001/*
002 * Copyright (C) 2008 The Guava Authors
003 *
004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
005 * in compliance with the License. You may obtain a copy of the License at
006 *
007 * http://www.apache.org/licenses/LICENSE-2.0
008 *
009 * Unless required by applicable law or agreed to in writing, software distributed under the License
010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
011 * or implied. See the License for the specific language governing permissions and limitations under
012 * the License.
013 */
014
015package com.google.common.primitives;
016
017import static com.google.common.base.Preconditions.checkArgument;
018import static com.google.common.base.Preconditions.checkElementIndex;
019import static com.google.common.base.Preconditions.checkNotNull;
020import static com.google.common.base.Preconditions.checkPositionIndexes;
021import static com.google.common.base.Strings.lenientFormat;
022import static java.lang.Double.NEGATIVE_INFINITY;
023import static java.lang.Double.POSITIVE_INFINITY;
024
025import com.google.common.annotations.GwtCompatible;
026import com.google.common.annotations.GwtIncompatible;
027import com.google.common.base.Converter;
028import com.google.errorprone.annotations.InlineMe;
029import java.io.Serializable;
030import java.util.AbstractList;
031import java.util.Arrays;
032import java.util.Collection;
033import java.util.Collections;
034import java.util.Comparator;
035import java.util.List;
036import java.util.RandomAccess;
037import java.util.Spliterator;
038import java.util.Spliterators;
039import javax.annotation.CheckForNull;
040
041/**
042 * Static utility methods pertaining to {@code double} primitives, that are not already found in
043 * either {@link Double} or {@link Arrays}.
044 *
045 * <p>See the Guava User Guide article on <a
046 * href="https://github.com/google/guava/wiki/PrimitivesExplained">primitive utilities</a>.
047 *
048 * @author Kevin Bourrillion
049 * @since 1.0
050 */
051@GwtCompatible(emulated = true)
052@ElementTypesAreNonnullByDefault
053public final class Doubles extends DoublesMethodsForWeb {
054  private Doubles() {}
055
056  /**
057   * The number of bytes required to represent a primitive {@code double} value.
058   *
059   * <p><b>Java 8+ users:</b> use {@link Double#BYTES} instead.
060   *
061   * @since 10.0
062   */
063  public static final int BYTES = Double.SIZE / Byte.SIZE;
064
065  /**
066   * Returns a hash code for {@code value}; equal to the result of invoking {@code ((Double)
067   * value).hashCode()}.
068   *
069   * <p><b>Java 8+ users:</b> use {@link Double#hashCode(double)} instead.
070   *
071   * @param value a primitive {@code double} value
072   * @return a hash code for the value
073   */
074  public static int hashCode(double value) {
075    return ((Double) value).hashCode();
076    // TODO(kevinb): do it this way when we can (GWT problem):
077    // long bits = Double.doubleToLongBits(value);
078    // return (int) (bits ^ (bits >>> 32));
079  }
080
081  /**
082   * Compares the two specified {@code double} values. The sign of the value returned is the same as
083   * that of <code>((Double) a).{@linkplain Double#compareTo compareTo}(b)</code>. As with that
084   * method, {@code NaN} is treated as greater than all other values, and {@code 0.0 > -0.0}.
085   *
086   * <p><b>Note:</b> this method simply delegates to the JDK method {@link Double#compare}. It is
087   * provided for consistency with the other primitive types, whose compare methods were not added
088   * to the JDK until JDK 7.
089   *
090   * @param a the first {@code double} to compare
091   * @param b the second {@code double} to compare
092   * @return a negative value if {@code a} is less than {@code b}; a positive value if {@code a} is
093   *     greater than {@code b}; or zero if they are equal
094   */
095  @InlineMe(replacement = "Double.compare(a, b)")
096  public static int compare(double a, double b) {
097    return Double.compare(a, b);
098  }
099
100  /**
101   * Returns {@code true} if {@code value} represents a real number. This is equivalent to, but not
102   * necessarily implemented as, {@code !(Double.isInfinite(value) || Double.isNaN(value))}.
103   *
104   * <p><b>Java 8+ users:</b> use {@link Double#isFinite(double)} instead.
