001/*
002 * Copyright (C) 2008 The Guava Authors
003 *
004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
005 * in compliance with the License. You may obtain a copy of the License at
006 *
007 * http://www.apache.org/licenses/LICENSE-2.0
008 *
009 * Unless required by applicable law or agreed to in writing, software distributed under the License
010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
011 * or implied. See the License for the specific language governing permissions and limitations under
012 * the License.
013 */
014
015package com.google.common.net;
016
017import static com.google.common.base.Preconditions.checkArgument;
018import static com.google.common.base.Preconditions.checkNotNull;
019import static java.lang.Math.max;
020import static java.util.Objects.requireNonNull;
021
022import com.google.common.annotations.GwtIncompatible;
023import com.google.common.annotations.J2ktIncompatible;
024import com.google.common.base.CharMatcher;
025import com.google.common.base.MoreObjects;
026import com.google.common.hash.Hashing;
027import com.google.common.io.ByteStreams;
028import com.google.common.primitives.Ints;
029import com.google.errorprone.annotations.CanIgnoreReturnValue;
030import java.math.BigInteger;
031import java.net.Inet4Address;
032import java.net.Inet6Address;
033import java.net.InetAddress;
034import java.net.NetworkInterface;
035import java.net.SocketException;
036import java.net.UnknownHostException;
037import java.nio.ByteBuffer;
038import java.util.Arrays;
039import java.util.Locale;
040import org.jspecify.annotations.Nullable;
041
042/**
043 * Static utility methods pertaining to {@link InetAddress} instances.
044 *
045 * <p><b>Important note:</b> Unlike {@code InetAddress.getByName()}, the methods of this class never
046 * cause DNS services to be accessed. For this reason, you should prefer these methods as much as
047 * possible over their JDK equivalents whenever you are expecting to handle only IP address string
048 * literals -- there is no blocking DNS penalty for a malformed string.
049 *
050 * <p>When dealing with {@link Inet4Address} and {@link Inet6Address} objects as byte arrays (vis.
051 * {@code InetAddress.getAddress()}) they are 4 and 16 bytes in length, respectively, and represent
052 * the address in network byte order.
053 *
054 * <p>Examples of IP addresses and their byte representations:
055 *
056 * <dl>
057 *   <dt>The IPv4 loopback address, {@code "127.0.0.1"}.
058 *   <dd>{@code 7f 00 00 01}
059 *   <dt>The IPv6 loopback address, {@code "::1"}.
060 *   <dd>{@code 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01}
061 *   <dt>From the IPv6 reserved documentation prefix ({@code 2001:db8::/32}), {@code "2001:db8::1"}.
062 *   <dd>{@code 20 01 0d b8 00 00 00 00 00 00 00 00 00 00 00 01}
063 *   <dt>An IPv6 "IPv4 compatible" (or "compat") address, {@code "::192.168.0.1"}.
064 *   <dd>{@code 00 00 00 00 00 00 00 00 00 00 00 00 c0 a8 00 01}
065 *   <dt>An IPv6 "IPv4 mapped" address, {@code "::ffff:192.168.0.1"}.
066 *   <dd>{@code 00 00 00 00 00 00 00 00 00 00 ff ff c0 a8 00 01}
067 * </dl>
068 *
069 * <p>A few notes about IPv6 "IPv4 mapped" addresses and their observed use in Java.
070 *
071 * <p>"IPv4 mapped" addresses were originally a representation of IPv4 addresses for use on an IPv6
072 * socket that could receive both IPv4 and IPv6 connections (by disabling the {@code IPV6_V6ONLY}
073 * socket option on an IPv6 socket). Yes, it's confusing. Nevertheless, these "mapped" addresses
074 * were never supposed to be seen on the wire. That assumption was dropped, some say mistakenly, in
075 * later RFCs with the apparent aim of making IPv4-to-IPv6 transition simpler.
076 *
077 * <p>Technically one <i>can</i> create a 128bit IPv6 address with the wire format of a "mapped"
078 * address, as shown above, and transmit it in an IPv6 packet header. However, Java's InetAddress
079 * creation methods appear to adhere doggedly to the original intent of the "mapped" address: all
080 * "mapped" addresses return {@link Inet4Address} objects.
