** Implementation used by non-J2ObjC environments. */ 469 // We use Arrays.compareUnsigned only after confirming that it's available at runtime. 470 @SuppressWarnings("Java8ApiChecker") 471 @IgnoreJRERequirement 472 @Override 473 @J2ObjCIncompatible 474 @Nullable Comparator<byte[]> tryMakeArraysCompareUnsignedComparator() { 475 try { 476 // Compare AbstractFuture.VarHandleAtomicHelperMaker. 477 Arrays.class.getMethod("compareUnsigned", byte[].class, byte[].class); 478 } catch (NoSuchMethodException beforeJava9) { 479 return null; 480 } 481 return ArraysCompareUnsignedComparator.INSTANCE; 482 } 483 }; 484 485 /** Implementation used by J2ObjC environments, overridden for other environments. */ 486 @Nullable Comparator<byte[]> tryMakeArraysCompareUnsignedComparator() { 487 return null; 488 } 489 } 490 491 @J2ObjCIncompatible 492 enum ArraysCompareUnsignedComparator implements Comparator<byte[]> { 493 INSTANCE; 494 495 @Override 496 // We use the class only after confirming that Arrays.compareUnsigned is available at runtime. 497 @SuppressWarnings("Java8ApiChecker") 498 @IgnoreJRERequirement 499 public int compare(byte[] left, byte[] right) { 500 return Arrays.compareUnsigned(left, right); 501 } 502 } 503 504 private static byte flip(byte b) { 505 return (byte) (b ^ 0x80); 506 } 507 508 /** 509 * Sorts the array, treating its elements as unsigned bytes. 510 * 511 * @since 23.1 512 */ 513 public static void sort(byte[] array) { 514 checkNotNull(array); 515 sort(array, 0, array.length); 516 } 517 518 /** 519 * Sorts the array between {@code fromIndex} inclusive and {@code toIndex} exclusive, treating its 520 * elements as unsigned bytes. 521 * 522 * @since 23.1 523 */ 524 public static void sort(byte[] array, int fromIndex, int toIndex) { 525 checkNotNull(array); 526 checkPositionIndexes(fromIndex, toIndex, array.length); 527 for (int i = fromIndex; i < toIndex; i++) { 528 array[i] = flip(array[i]); 529 } 530 Arrays.sort(array, fromIndex, toIndex); 531 for (int i = fromIndex; i < toIndex; i++) { 532 array[i] = flip(array[i]); 533 } 534 } 535 536 /** 537 * Sorts the elements of {@code array} in descending order, interpreting them as unsigned 8-bit 538 * integers. 539 * 540 * @since 23.1 541 */ 542 public static void sortDescending(byte[] array) { 543 checkNotNull(array); 544 sortDescending(array, 0, array.length); 545 } 546 547 /** 548 * Sorts the elements of {@code array} between {@code fromIndex} inclusive and {@code toIndex} 549 * exclusive in descending order, interpreting them as unsigned 8-bit integers. 550 * 551 * @since 23.1 552 */ 553 public static void sortDescending(byte[] array, int fromIndex, int toIndex) { 554 checkNotNull(array); 555 checkPositionIndexes(fromIndex, toIndex, array.length); 556 for (int i = fromIndex; i < toIndex; i++) { 557 array[i] ^= Byte.MAX_VALUE; 558 } 559 Arrays.sort(array, fromIndex, toIndex); 560 for (int i = fromIndex; i < toIndex; i++) { 561 array[i] ^= Byte.MAX_VALUE; 562 } 563 } 564}