105   *
106   * @since 10.0
107   */
108  public static boolean isFinite(double value) {
109    return NEGATIVE_INFINITY < value && value < POSITIVE_INFINITY;
110  }
111
112  /**
113   * Returns {@code true} if {@code target} is present as an element anywhere in {@code array}. Note
114   * that this always returns {@code false} when {@code target} is {@code NaN}.
115   *
116   * @param array an array of {@code double} values, possibly empty
117   * @param target a primitive {@code double} value
118   * @return {@code true} if {@code array[i] == target} for some value of {@code i}
119   */
120  public static boolean contains(double[] array, double target) {
121    for (double value : array) {
122      if (value == target) {
123        return true;
124      }
125    }
126    return false;
127  }
128
129  /**
130   * Returns the index of the first appearance of the value {@code target} in {@code array}. Note
131   * that this always returns {@code -1} when {@code target} is {@code NaN}.
132   *
133   * @param array an array of {@code double} values, possibly empty
134   * @param target a primitive {@code double} value
135   * @return the least index {@code i} for which {@code array[i] == target}, or {@code -1} if no
136   *     such index exists.
137   */
138  public static int indexOf(double[] array, double target) {
139    return indexOf(array, target, 0, array.length);
140  }
141
142  // TODO(kevinb): consider making this public
143  private static int indexOf(double[] array, double target, int start, int end) {
144    for (int i = start; i < end; i++) {
145      if (array[i] == target) {
146        return i;
147      }
148    }
149    return -1;
150  }
151
152  /**
153   * Returns the start position of the first occurrence of the specified {@code target} within
154   * {@code array}, or {@code -1} if there is no such occurrence.
155   *
156   * <p>More formally, returns the lowest index {@code i} such that {@code Arrays.copyOfRange(array,
157   * i, i + target.length)} contains exactly the same elements as {@code target}.
158   *
159   * <p>Note that this always returns {@code -1} when {@code target} contains {@code NaN}.
160   *
161   * @param array the array to search for the sequence {@code target}
162   * @param target the array to search for as a sub-sequence of {@code array}
163   */
164  public static int indexOf(double[] array, double[] target) {
165    checkNotNull(array, "array");
166    checkNotNull(target, "target");
167    if (target.length == 0) {
168      return 0;
169    }
170
171    outer:
172    for (int i = 0; i < array.length - target.length + 1; i++) {
173      for (int j = 0; j < target.length; j++) {
174        if (array[i + j] != target[j]) {
175          continue outer;
176        }
177      }
178      return i;
179    }
180    return -1;
181  }
182
183  /**
184   * Returns the index of the last appearance of the value {@code target} in {@code array}. Note
185   * that this always returns {@code -1} when {@code target} is {@code NaN}.
186   *
187   * @param array an array of {@code double} values, possibly empty
188   * @param target a primitive {@code double} value
189   * @return the greatest index {@code i} for which {@code array[i] == target}, or {@code -1} if no
190   *     such index exists.
191   */
192  public static int lastIndexOf(double[] array, double target) {
193    return lastIndexOf(array, target, 0, array.length);
194  }
195
196  // TODO(kevinb): consider making this public
197  private static int lastIndexOf(double[] array, double target, int start, int end) {
198    for (int i = end - 1; i >= start; i--) {
199      if (array[i] == target) {
200        return i;
201      }
202    }
203    return -1;
204  }
205
206  /**
207   * Returns the least value present in {@code array}, using the same rules of comparison as {@link
208   * Math#min(double, double)}.
209   *
210   * @param array a <i>nonempty</i> array of {@code double} values
211   * @return the value present in {@code array} that is less than or equal to every other value in
212   *     the array
213   * @throws IllegalArgumentException if {@code array} is empty
214   */
215  @GwtIncompatible(
216      "Available in GWT! Annotation is to avoid conflict with GWT specialization of base class.")
217  public static double min(double... array) {
218    checkArgument(array.length > 0);
219    double min = array[0];
220    for (int i = 1; i < array.length; i++) {
221      min = Math.min(min, array[i]);
222    }
223    return min;
224  }
225
226  /**
227   * Returns the greatest value present in {@code array}, using the same rules of comparison as
228   * {@link Math#max(double, double)}.