081 *
082 * <p>For added safety, it is common for IPv6 network operators to filter all packets where either
083 * the source or destination address appears to be a "compat" or "mapped" address. Filtering
084 * suggestions usually recommend discarding any packets with source or destination addresses in the
085 * invalid range {@code ::/3}, which includes both of these bizarre address formats. For more
086 * information on "bogons", including lists of IPv6 bogon space, see:
087 *
088 * <ul>
089 *   <li><a target="_parent"
090 *       href="http://en.wikipedia.org/wiki/Bogon_filtering">http://en.wikipedia.
091 *       org/wiki/Bogon_filtering</a>
092 *   <li><a target="_parent"
093 *       href="http://www.cymru.com/Bogons/ipv6.txt">http://www.cymru.com/Bogons/ ipv6.txt</a>
094 *   <li><a target="_parent" href="http://www.cymru.com/Bogons/v6bogon.html">http://www.cymru.com/
095 *       Bogons/v6bogon.html</a>
096 *   <li><a target="_parent" href="http://www.space.net/~gert/RIPE/ipv6-filters.html">http://www.
097 *       space.net/~gert/RIPE/ipv6-filters.html</a>
098 * </ul>
099 *
100 * @author Erik Kline
101 * @since 5.0
102 */
103@J2ktIncompatible
104@GwtIncompatible
105public final class InetAddresses {
106  private static final int IPV4_PART_COUNT = 4;
107  private static final int IPV6_PART_COUNT = 8;
108  private static final char IPV4_DELIMITER = '.';
109  private static final char IPV6_DELIMITER = ':';
110  private static final CharMatcher IPV4_DELIMITER_MATCHER = CharMatcher.is(IPV4_DELIMITER);
111  private static final CharMatcher IPV6_DELIMITER_MATCHER = CharMatcher.is(IPV6_DELIMITER);
112  private static final Inet4Address LOOPBACK4 = (Inet4Address) forString("127.0.0.1");
113  private static final Inet4Address ANY4 = (Inet4Address) forString("0.0.0.0");
114
115  private InetAddresses() {}
116
117  /**
118   * Returns an {@link Inet4Address}, given a byte array representation of the IPv4 address.
119   *
120   * @param bytes byte array representing an IPv4 address (should be of length 4)
121   * @return {@link Inet4Address} corresponding to the supplied byte array
122   * @throws IllegalArgumentException if a valid {@link Inet4Address} can not be created
123   */
124  private static Inet4Address getInet4Address(byte[] bytes) {
125    checkArgument(
126        bytes.length == 4,
127        "Byte array has invalid length for an IPv4 address: %s != 4.",
128        bytes.length);
129
130    // Given a 4-byte array, this cast should always succeed.
131    return (Inet4Address) bytesToInetAddress(bytes, null);
132  }
133
134  /**
135   * Returns the {@link InetAddress} having the given string representation.
136   *
137   * <p>This deliberately avoids all nameservice lookups (e.g. no DNS).
138   *
139   * <p>This method accepts non-ASCII digits, for example {@code "192.168.0.1"} (those are fullwidth
140   * characters). That is consistent with {@link InetAddress}, but not with various RFCs. If you
141   * want to accept ASCII digits only, you can use something like {@code
142   * CharMatcher.ascii().matchesAllOf(ipString)}.
143   *
144   * <p>The scope ID is validated against the interfaces on the machine, which requires permissions
145   * under Android.
146   *
147   * <p><b>Android users on API >= 29:</b> Prefer {@code InetAddresses.parseNumericAddress}.
148   *
149   * @param ipString {@code String} containing an IPv4 or IPv6 string literal, e.g. {@code
150   *     "192.168.0.1"} or {@code "2001:db8::1"} or with a scope ID, e.g. {@code "2001:db8::1%eth0"}
151   * @return {@link InetAddress} representing the argument
152   * @throws IllegalArgumentException if the argument is not a valid IP string literal or if the
153   *     address has a scope ID that fails validation against the interfaces on the machine (as
154   *     required by Java's {@link InetAddress})
155   */
156  @CanIgnoreReturnValue // TODO(b/219820829): consider removing
157  public static InetAddress forString(String ipString) {
158    Scope scope = new Scope();
159    byte[] addr = ipStringToBytes(ipString, scope);
160
161    // The argument was malformed, i.e. not an IP string literal.
