001/*
002 * Copyright (C) 2008 The Guava Authors
003 *
004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
005 * in compliance with the License. You may obtain a copy of the License at
006 *
007 * http://www.apache.org/licenses/LICENSE-2.0
008 *
009 * Unless required by applicable law or agreed to in writing, software distributed under the License
010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
011 * or implied. See the License for the specific language governing permissions and limitations under
012 * the License.
013 */
014
015package com.google.common.primitives;
016
017import static com.google.common.base.Preconditions.checkArgument;
018import static com.google.common.base.Preconditions.checkElementIndex;
019import static com.google.common.base.Preconditions.checkNotNull;
020import static com.google.common.base.Preconditions.checkPositionIndexes;
021import static com.google.common.base.Strings.lenientFormat;
022import static java.lang.Double.NEGATIVE_INFINITY;
023import static java.lang.Double.POSITIVE_INFINITY;
024
025import com.google.common.annotations.GwtCompatible;
026import com.google.common.annotations.GwtIncompatible;
027import com.google.common.base.Converter;
028import com.google.errorprone.annotations.InlineMe;
029import java.io.Serializable;
030import java.util.AbstractList;
031import java.util.Arrays;
032import java.util.Collection;
033import java.util.Collections;
034import java.util.Comparator;
035import java.util.List;
036import java.util.RandomAccess;
037import java.util.Spliterator;
038import java.util.Spliterators;
039import org.jspecify.annotations.Nullable;
040
041/**
042 * Static utility methods pertaining to {@code double} primitives, that are not already found in
043 * either {@link Double} or {@link Arrays}.
044 *
045 * <p>See the Guava User Guide article on <a
046 * href="https://github.com/google/guava/wiki/PrimitivesExplained">primitive utilities</a>.
047 *
048 * @author Kevin Bourrillion
049 * @since 1.0
050 */
051@GwtCompatible(emulated = true)
052public final class Doubles extends DoublesMethodsForWeb {
053  private Doubles() {}
054
055  /**
056   * The number of bytes required to represent a primitive {@code double} value.
057   *
058   * <p><b>Java 8+ users:</b> use {@link Double#BYTES} instead.
059   *
060   * @since 10.0
061   */
062  public static final int BYTES = Double.SIZE / Byte.SIZE;
063
064  /**
065   * Returns a hash code for {@code value}; equal to the result of invoking {@code ((Double)
066   * value).hashCode()}.
067   *
068   * <p><b>Java 8+ users:</b> use {@link Double#hashCode(double)} instead.
069   *
070   * @param value a primitive {@code double} value
071   * @return a hash code for the value
072   */
073  public static int hashCode(double value) {
074    return ((Double) value).hashCode();
075    // TODO(kevinb): do it this way when we can (GWT problem):
076    // long bits = Double.doubleToLongBits(value);
077    // return (int) (bits ^ (bits >>> 32));
078  }
079
080  /**
081   * Compares the two specified {@code double} values. The sign of the value returned is the same as
082   * that of <code>((Double) a).{@linkplain Double#compareTo compareTo}(b)</code>. As with that
083   * method, {@code NaN} is treated as greater than all other values, and {@code 0.0 > -0.0}.
084   *
085   * <p><b>Note:</b> this method simply delegates to the JDK method {@link Double#compare}. It is
086   * provided for consistency with the other primitive types, whose compare methods were not added
087   * to the JDK until JDK 7.
088   *
089   * @param a the first {@code double} to compare
090   * @param b the second {@code double} to compare
091   * @return a negative value if {@code a} is less than {@code b}; a positive value if {@code a} is
092   *     greater than {@code b}; or zero if they are equal
093   */
094  @InlineMe(replacement = "Double.compare(a, b)")
095  public static int compare(double a, double b) {
096    return Double.compare(a, b);
097  }
098
099  /**
100   * Returns {@code true} if {@code value} represents a real number. This is equivalent to, but not
101   * necessarily implemented as, {@code !(Double.isInfinite(value) || Double.isNaN(value))}.
102   *
103   * <p><b>Java 8+ users:</b> use {@link Double#isFinite(double)} instead.