229   *
230   * @param array a <i>nonempty</i> array of {@code double} values
231   * @return the value present in {@code array} that is greater than or equal to every other value
232   *     in the array
233   * @throws IllegalArgumentException if {@code array} is empty
234   */
235  @GwtIncompatible(
236      "Available in GWT! Annotation is to avoid conflict with GWT specialization of base class.")
237  public static double max(double... array) {
238    checkArgument(array.length > 0);
239    double max = array[0];
240    for (int i = 1; i < array.length; i++) {
241      max = Math.max(max, array[i]);
242    }
243    return max;
244  }
245
246  /**
247   * Returns the value nearest to {@code value} which is within the closed range {@code [min..max]}.
248   *
249   * <p>If {@code value} is within the range {@code [min..max]}, {@code value} is returned
250   * unchanged. If {@code value} is less than {@code min}, {@code min} is returned, and if {@code
251   * value} is greater than {@code max}, {@code max} is returned.
252   *
253   * <p><b>Java 21+ users:</b> Use {@code Math.clamp} instead.
254   *
255   * @param value the {@code double} value to constrain
256   * @param min the lower bound (inclusive) of the range to constrain {@code value} to
257   * @param max the upper bound (inclusive) of the range to constrain {@code value} to
258   * @throws IllegalArgumentException if {@code min > max}
259   * @since 21.0
260   */
261  public static double constrainToRange(double value, double min, double max) {
262    // avoid auto-boxing by not using Preconditions.checkArgument(); see Guava issue 3984
263    // Reject NaN by testing for the good case (min <= max) instead of the bad (min > max).
264    if (min <= max) {
265      return Math.min(Math.max(value, min), max);
266    }
267    throw new IllegalArgumentException(
268        lenientFormat("min (%s) must be less than or equal to max (%s)", min, max));
269  }
270
271  /**
272   * Returns the values from each provided array combined into a single array. For example, {@code
273   * concat(new double[] {a, b}, new double[] {}, new double[] {c}} returns the array {@code {a, b,
274   * c}}.
275   *
276   * @param arrays zero or more {@code double} arrays
277   * @return a single array containing all the values from the source arrays, in order
278   * @throws IllegalArgumentException if the total number of elements in {@code arrays} does not fit
279   *     in an {@code int}
280   */
281  public static double[] concat(double[]... arrays) {
282    long length = 0;
283    for (double[] array : arrays) {
284      length += array.length;
285    }
286    double[] result = new double[checkNoOverflow(length)];
287    int pos = 0;
288    for (double[] array : arrays) {
289      System.arraycopy(array, 0, result, pos, array.length);
290      pos += array.length;
291    }
292    return result;
293  }
294
295  private static int checkNoOverflow(long result) {
296    checkArgument(
297        result == (int) result,
298        "the total number of elements (%s) in the arrays must fit in an int",
299        result);
300    return (int) result;
301  }
302
303  private static final class DoubleConverter extends Converter<String, Double>
304      implements Serializable {
305    static final Converter<String, Double> INSTANCE = new DoubleConverter();
306
307    @Override
308    protected Double doForward(String value) {
309      return Double.valueOf(value);
310    }
311
312    @Override
313    protected String doBackward(Double value) {
314      return value.toString();
315    }
316
317    @Override
318    public String toString() {
319      return "Doubles.stringConverter()";
320    }
321
322    private Object readResolve() {
323      return INSTANCE;
324    }
325
326    private static final long serialVersionUID = 1;
327  }
328
329  /**
330   * Returns a serializable converter object that converts between strings and doubles using {@link
331   * Double#valueOf} and {@link Double#toString()}.
332   *
333   * @since 16.0
334   */
335  public static Converter<String, Double> stringConverter() {
336    return DoubleConverter.INSTANCE;
337  }
338
339  /**
340   * Returns an array containing the same values as {@code array}, but guaranteed to be of a
341   * specified minimum length. If {@code array} already has a length of at least {@code minLength},
342   * it is returned directly. Otherwise, a new array of size {@code minLength + padding} is
343   * returned, containing the values of {@code array}, and zeroes in the remaining places.