162    if (addr == null) {
163      throw formatIllegalArgumentException("'%s' is not an IP string literal.", ipString);
164    }
165
166    return bytesToInetAddress(addr, scope.scope);
167  }
168
169  /**
170   * Returns {@code true} if the supplied string is a valid IP string literal, {@code false}
171   * otherwise.
172   *
173   * <p>This method accepts non-ASCII digits, for example {@code "192.168.0.1"} (those are fullwidth
174   * characters). That is consistent with {@link InetAddress}, but not with various RFCs. If you
175   * want to accept ASCII digits only, you can use something like {@code
176   * CharMatcher.ascii().matchesAllOf(ipString)}.
177   *
178   * <p>Note that if this method returns {@code true}, a call to {@link #forString(String)} can
179   * still throw if the address has a scope ID that fails validation against the interfaces on the
180   * machine.
181   *
182   * @param ipString {@code String} to evaluated as an IP string literal
183   * @return {@code true} if the argument is a valid IP string literal
184   */
185  public static boolean isInetAddress(String ipString) {
186    return ipStringToBytes(ipString, null) != null;
187  }
188
189  private static final class Scope {
190    private String scope;
191  }
192
193  /** Returns {@code null} if unable to parse into a {@code byte[]}. */
194  private static byte @Nullable [] ipStringToBytes(String ipStringParam, @Nullable Scope scope) {
195    String ipString = ipStringParam;
196    // Make a first pass to categorize the characters in this string.
197    boolean hasColon = false;
198    boolean hasDot = false;
199    int percentIndex = -1;
200    for (int i = 0; i < ipString.length(); i++) {
201      char c = ipString.charAt(i);
202      if (c == '.') {
203        hasDot = true;
204      } else if (c == ':') {
205        if (hasDot) {
206          return null; // Colons must not appear after dots.
207        }
208        hasColon = true;
209      } else if (c == '%') {
210        percentIndex = i;
211        break;
212      } else if (Character.digit(c, 16) == -1) {
213        return null; // Everything else must be a decimal or hex digit.
214      }
215    }
216
217    // Now decide which address family to parse.
218    if (hasColon) {
219      if (hasDot) {
220        ipString = convertDottedQuadToHex(ipString);
221        if (ipString == null) {
222          return null;
223        }
224      }
225      if (percentIndex != -1) {
226        if (scope != null) {
227          scope.scope = ipString.substring(percentIndex + 1);
228        }
229        ipString = ipString.substring(0, percentIndex);
230      }
231      return textToNumericFormatV6(ipString);
232    } else if (hasDot) {
233      if (percentIndex != -1) {
234        return null; // Scope IDs are not supported for IPV4
235      }
236      return textToNumericFormatV4(ipString);
237    }
238    return null;
239  }
240
241  private static byte @Nullable [] textToNumericFormatV4(String ipString) {
242    if (IPV4_DELIMITER_MATCHER.countIn(ipString) + 1 != IPV4_PART_COUNT) {
243      return null; // Wrong number of parts
244    }
245
246    byte[] bytes = new byte[IPV4_PART_COUNT];
247    int start = 0;
248    // Iterate through the parts of the ip string.
249    // Invariant: start is always the beginning of an octet.
250    for (int i = 0; i < IPV4_PART_COUNT; i++) {
251      int end = ipString.indexOf(IPV4_DELIMITER, start);
252      if (end == -1) {
253        end = ipString.length();
254      }
255      try {
256        bytes[i] = parseOctet(ipString, start, end);
257      } catch (NumberFormatException ex) {
258        return null;
259      }
260      start = end + 1;
261    }
262
263    return bytes;
264  }
265
266  private static byte @Nullable [] textToNumericFormatV6(String ipString) {
267    // An address can have [2..8] colons.