104   *
105   * @since 10.0
106   */
107  public static boolean isFinite(double value) {
108    return NEGATIVE_INFINITY < value && value < POSITIVE_INFINITY;
109  }
110
111  /**
112   * Returns {@code true} if {@code target} is present as an element anywhere in {@code array}. Note
113   * that this always returns {@code false} when {@code target} is {@code NaN}.
114   *
115   * @param array an array of {@code double} values, possibly empty
116   * @param target a primitive {@code double} value
117   * @return {@code true} if {@code array[i] == target} for some value of {@code i}
118   */
119  public static boolean contains(double[] array, double target) {
120    for (double value : array) {
121      if (value == target) {
122        return true;
123      }
124    }
125    return false;
126  }
127
128  /**
129   * Returns the index of the first appearance of the value {@code target} in {@code array}. Note
130   * that this always returns {@code -1} when {@code target} is {@code NaN}.
131   *
132   * @param array an array of {@code double} values, possibly empty
133   * @param target a primitive {@code double} value
134   * @return the least index {@code i} for which {@code array[i] == target}, or {@code -1} if no
135   *     such index exists.
136   */
137  public static int indexOf(double[] array, double target) {
138    return indexOf(array, target, 0, array.length);
139  }
140
141  // TODO(kevinb): consider making this public
142  private static int indexOf(double[] array, double target, int start, int end) {
143    for (int i = start; i < end; i++) {
144      if (array[i] == target) {
145        return i;
146      }
147    }
148    return -1;
149  }
150
151  /**
152   * Returns the start position of the first occurrence of the specified {@code target} within
153   * {@code array}, or {@code -1} if there is no such occurrence.
154   *
155   * <p>More formally, returns the lowest index {@code i} such that {@code Arrays.copyOfRange(array,
156   * i, i + target.length)} contains exactly the same elements as {@code target}.
157   *
158   * <p>Note that this always returns {@code -1} when {@code target} contains {@code NaN}.
159   *
160   * @param array the array to search for the sequence {@code target}
161   * @param target the array to search for as a sub-sequence of {@code array}
162   */
163  public static int indexOf(double[] array, double[] target) {
164    checkNotNull(array, "array");
165    checkNotNull(target, "target");
166    if (target.length == 0) {
167      return 0;
168    }
169
170    outer:
171    for (int i = 0; i < array.length - target.length + 1; i++) {
172      for (int j = 0; j < target.length; j++) {
173        if (array[i + j] != target[j]) {
174          continue outer;
175        }
176      }
177      return i;
178    }
179    return -1;
180  }
181
182  /**
183   * Returns the index of the last appearance of the value {@code target} in {@code array}. Note
184   * that this always returns {@code -1} when {@code target} is {@code NaN}.
185   *
186   * @param array an array of {@code double} values, possibly empty
187   * @param target a primitive {@code double} value
188   * @return the greatest index {@code i} for which {@code array[i] == target}, or {@code -1} if no
189   *     such index exists.
190   */
191  public static int lastIndexOf(double[] array, double target) {
192    return lastIndexOf(array, target, 0, array.length);
193  }
194
195  // TODO(kevinb): consider making this public
196  private static int lastIndexOf(double[] array, double target, int start, int end) {
197    for (int i = end - 1; i >= start; i--) {
198      if (array[i] == target) {
199        return i;
200      }
201    }
202    return -1;
203  }
204
205  /**
206   * Returns the least value present in {@code array}, using the same rules of comparison as {@link
207   * Math#min(double, double)}.
208   *
209   * @param array a <i>nonempty</i> array of {@code double} values
210   * @return the value present in {@code array} that is less than or equal to every other value in
211   *     the array
212   * @throws IllegalArgumentException if {@code array} is empty
213   */
214  @GwtIncompatible(
215      "Available in GWT! Annotation is to avoid conflict with GWT specialization of base class.")
216  public static double min(double... array) {
217    checkArgument(array.length > 0);
218    double min = array[0];
219    for (int i = 1; i < array.length; i++) {
220      min = Math.min(min, array[i]);
221    }
222    return min;
223  }
224
225  /**
226   * Returns the greatest value present in {@code array}, using the same rules of comparison as
227   * {@link Math#max(double, double)}.