344   *
345   * @param array the source array
346   * @param minLength the minimum length the returned array must guarantee
347   * @param padding an extra amount to "grow" the array by if growth is necessary
348   * @throws IllegalArgumentException if {@code minLength} or {@code padding} is negative
349   * @return an array containing the values of {@code array}, with guaranteed minimum length {@code
350   *     minLength}
351   */
352  public static double[] ensureCapacity(double[] array, int minLength, int padding) {
353    checkArgument(minLength >= 0, "Invalid minLength: %s", minLength);
354    checkArgument(padding >= 0, "Invalid padding: %s", padding);
355    return (array.length < minLength) ? Arrays.copyOf(array, minLength + padding) : array;
356  }
357
358  /**
359   * Returns a string containing the supplied {@code double} values, converted to strings as
360   * specified by {@link Double#toString(double)}, and separated by {@code separator}. For example,
361   * {@code join("-", 1.0, 2.0, 3.0)} returns the string {@code "1.0-2.0-3.0"}.
362   *
363   * <p>Note that {@link Double#toString(double)} formats {@code double} differently in GWT
364   * sometimes. In the previous example, it returns the string {@code "1-2-3"}.
365   *
366   * @param separator the text that should appear between consecutive values in the resulting string
367   *     (but not at the start or end)
368   * @param array an array of {@code double} values, possibly empty
369   */
370  public static String join(String separator, double... array) {
371    checkNotNull(separator);
372    if (array.length == 0) {
373      return "";
374    }
375
376    // For pre-sizing a builder, just get the right order of magnitude
377    StringBuilder builder = new StringBuilder(array.length * 12);
378    builder.append(array[0]);
379    for (int i = 1; i < array.length; i++) {
380      builder.append(separator).append(array[i]);
381    }
382    return builder.toString();
383  }
384
385  /**
386   * Returns a comparator that compares two {@code double} arrays <a
387   * href="http://en.wikipedia.org/wiki/Lexicographical_order">lexicographically</a>. That is, it
388   * compares, using {@link #compare(double, double)}), the first pair of values that follow any
389   * common prefix, or when one array is a prefix of the other, treats the shorter array as the
390   * lesser. For example, {@code [] < [1.0] < [1.0, 2.0] < [2.0]}.
391   *
392   * <p>The returned comparator is inconsistent with {@link Object#equals(Object)} (since arrays
393   * support only identity equality), but it is consistent with {@link Arrays#equals(double[],
394   * double[])}.
395   *
396   * @since 2.0
397   */
398  public static Comparator<double[]> lexicographicalComparator() {
399    return LexicographicalComparator.INSTANCE;
400  }
401
402  private enum LexicographicalComparator implements Comparator<double[]> {
403    INSTANCE;
404
405    @Override
406    public int compare(double[] left, double[] right) {
407      int minLength = Math.min(left.length, right.length);
408      for (int i = 0; i < minLength; i++) {
409        int result = Double.compare(left[i], right[i]);
410        if (result != 0) {
411          return result;
412        }
413      }
414      return left.length - right.length;
415    }
416
417    @Override
418    public String toString() {
419      return "Doubles.lexicographicalComparator()";
420    }
421  }
422
423  /**
424   * Sorts the elements of {@code array} in descending order.
425   *
426   * <p>Note that this method uses the total order imposed by {@link Double#compare}, which treats
427   * all NaN values as equal and 0.0 as greater than -0.0.
428   *
429   * @since 23.1
430   */
431  public static void sortDescending(double[] array) {
432    checkNotNull(array);
433    sortDescending(array, 0, array.length);
434  }
435
436  /**
437   * Sorts the elements of {@code array} between {@code fromIndex} inclusive and {@code toIndex}
438   * exclusive in descending order.
439   *
440   * <p>Note that this method uses the total order imposed by {@link Double#compare}, which treats
441   * all NaN values as equal and 0.0 as greater than -0.0.