268    int delimiterCount = IPV6_DELIMITER_MATCHER.countIn(ipString);
269    if (delimiterCount < 2 || delimiterCount > IPV6_PART_COUNT) {
270      return null;
271    }
272    int partsSkipped = IPV6_PART_COUNT - (delimiterCount + 1); // estimate; may be modified later
273    boolean hasSkip = false;
274    // Scan for the appearance of ::, to mark a skip-format IPV6 string and adjust the partsSkipped
275    // estimate.
276    for (int i = 0; i < ipString.length() - 1; i++) {
277      if (ipString.charAt(i) == IPV6_DELIMITER && ipString.charAt(i + 1) == IPV6_DELIMITER) {
278        if (hasSkip) {
279          return null; // Can't have more than one ::
280        }
281        hasSkip = true;
282        partsSkipped++; // :: means we skipped an extra part in between the two delimiters.
283        if (i == 0) {
284          partsSkipped++; // Begins with ::, so we skipped the part preceding the first :
285        }
286        if (i == ipString.length() - 2) {
287          partsSkipped++; // Ends with ::, so we skipped the part after the last :
288        }
289      }
290    }
291    if (ipString.charAt(0) == IPV6_DELIMITER && ipString.charAt(1) != IPV6_DELIMITER) {
292      return null; // ^: requires ^::
293    }
294    if (ipString.charAt(ipString.length() - 1) == IPV6_DELIMITER
295        && ipString.charAt(ipString.length() - 2) != IPV6_DELIMITER) {
296      return null; // :$ requires ::$
297    }
298    if (hasSkip && partsSkipped <= 0) {
299      return null; // :: must expand to at least one '0'
300    }
301    if (!hasSkip && delimiterCount + 1 != IPV6_PART_COUNT) {
302      return null; // Incorrect number of parts
303    }
304
305    ByteBuffer rawBytes = ByteBuffer.allocate(2 * IPV6_PART_COUNT);
306    try {
307      // Iterate through the parts of the ip string.
308      // Invariant: start is always the beginning of a hextet, or the second ':' of the skip
309      // sequence "::"
310      int start = 0;
311      if (ipString.charAt(0) == IPV6_DELIMITER) {
312        start = 1;
313      }
314      while (start < ipString.length()) {
315        int end = ipString.indexOf(IPV6_DELIMITER, start);
316        if (end == -1) {
317          end = ipString.length();
318        }
319        if (ipString.charAt(start) == IPV6_DELIMITER) {
320          // expand zeroes
321          for (int i = 0; i < partsSkipped; i++) {
322            rawBytes.putShort((short) 0);
323          }
324
325        } else {
326          rawBytes.putShort(parseHextet(ipString, start, end));
327        }
328        start = end + 1;
329      }
330    } catch (NumberFormatException ex) {
331      return null;
332    }
333    return rawBytes.array();
334  }
335
336  private static @Nullable String convertDottedQuadToHex(String ipString) {
337    int lastColon = ipString.lastIndexOf(':');
338    String initialPart = ipString.substring(0, lastColon + 1);
339    String dottedQuad = ipString.substring(lastColon + 1);
340    byte[] quad = textToNumericFormatV4(dottedQuad);
341    if (quad == null) {
342      return null;
343    }
344    String penultimate = Integer.toHexString(((quad[0] & 0xff) << 8) | (quad[1] & 0xff));
345    String ultimate = Integer.toHexString(((quad[2] & 0xff) << 8) | (quad[3] & 0xff));
346    return initialPart + penultimate + ":" + ultimate;
347  }
348
349  private static byte parseOctet(String ipString, int start, int end) {
350    // Note: we already verified that this string contains only hex digits, but the string may still
351    // contain non-decimal characters.
352    int length = end - start;
353    if (length <= 0 || length > 3) {
354      throw new NumberFormatException();
355    }
356    // Disallow leading zeroes, because no clear standard exists on
357    // whether these should be interpreted as decimal or octal.