228   *
229   * @param array a <i>nonempty</i> array of {@code double} values
230   * @return the value present in {@code array} that is greater than or equal to every other value
231   *     in the array
232   * @throws IllegalArgumentException if {@code array} is empty
233   */
234  @GwtIncompatible(
235      "Available in GWT! Annotation is to avoid conflict with GWT specialization of base class.")
236  public static double max(double... array) {
237    checkArgument(array.length > 0);
238    double max = array[0];
239    for (int i = 1; i < array.length; i++) {
240      max = Math.max(max, array[i]);
241    }
242    return max;
243  }
244
245  /**
246   * Returns the value nearest to {@code value} which is within the closed range {@code [min..max]}.
247   *
248   * <p>If {@code value} is within the range {@code [min..max]}, {@code value} is returned
249   * unchanged. If {@code value} is less than {@code min}, {@code min} is returned, and if {@code
250   * value} is greater than {@code max}, {@code max} is returned.
251   *
252   * <p><b>Java 21+ users:</b> Use {@code Math.clamp} instead.
253   *
254   * @param value the {@code double} value to constrain
255   * @param min the lower bound (inclusive) of the range to constrain {@code value} to
256   * @param max the upper bound (inclusive) of the range to constrain {@code value} to
257   * @throws IllegalArgumentException if {@code min > max}
258   * @since 21.0
259   */
260  public static double constrainToRange(double value, double min, double max) {
261    // avoid auto-boxing by not using Preconditions.checkArgument(); see Guava issue 3984
262    // Reject NaN by testing for the good case (min <= max) instead of the bad (min > max).
263    if (min <= max) {
264      return Math.min(Math.max(value, min), max);
265    }
266    throw new IllegalArgumentException(
267        lenientFormat("min (%s) must be less than or equal to max (%s)", min, max));
268  }
269
270  /**
271   * Returns the values from each provided array combined into a single array. For example, {@code
272   * concat(new double[] {a, b}, new double[] {}, new double[] {c}} returns the array {@code {a, b,
273   * c}}.
274   *
275   * @param arrays zero or more {@code double} arrays
276   * @return a single array containing all the values from the source arrays, in order
277   * @throws IllegalArgumentException if the total number of elements in {@code arrays} does not fit
278   *     in an {@code int}
279   */
280  public static double[] concat(double[]... arrays) {
281    long length = 0;
282    for (double[] array : arrays) {
283      length += array.length;
284    }
285    double[] result = new double[checkNoOverflow(length)];
286    int pos = 0;
287    for (double[] array : arrays) {
288      System.arraycopy(array, 0, result, pos, array.length);
289      pos += array.length;
290    }
291    return result;
292  }
293
294  private static int checkNoOverflow(long result) {
295    checkArgument(
296        result == (int) result,
297        "the total number of elements (%s) in the arrays must fit in an int",
298        result);
299    return (int) result;
300  }
301
302  private static final class DoubleConverter extends Converter<String, Double>
303      implements Serializable {
304    static final Converter<String, Double> INSTANCE = new DoubleConverter();
305
306    @Override
307    protected Double doForward(String value) {
308      return Double.valueOf(value);
309    }
310
311    @Override
312    protected String doBackward(Double value) {
313      return value.toString();
314    }
315
316    @Override
317    public String toString() {
318      return "Doubles.stringConverter()";
319    }
320
321    private Object readResolve() {
322      return INSTANCE;
323    }
324
325    private static final long serialVersionUID = 1;
326  }
327
328  /**
329   * Returns a serializable converter object that converts between strings and doubles using {@link
330   * Double#valueOf} and {@link Double#toString()}.
331   *
332   * @since 16.0
333   */
334  public static Converter<String, Double> stringConverter() {
335    return DoubleConverter.INSTANCE;
336  }
337
338  /**
339   * Returns an array containing the same values as {@code array}, but guaranteed to be of a
340   * specified minimum length. If {@code array} already has a length of at least {@code minLength},
341   * it is returned directly. Otherwise, a new array of size {@code minLength + padding} is
342   * returned, containing the values of {@code array}, and zeroes in the remaining places.