442   *
443   * @since 23.1
444   */
445  public static void sortDescending(double[] array, int fromIndex, int toIndex) {
446    checkNotNull(array);
447    checkPositionIndexes(fromIndex, toIndex, array.length);
448    Arrays.sort(array, fromIndex, toIndex);
449    reverse(array, fromIndex, toIndex);
450  }
451
452  /**
453   * Reverses the elements of {@code array}. This is equivalent to {@code
454   * Collections.reverse(Doubles.asList(array))}, but is likely to be more efficient.
455   *
456   * @since 23.1
457   */
458  public static void reverse(double[] array) {
459    checkNotNull(array);
460    reverse(array, 0, array.length);
461  }
462
463  /**
464   * Reverses the elements of {@code array} between {@code fromIndex} inclusive and {@code toIndex}
465   * exclusive. This is equivalent to {@code
466   * Collections.reverse(Doubles.asList(array).subList(fromIndex, toIndex))}, but is likely to be
467   * more efficient.
468   *
469   * @throws IndexOutOfBoundsException if {@code fromIndex < 0}, {@code toIndex > array.length}, or
470   *     {@code toIndex > fromIndex}
471   * @since 23.1
472   */
473  public static void reverse(double[] array, int fromIndex, int toIndex) {
474    checkNotNull(array);
475    checkPositionIndexes(fromIndex, toIndex, array.length);
476    for (int i = fromIndex, j = toIndex - 1; i < j; i++, j--) {
477      double tmp = array[i];
478      array[i] = array[j];
479      array[j] = tmp;
480    }
481  }
482
483  /**
484   * Performs a right rotation of {@code array} of "distance" places, so that the first element is
485   * moved to index "distance", and the element at index {@code i} ends up at index {@code (distance
486   * + i) mod array.length}. This is equivalent to {@code Collections.rotate(Bytes.asList(array),
487   * distance)}, but is considerably faster and avoids allocation and garbage collection.
488   *
489   * <p>The provided "distance" may be negative, which will rotate left.
490   *
491   * @since 32.0.0
492   */
493  public static void rotate(double[] array, int distance) {
494    rotate(array, distance, 0, array.length);
495  }
496
497  /**
498   * Performs a right rotation of {@code array} between {@code fromIndex} inclusive and {@code
499   * toIndex} exclusive. This is equivalent to {@code
500   * Collections.rotate(Bytes.asList(array).subList(fromIndex, toIndex), distance)}, but is
501   * considerably faster and avoids allocations and garbage collection.
502   *
503   * <p>The provided "distance" may be negative, which will rotate left.
504   *
505   * @throws IndexOutOfBoundsException if {@code fromIndex < 0}, {@code toIndex > array.length}, or
506   *     {@code toIndex > fromIndex}
507   * @since 32.0.0
508   */
509  public static void rotate(double[] array, int distance, int fromIndex, int toIndex) {
510    // See Ints.rotate for more details about possible algorithms here.
511    checkNotNull(array);
512    checkPositionIndexes(fromIndex, toIndex, array.length);
513    if (array.length <= 1) {
514      return;
515    }
516
517    int length = toIndex - fromIndex;
518    // Obtain m = (-distance mod length), a non-negative value less than "length". This is how many
519    // places left to rotate.
520    int m = -distance % length;
521    m = (m < 0) ? m + length : m;
522    // The current index of what will become the first element of the rotated section.
523    int newFirstIndex = m + fromIndex;
524    if (newFirstIndex == fromIndex) {
525      return;
526    }
527
528    reverse(array, fromIndex, newFirstIndex);
529    reverse(array, newFirstIndex, toIndex);
530    reverse(array, fromIndex, toIndex);
531  }
532
533  /**
534   * Returns an array containing each value of {@code collection}, converted to a {@code double}
535   * value in the manner of {@link Number#doubleValue}.
536   *
537   * <p>Elements are copied from the argument collection as if by {@code collection.toArray()}.
538   * Calling this method is as thread-safe as calling that method.