358    if (length > 1 && ipString.charAt(start) == '0') {
359      throw new NumberFormatException();
360    }
361    int octet = 0;
362    for (int i = start; i < end; i++) {
363      octet *= 10;
364      int digit = Character.digit(ipString.charAt(i), 10);
365      if (digit < 0) {
366        throw new NumberFormatException();
367      }
368      octet += digit;
369    }
370    if (octet > 255) {
371      throw new NumberFormatException();
372    }
373    return (byte) octet;
374  }
375
376  /** Returns a -1 if unable to parse */
377  private static int tryParseDecimal(String string, int start, int end) {
378    int decimal = 0;
379    final int max = Integer.MAX_VALUE / 10; // for int overflow detection
380    for (int i = start; i < end; i++) {
381      if (decimal > max) {
382        return -1;
383      }
384      decimal *= 10;
385      int digit = Character.digit(string.charAt(i), 10);
386      if (digit < 0) {
387        return -1;
388      }
389      decimal += digit;
390    }
391    return decimal;
392  }
393
394  // Parse a hextet out of the ipString from start (inclusive) to end (exclusive)
395  private static short parseHextet(String ipString, int start, int end) {
396    // Note: we already verified that this string contains only hex digits.
397    int length = end - start;
398    if (length <= 0 || length > 4) {
399      throw new NumberFormatException();
400    }
401    int hextet = 0;
402    for (int i = start; i < end; i++) {
403      hextet = hextet << 4;
404      hextet |= Character.digit(ipString.charAt(i), 16);
405    }
406    return (short) hextet;
407  }
408
409  /**
410   * Convert a byte array into an InetAddress.
411   *
412   * <p>{@link InetAddress#getByAddress} is documented as throwing a checked exception "if IP
413   * address is of illegal length." We replace it with an unchecked exception, for use by callers
414   * who already know that addr is an array of length 4 or 16.
415   *
416   * @param addr the raw 4-byte or 16-byte IP address in big-endian order
417   * @return an InetAddress object created from the raw IP address
418   */
419  private static InetAddress bytesToInetAddress(byte[] addr, @Nullable String scope) {
420    try {
421      InetAddress address = InetAddress.getByAddress(addr);
422      if (scope == null) {
423        return address;
424      }
425      checkArgument(
426          address instanceof Inet6Address, "Unexpected state, scope should only appear for ipv6");
427      Inet6Address v6Address = (Inet6Address) address;
428      int interfaceIndex = tryParseDecimal(scope, 0, scope.length());
429      if (interfaceIndex != -1) {
430        return Inet6Address.getByAddress(
431            v6Address.getHostAddress(), v6Address.getAddress(), interfaceIndex);
432      }
433      try {
434        NetworkInterface asInterface = NetworkInterface.getByName(scope);
435        if (asInterface == null) {
436          throw formatIllegalArgumentException("No such interface: '%s'", scope);
437        }
438        return Inet6Address.getByAddress(
439            v6Address.getHostAddress(), v6Address.getAddress(), asInterface);
440      } catch (SocketException | UnknownHostException e) {
441        throw new IllegalArgumentException("No such interface: " + scope, e);
442      }
443    } catch (UnknownHostException e) {
444      throw new AssertionError(e);
445    }
446  }
447
448  /**
449   * Returns the string representation of an {@link InetAddress}.
450   *
451   * <p>For IPv4 addresses, this is identical to {@link InetAddress#getHostAddress()}, but for IPv6
452   * addresses, the output follows <a href="http://tools.ietf.org/html/rfc5952">RFC 5952</a> section
453   * 4. The main difference is that this method uses "::" for zero compression, while Java's version
454   * uses the uncompressed form (except on Android, where the zero compression is also done). The
455   * other difference is that this method outputs any scope ID in the format that it was provided at
456   * creation time, while Android may always output it as an interface name, even if it was supplied
457   * as a numeric ID.
458   *
459   * <p>This method uses hexadecimal for all IPv6 addresses, including IPv4-mapped IPv6 addresses
460   * such as "::c000:201".
461   *
462   * @param ip {@link InetAddress} to be converted to an address string
463   * @return {@code String} containing the text-formatted IP address
464   * @since 10.0
465   */
466  public static String toAddrString(InetAddress ip) {
467    checkNotNull(ip);
468    if (ip instanceof Inet4Address) {
469      // For IPv4, Java's formatting is good enough.