343   *
344   * @param array the source array
345   * @param minLength the minimum length the returned array must guarantee
346   * @param padding an extra amount to "grow" the array by if growth is necessary
347   * @throws IllegalArgumentException if {@code minLength} or {@code padding} is negative
348   * @return an array containing the values of {@code array}, with guaranteed minimum length {@code
349   *     minLength}
350   */
351  public static double[] ensureCapacity(double[] array, int minLength, int padding) {
352    checkArgument(minLength >= 0, "Invalid minLength: %s", minLength);
353    checkArgument(padding >= 0, "Invalid padding: %s", padding);
354    return (array.length < minLength) ? Arrays.copyOf(array, minLength + padding) : array;
355  }
356
357  /**
358   * Returns a string containing the supplied {@code double} values, converted to strings as
359   * specified by {@link Double#toString(double)}, and separated by {@code separator}. For example,
360   * {@code join("-", 1.0, 2.0, 3.0)} returns the string {@code "1.0-2.0-3.0"}.
361   *
362   * <p>Note that {@link Double#toString(double)} formats {@code double} differently in GWT
363   * sometimes. In the previous example, it returns the string {@code "1-2-3"}.
364   *
365   * @param separator the text that should appear between consecutive values in the resulting string
366   *     (but not at the start or end)
367   * @param array an array of {@code double} values, possibly empty
368   */
369  public static String join(String separator, double... array) {
370    checkNotNull(separator);
371    if (array.length == 0) {
372      return "";
373    }
374
375    // For pre-sizing a builder, just get the right order of magnitude
376    StringBuilder builder = new StringBuilder(array.length * 12);
377    builder.append(array[0]);
378    for (int i = 1; i < array.length; i++) {
379      builder.append(separator).append(array[i]);
380    }
381    return builder.toString();
382  }
383
384  /**
385   * Returns a comparator that compares two {@code double} arrays <a
386   * href="http://en.wikipedia.org/wiki/Lexicographical_order">lexicographically</a>. That is, it
387   * compares, using {@link #compare(double, double)}), the first pair of values that follow any
388   * common prefix, or when one array is a prefix of the other, treats the shorter array as the
389   * lesser. For example, {@code [] < [1.0] < [1.0, 2.0] < [2.0]}.
390   *
391   * <p>The returned comparator is inconsistent with {@link Object#equals(Object)} (since arrays
392   * support only identity equality), but it is consistent with {@link Arrays#equals(double[],
393   * double[])}.
394   *
395   * @since 2.0
396   */
397  public static Comparator<double[]> lexicographicalComparator() {
398    return LexicographicalComparator.INSTANCE;
399  }
400
401  private enum LexicographicalComparator implements Comparator<double[]> {
402    INSTANCE;
403
404    @Override
405    public int compare(double[] left, double[] right) {
406      int minLength = Math.min(left.length, right.length);
407      for (int i = 0; i < minLength; i++) {
408        int result = Double.compare(left[i], right[i]);
409        if (result != 0) {
410          return result;
411        }
412      }
413      return left.length - right.length;
414    }
415
416    @Override
417    public String toString() {
418      return "Doubles.lexicographicalComparator()";
419    }
420  }
421
422  /**
423   * Sorts the elements of {@code array} in descending order.
424   *
425   * <p>Note that this method uses the total order imposed by {@link Double#compare}, which treats
426   * all NaN values as equal and 0.0 as greater than -0.0.
427   *
428   * @since 23.1
429   */
430  public static void sortDescending(double[] array) {
431    checkNotNull(array);
432    sortDescending(array, 0, array.length);
433  }
434
435  /**
436   * Sorts the elements of {@code array} between {@code fromIndex} inclusive and {@code toIndex}
437   * exclusive in descending order.
438   *
439   * <p>Note that this method uses the total order imposed by {@link Double#compare}, which treats
440   * all NaN values as equal and 0.0 as greater than -0.0.