539   *
540   * @param collection a collection of {@code Number} instances
541   * @return an array containing the same values as {@code collection}, in the same order, converted
542   *     to primitives
543   * @throws NullPointerException if {@code collection} or any of its elements is null
544   * @since 1.0 (parameter was {@code Collection<Double>} before 12.0)
545   */
546  public static double[] toArray(Collection<? extends Number> collection) {
547    if (collection instanceof DoubleArrayAsList) {
548      return ((DoubleArrayAsList) collection).toDoubleArray();
549    }
550
551    Object[] boxedArray = collection.toArray();
552    int len = boxedArray.length;
553    double[] array = new double[len];
554    for (int i = 0; i < len; i++) {
555      // checkNotNull for GWT (do not optimize)
556      array[i] = ((Number) checkNotNull(boxedArray[i])).doubleValue();
557    }
558    return array;
559  }
560
561  /**
562   * Returns a fixed-size list backed by the specified array, similar to {@link
563   * Arrays#asList(Object[])}. The list supports {@link List#set(int, Object)}, but any attempt to
564   * set a value to {@code null} will result in a {@link NullPointerException}.
565   *
566   * <p>The returned list maintains the values, but not the identities, of {@code Double} objects
567   * written to or read from it. For example, whether {@code list.get(0) == list.get(0)} is true for
568   * the returned list is unspecified.
569   *
570   * <p>The returned list may have unexpected behavior if it contains {@code NaN}, or if {@code NaN}
571   * is used as a parameter to any of its methods.
572   *
573   * <p>The returned list is serializable.
574   *
575   * <p><b>Note:</b> when possible, you should represent your data as an {@link
576   * ImmutableDoubleArray} instead, which has an {@link ImmutableDoubleArray#asList asList} view.
577   *
578   * @param backingArray the array to back the list
579   * @return a list view of the array
580   */
581  public static List<Double> asList(double... backingArray) {
582    if (backingArray.length == 0) {
583      return Collections.emptyList();
584    }
585    return new DoubleArrayAsList(backingArray);
586  }
587
588  @GwtCompatible
589  private static class DoubleArrayAsList extends AbstractList<Double>
590      implements RandomAccess, Serializable {
591    final double[] array;
592    final int start;
593    final int end;
594
595    DoubleArrayAsList(double[] array) {
596      this(array, 0, array.length);
597    }
598
599    DoubleArrayAsList(double[] array, int start, int end) {
600      this.array = array;
601      this.start = start;
602      this.end = end;
603    }
604
605    @Override
606    public int size() {
607      return end - start;
608    }
609
610    @Override
611    public boolean isEmpty() {
612      return false;
613    }
614
615    @Override
616    public Double get(int index) {
617      checkElementIndex(index, size());
618      return array[start + index];
619    }
620
621    @Override
622    public Spliterator.OfDouble spliterator() {
623      return Spliterators.spliterator(array, start, end, 0);
624    }
625
626    @Override
627    public boolean contains(@CheckForNull Object target) {
628      // Overridden to prevent a ton of boxing
629      return (target instanceof Double)
630          && Doubles.indexOf(array, (Double) target, start, end) != -1;
631    }
632
633    @Override
634    public int indexOf(@CheckForNull Object target) {
635      // Overridden to prevent a ton of boxing
636      if (target instanceof Double) {
637        int i = Doubles.indexOf(array, (Double) target, start, end);
638        if (i >= 0) {
639          return i - start;
640        }
641      }
642      return -1;
643    }
644
645    @Override
646    public int lastIndexOf(@CheckForNull Object target) {
647      // Overridden to prevent a ton of boxing
648      if (target instanceof Double) {
649        int i = Doubles.lastIndexOf(array, (Double) target, start, end);
650        if (i >= 0) {
651          return i - start;
652        }
653      }
654      return -1;
655    }
656
657    @Override
658    public Double set(int index, Double element) {
659      checkElementIndex(index, size());
660      double oldValue = array[start + index];
661      // checkNotNull for GWT (do not optimize)
662      array[start + index] = checkNotNull(element);
663      return oldValue;
664    }
665
666    @Override
667    public List<Double> subList(int fromIndex, int toIndex) {
668      int size = size();
669      checkPositionIndexes(fromIndex, toIndex, size);