470      // requireNonNull accommodates Android's @RecentlyNullable annotation on getHostAddress
471      return requireNonNull(ip.getHostAddress());
472    }
473    byte[] bytes = ip.getAddress();
474    int[] hextets = new int[IPV6_PART_COUNT];
475    for (int i = 0; i < hextets.length; i++) {
476      hextets[i] = Ints.fromBytes((byte) 0, (byte) 0, bytes[2 * i], bytes[2 * i + 1]);
477    }
478    compressLongestRunOfZeroes(hextets);
479
480    return hextetsToIPv6String(hextets) + scopeWithDelimiter((Inet6Address) ip);
481  }
482
483  private static String scopeWithDelimiter(Inet6Address ip) {
484    // getHostAddress on android sometimes maps the scope ID to an invalid interface name; if the
485    // mapped interface isn't present, fallback to use the scope ID (which has no validation against
486    // present interfaces)
487    NetworkInterface scopedInterface = ip.getScopedInterface();
488    if (scopedInterface != null) {
489      return "%" + scopedInterface.getName();
490    }
491    int scope = ip.getScopeId();
492    if (scope != 0) {
493      return "%" + scope;
494    }
495    return "";
496  }
497
498  /**
499   * Identify and mark the longest run of zeroes in an IPv6 address.
500   *
501   * <p>Only runs of two or more hextets are considered. In case of a tie, the leftmost run wins. If
502   * a qualifying run is found, its hextets are replaced by the sentinel value -1.
503   *
504   * @param hextets {@code int[]} mutable array of eight 16-bit hextets
505   */
506  private static void compressLongestRunOfZeroes(int[] hextets) {
507    int bestRunStart = -1;
508    int bestRunLength = -1;
509    int runStart = -1;
510    for (int i = 0; i < hextets.length + 1; i++) {
511      if (i < hextets.length && hextets[i] == 0) {
512        if (runStart < 0) {
513          runStart = i;
514        }
515      } else if (runStart >= 0) {
516        int runLength = i - runStart;
517        if (runLength > bestRunLength) {
518          bestRunStart = runStart;
519          bestRunLength = runLength;
520        }
521        runStart = -1;
522      }
523    }
524    if (bestRunLength >= 2) {
525      Arrays.fill(hextets, bestRunStart, bestRunStart + bestRunLength, -1);
526    }
527  }
528
529  /**
530   * Convert a list of hextets into a human-readable IPv6 address.
531   *
532   * <p>In order for "::" compression to work, the input should contain negative sentinel values in
533   * place of the elided zeroes.
534   *
535   * @param hextets {@code int[]} array of eight 16-bit hextets, or -1s
536   */
537  private static String hextetsToIPv6String(int[] hextets) {
538    // While scanning the array, handle these state transitions:
539    //   start->num => "num"     start->gap => "::"
540    //   num->num   => ":num"    num->gap   => "::"
541    //   gap->num   => "num"     gap->gap   => ""
542    StringBuilder buf = new StringBuilder(39);
543    boolean lastWasNumber = false;
544    for (int i = 0; i < hextets.length; i++) {
545      boolean thisIsNumber = hextets[i] >= 0;
546      if (thisIsNumber) {
547        if (lastWasNumber) {
548          buf.append(':');
549        }
550        buf.append(Integer.toHexString(hextets[i]));
551      } else {
552        if (i == 0 || lastWasNumber) {
553          buf.append("::");
554        }
555      }
556      lastWasNumber = thisIsNumber;
557    }
558    return buf.toString();
559  }
560
561  /**
562   * Returns the string representation of an {@link InetAddress} suitable for inclusion in a URI.
563   *
564   * <p>For IPv4 addresses, this is identical to {@link InetAddress#getHostAddress()}, but for IPv6
565   * addresses it compresses zeroes and surrounds the text with square brackets; for example {@code
566   * "[2001:db8::1]"}.
567   *
568   * <p>Per section 3.2.2 of <a target="_parent"
569   * href="http://tools.ietf.org/html/rfc3986#section-3.2.2">RFC 3986</a>, a URI containing an IPv6
570   * string literal is of the form {@code "http://[2001:db8::1]:8888/index.html"}.