441   *
442   * @since 23.1
443   */
444  public static void sortDescending(double[] array, int fromIndex, int toIndex) {
445    checkNotNull(array);
446    checkPositionIndexes(fromIndex, toIndex, array.length);
447    Arrays.sort(array, fromIndex, toIndex);
448    reverse(array, fromIndex, toIndex);
449  }
450
451  /**
452   * Reverses the elements of {@code array}. This is equivalent to {@code
453   * Collections.reverse(Doubles.asList(array))}, but is likely to be more efficient.
454   *
455   * @since 23.1
456   */
457  public static void reverse(double[] array) {
458    checkNotNull(array);
459    reverse(array, 0, array.length);
460  }
461
462  /**
463   * Reverses the elements of {@code array} between {@code fromIndex} inclusive and {@code toIndex}
464   * exclusive. This is equivalent to {@code
465   * Collections.reverse(Doubles.asList(array).subList(fromIndex, toIndex))}, but is likely to be
466   * more efficient.
467   *
468   * @throws IndexOutOfBoundsException if {@code fromIndex < 0}, {@code toIndex > array.length}, or
469   *     {@code toIndex > fromIndex}
470   * @since 23.1
471   */
472  public static void reverse(double[] array, int fromIndex, int toIndex) {
473    checkNotNull(array);
474    checkPositionIndexes(fromIndex, toIndex, array.length);
475    for (int i = fromIndex, j = toIndex - 1; i < j; i++, j--) {
476      double tmp = array[i];
477      array[i] = array[j];
478      array[j] = tmp;
479    }
480  }
481
482  /**
483   * Performs a right rotation of {@code array} of "distance" places, so that the first element is
484   * moved to index "distance", and the element at index {@code i} ends up at index {@code (distance
485   * + i) mod array.length}. This is equivalent to {@code Collections.rotate(Bytes.asList(array),
486   * distance)}, but is considerably faster and avoids allocation and garbage collection.
487   *
488   * <p>The provided "distance" may be negative, which will rotate left.
489   *
490   * @since 32.0.0
491   */
492  public static void rotate(double[] array, int distance) {
493    rotate(array, distance, 0, array.length);
494  }
495
496  /**
497   * Performs a right rotation of {@code array} between {@code fromIndex} inclusive and {@code
498   * toIndex} exclusive. This is equivalent to {@code
499   * Collections.rotate(Bytes.asList(array).subList(fromIndex, toIndex), distance)}, but is
500   * considerably faster and avoids allocations and garbage collection.
501   *
502   * <p>The provided "distance" may be negative, which will rotate left.
503   *
504   * @throws IndexOutOfBoundsException if {@code fromIndex < 0}, {@code toIndex > array.length}, or
505   *     {@code toIndex > fromIndex}
506   * @since 32.0.0
507   */
508  public static void rotate(double[] array, int distance, int fromIndex, int toIndex) {
509    // See Ints.rotate for more details about possible algorithms here.
510    checkNotNull(array);
511    checkPositionIndexes(fromIndex, toIndex, array.length);
512    if (array.length <= 1) {
513      return;
514    }
515
516    int length = toIndex - fromIndex;
517    // Obtain m = (-distance mod length), a non-negative value less than "length". This is how many
518    // places left to rotate.
519    int m = -distance % length;
520    m = (m < 0) ? m + length : m;
521    // The current index of what will become the first element of the rotated section.
522    int newFirstIndex = m + fromIndex;
523    if (newFirstIndex == fromIndex) {
524      return;
525    }
526
527    reverse(array, fromIndex, newFirstIndex);
528    reverse(array, newFirstIndex, toIndex);
529    reverse(array, fromIndex, toIndex);
530  }
531
532  /**
533   * Returns an array containing each value of {@code collection}, converted to a {@code double}
534   * value in the manner of {@link Number#doubleValue}.
535   *
536   * <p>Elements are copied from the argument collection as if by {@code collection.toArray()}.
537   * Calling this method is as thread-safe as calling that method.