670      if (fromIndex == toIndex) {
671        return Collections.emptyList();
672      }
673      return new DoubleArrayAsList(array, start + fromIndex, start + toIndex);
674    }
675
676    @Override
677    public boolean equals(@CheckForNull Object object) {
678      if (object == this) {
679        return true;
680      }
681      if (object instanceof DoubleArrayAsList) {
682        DoubleArrayAsList that = (DoubleArrayAsList) object;
683        int size = size();
684        if (that.size() != size) {
685          return false;
686        }
687        for (int i = 0; i < size; i++) {
688          if (array[start + i] != that.array[that.start + i]) {
689            return false;
690          }
691        }
692        return true;
693      }
694      return super.equals(object);
695    }
696
697    @Override
698    public int hashCode() {
699      int result = 1;
700      for (int i = start; i < end; i++) {
701        result = 31 * result + Doubles.hashCode(array[i]);
702      }
703      return result;
704    }
705
706    @Override
707    public String toString() {
708      StringBuilder builder = new StringBuilder(size() * 12);
709      builder.append('[').append(array[start]);
710      for (int i = start + 1; i < end; i++) {
711        builder.append(", ").append(array[i]);
712      }
713      return builder.append(']').toString();
714    }
715
716    double[] toDoubleArray() {
717      return Arrays.copyOfRange(array, start, end);
718    }
719
720    private static final long serialVersionUID = 0;
721  }
722
723  /**
724   * This is adapted from the regex suggested by {@link Double#valueOf(String)} for prevalidating
725   * inputs. All valid inputs must pass this regex, but it's semantically fine if not all inputs
726   * that pass this regex are valid -- only a performance hit is incurred, not a semantics bug.
727   */
728  @GwtIncompatible // regular expressions
729  static final
730  java.util.regex.Pattern
731      FLOATING_POINT_PATTERN = fpPattern();
732
733  @GwtIncompatible // regular expressions
734  private static
735  java.util.regex.Pattern
736      fpPattern() {
737    /*
738     * We use # instead of * for possessive quantifiers. This lets us strip them out when building
739     * the regex for RE2 (which doesn't support them) but leave them in when building it for
740     * java.util.regex (where we want them in order to avoid catastrophic backtracking).
741     */
742    String decimal = "(?:\\d+#(?:\\.\\d*#)?|\\.\\d+#)";
743    String completeDec = decimal + "(?:[eE][+-]?\\d+#)?[fFdD]?";
744    String hex = "(?:[0-9a-fA-F]+#(?:\\.[0-9a-fA-F]*#)?|\\.[0-9a-fA-F]+#)";
745    String completeHex = "0[xX]" + hex + "[pP][+-]?\\d+#[fFdD]?";
746    String fpPattern = "[+-]?(?:NaN|Infinity|" + completeDec + "|" + completeHex + ")";
747    fpPattern =
748        fpPattern.replace(
749            "#",
750            "+"
751            );
752    return
753    java.util.regex.Pattern
754        .compile(fpPattern);
755  }
756
757  /**
758   * Parses the specified string as a double-precision floating point value. The ASCII character
759   * {@code '-'} (<code>'&#92;u002D'</code>) is recognized as the minus sign.
760   *
761   * <p>Unlike {@link Double#parseDouble(String)}, this method returns {@code null} instead of
762   * throwing an exception if parsing fails. Valid inputs are exactly those accepted by {@link
763   * Double#valueOf(String)}, except that leading and trailing whitespace is not permitted.
764   *
765   * <p>This implementation is likely to be faster than {@code Double.parseDouble} if many failures
766   * are expected.
767   *
768   * @param string the string representation of a {@code double} value
769   * @return the floating point value represented by {@code string}, or {@code null} if {@code
770   *     string} has a length of zero or cannot be parsed as a {@code double} value
771   * @throws NullPointerException if {@code string} is {@code null}
772   * @since 14.0
773   */
774  @GwtIncompatible // regular expressions
775  @CheckForNull
776  public static Double tryParse(String string) {
777    if (FLOATING_POINT_PATTERN.matcher(string).matches()) {
778      // TODO(lowasser): could be potentially optimized, but only with
779      // extensive testing
780      try {
781        return Double.parseDouble(string);
782      } catch (NumberFormatException e) {
783        // Double.parseDouble has changed specs several times, so fall through
784        // gracefully
785      }
786    }
787    return null;
788  }
789}