538   *
539   * @param collection a collection of {@code Number} instances
540   * @return an array containing the same values as {@code collection}, in the same order, converted
541   *     to primitives
542   * @throws NullPointerException if {@code collection} or any of its elements is null
543   * @since 1.0 (parameter was {@code Collection<Double>} before 12.0)
544   */
545  public static double[] toArray(Collection<? extends Number> collection) {
546    if (collection instanceof DoubleArrayAsList) {
547      return ((DoubleArrayAsList) collection).toDoubleArray();
548    }
549
550    Object[] boxedArray = collection.toArray();
551    int len = boxedArray.length;
552    double[] array = new double[len];
553    for (int i = 0; i < len; i++) {
554      // checkNotNull for GWT (do not optimize)
555      array[i] = ((Number) checkNotNull(boxedArray[i])).doubleValue();
556    }
557    return array;
558  }
559
560  /**
561   * Returns a fixed-size list backed by the specified array, similar to {@link
562   * Arrays#asList(Object[])}. The list supports {@link List#set(int, Object)}, but any attempt to
563   * set a value to {@code null} will result in a {@link NullPointerException}.
564   *
565   * <p>The returned list maintains the values, but not the identities, of {@code Double} objects
566   * written to or read from it. For example, whether {@code list.get(0) == list.get(0)} is true for
567   * the returned list is unspecified.
568   *
569   * <p>The returned list may have unexpected behavior if it contains {@code NaN}, or if {@code NaN}
570   * is used as a parameter to any of its methods.
571   *
572   * <p>The returned list is serializable.
573   *
574   * <p><b>Note:</b> when possible, you should represent your data as an {@link
575   * ImmutableDoubleArray} instead, which has an {@link ImmutableDoubleArray#asList asList} view.
576   *
577   * @param backingArray the array to back the list
578   * @return a list view of the array
579   */
580  public static List<Double> asList(double... backingArray) {
581    if (backingArray.length == 0) {
582      return Collections.emptyList();
583    }
584    return new DoubleArrayAsList(backingArray);
585  }
586
587  @GwtCompatible
588  private static class DoubleArrayAsList extends AbstractList<Double>
589      implements RandomAccess, Serializable {
590    final double[] array;
591    final int start;
592    final int end;
593
594    DoubleArrayAsList(double[] array) {
595      this(array, 0, array.length);
596    }
597
598    DoubleArrayAsList(double[] array, int start, int end) {
599      this.array = array;
600      this.start = start;
601      this.end = end;
602    }
603
604    @Override
605    public int size() {
606      return end - start;
607    }
608
609    @Override
610    public boolean isEmpty() {
611      return false;
612    }
613
614    @Override
615    public Double get(int index) {
616      checkElementIndex(index, size());
617      return array[start + index];
618    }
619
620    @Override
621    public Spliterator.OfDouble spliterator() {
622      return Spliterators.spliterator(array, start, end, 0);
623    }
624
625    @Override
626    public boolean contains(@Nullable Object target) {
627      // Overridden to prevent a ton of boxing
628      return (target instanceof Double)
629          && Doubles.indexOf(array, (Double) target, start, end) != -1;
630    }
631
632    @Override
633    public int indexOf(@Nullable Object target) {
634      // Overridden to prevent a ton of boxing
635      if (target instanceof Double) {
636        int i = Doubles.indexOf(array, (Double) target, start, end);
637        if (i >= 0) {
638          return i - start;
639        }
640      }
641      return -1;
642    }
643
644    @Override
645    public int lastIndexOf(@Nullable Object target) {
646      // Overridden to prevent a ton of boxing
647      if (target instanceof Double) {
648        int i = Doubles.lastIndexOf(array, (Double) target, start, end);
649        if (i >= 0) {
650          return i - start;
651        }
652      }
653      return -1;
654    }
655
656    @Override
657    public Double set(int index, Double element) {
658      checkElementIndex(index, size());
659      double oldValue = array[start + index];
660      // checkNotNull for GWT (do not optimize)
661      array[start + index] = checkNotNull(element);
662      return oldValue;
663    }
664
665    @Override
666    public List<Double> subList(int fromIndex, int toIndex) {
667      int size = size();
668      checkPositionIndexes(fromIndex, toIndex, size);
669      if (fromIndex == toIndex) {
670        return Collections.emptyList();
671      }
672      return new DoubleArrayAsList(array, start + fromIndex, start + toIndex);
673    }
674
675    @Override
676    public boolean equals(@Nullable Object object) {
677      if (object == this) {
678        return true;
679      }
680      if (object instanceof DoubleArrayAsList) {
681        DoubleArrayAsList that = (DoubleArrayAsList) object;
682        int size = size();
683        if (that.size() != size) {
684          return false;
685        }
686        for (int i = 0; i < size; i++) {
687          if (array[start + i] != that.array[that.start + i]) {
688            return false;
689          }
690        }
691        return true;
692      }
693      return super.equals(object);
694    }
695
696    @Override
697    public int hashCode() {
698      int result = 1;
699      for (int i = start; i < end; i++) {
700        result = 31 * result + Doubles.hashCode(array[i]);
701      }
702      return result;
703    }
704
705    @Override
706    public String toString() {
707      StringBuilder builder = new StringBuilder(size() * 12);
708      builder.append('[').append(array[start]);
709      for (int i = start + 1; i < end; i++) {
710        builder.append(", ").append(array[i]);
711      }
712      return builder.append(']').toString();
713    }
714
715    double[] toDoubleArray() {
716      return Arrays.copyOfRange(array, start, end);
717    }
718
719    private static final long serialVersionUID = 0;
720  }
721
722  /**
723   * This is adapted from the regex suggested by {@link Double#valueOf(String)} for prevalidating
724   * inputs. All valid inputs must pass this regex, but it's semantically fine if not all inputs
725   * that pass this regex are valid -- only a performance hit is incurred, not a semantics bug.
726   */
727  @GwtIncompatible // regular expressions
728  static final
729  java.util.regex.Pattern
730      FLOATING_POINT_PATTERN = fpPattern();
731
732  @GwtIncompatible // regular expressions
733  private static
734  java.util.regex.Pattern
735      fpPattern() {
736    /*
737     * We use # instead of * for possessive quantifiers. This lets us strip them out when building
738     * the regex for RE2 (which doesn't support them) but leave them in when building it for
739     * java.util.regex (where we want them in order to avoid catastrophic backtracking).
740     */
741    String decimal = "(?:\\d+#(?:\\.\\d*#)?|\\.\\d+#)";
742    String completeDec = decimal + "(?:[eE][+-]?\\d+#)?[fFdD]?";
743    String hex = "(?:[0-9a-fA-F]+#(?:\\.[0-9a-fA-F]*#)?|\\.[0-9a-fA-F]+#)";
744    String completeHex = "0[xX]" + hex + "[pP][+-]?\\d+#[fFdD]?";
745    String fpPattern = "[+-]?(?:NaN|Infinity|" + completeDec + "|" + completeHex + ")";
746    fpPattern =
747        fpPattern.replace(
748            "#",
749            "+"
750            );
751    return
752    java.util.regex.Pattern
753        .compile(fpPattern);
754  }
755
756  /**
757   * Parses the specified string as a double-precision floating point value. The ASCII character
758   * {@code '-'} (<code>'&#92;u002D'</code>) is recognized as the minus sign.
759   *
760   * <p>Unlike {@link Double#parseDouble(String)}, this method returns {@code null} instead of
761   * throwing an exception if parsing fails. Valid inputs are exactly those accepted by {@link
762   * Double#valueOf(String)}, except that leading and trailing whitespace is not permitted.
763   *
764   * <p>This implementation is likely to be faster than {@code Double.parseDouble} if many failures
765   * are expected.
766   *
767   * @param string the string representation of a {@code double} value
768   * @return the floating point value represented by {@code string}, or {@code null} if {@code
769   *     string} has a length of zero or cannot be parsed as a {@code double} value
770   * @throws NullPointerException if {@code string} is {@code null}
771   * @since 14.0
772   */
773  @GwtIncompatible // regular expressions
774  public static @Nullable Double tryParse(String string) {
775    if (FLOATING_POINT_PATTERN.matcher(string).matches()) {
776      // TODO(lowasser): could be potentially optimized, but only with
777      // extensive testing
778      try {
779        return Double.parseDouble(string);
780      } catch (NumberFormatException e) {
781        // Double.parseDouble has changed specs several times, so fall through
782        // gracefully
783      }
784    }
785    return null;
786  }
787}