571   *
572   * <p>Use of either {@link InetAddresses#toAddrString}, {@link InetAddress#getHostAddress()}, or
573   * this method is recommended over {@link InetAddress#toString()} when an IP address string
574   * literal is desired. This is because {@link InetAddress#toString()} prints the hostname and the
575   * IP address string joined by a "/".
576   *
577   * @param ip {@link InetAddress} to be converted to URI string literal
578   * @return {@code String} containing URI-safe string literal
579   */
580  public static String toUriString(InetAddress ip) {
581    if (ip instanceof Inet6Address) {
582      return "[" + toAddrString(ip) + "]";
583    }
584    return toAddrString(ip);
585  }
586
587  /**
588   * Returns an InetAddress representing the literal IPv4 or IPv6 host portion of a URL, encoded in
589   * the format specified by RFC 3986 section 3.2.2.
590   *
591   * <p>This method is similar to {@link InetAddresses#forString(String)}, however, it requires that
592   * IPv6 addresses are surrounded by square brackets.
593   *
594   * <p>This method is the inverse of {@link InetAddresses#toUriString(java.net.InetAddress)}.
595   *
596   * <p>This method accepts non-ASCII digits, for example {@code "192.168.0.1"} (those are fullwidth
597   * characters). That is consistent with {@link InetAddress}, but not with various RFCs. If you
598   * want to accept ASCII digits only, you can use something like {@code
599   * CharMatcher.ascii().matchesAllOf(ipString)}.
600   *
601   * @param hostAddr an RFC 3986 section 3.2.2 encoded IPv4 or IPv6 address
602   * @return an InetAddress representing the address in {@code hostAddr}
603   * @throws IllegalArgumentException if {@code hostAddr} is not a valid IPv4 address, or IPv6
604   *     address surrounded by square brackets, or if the address has a scope ID that fails
605   *     validation against the interfaces on the machine (as required by Java's {@link
606   *     InetAddress})
607   */
608  public static InetAddress forUriString(String hostAddr) {
609    InetAddress addr = forUriStringOrNull(hostAddr, /* parseScope= */ true);
610    if (addr == null) {
611      throw formatIllegalArgumentException("Not a valid URI IP literal: '%s'", hostAddr);
612    }
613
614    return addr;
615  }
616
617  private static @Nullable InetAddress forUriStringOrNull(String hostAddr, boolean parseScope) {
618    checkNotNull(hostAddr);
619
620    // Decide if this should be an IPv6 or IPv4 address.
621    String ipString;
622    int expectBytes;
623    if (hostAddr.startsWith("[") && hostAddr.endsWith("]")) {
624      ipString = hostAddr.substring(1, hostAddr.length() - 1);
625      expectBytes = 16;
626    } else {
627      ipString = hostAddr;
628      expectBytes = 4;
629    }
630
631    // Parse the address, and make sure the length/version is correct.
632    Scope scope = parseScope ? new Scope() : null;
633    byte[] addr = ipStringToBytes(ipString, scope);
634    if (addr == null || addr.length != expectBytes) {
635      return null;
636    }
637
638    return bytesToInetAddress(addr, (scope != null) ? scope.scope : null);
639  }
640
641  /**
642   * Returns {@code true} if the supplied string is a valid URI IP string literal, {@code false}
643   * otherwise.
644   *
645   * <p>This method accepts non-ASCII digits, for example {@code "192.168.0.1"} (those are fullwidth
646   * characters). That is consistent with {@link InetAddress}, but not with various RFCs. If you
647   * want to accept ASCII digits only, you can use something like {@code
648   * CharMatcher.ascii().matchesAllOf(ipString)}.
649   *
650   * <p>Note that if this method returns {@code true}, a call to {@link #forUriString(String)} can
651   * still throw if the address has a scope ID that fails validation against the interfaces on the
652   * machine.
653   *
654   * @param ipString {@code String} to evaluated as an IP URI host string literal
655   * @return {@code true} if the argument is a valid IP URI host
656   */
657  public static boolean isUriInetAddress(String ipString) {
658    return forUriStringOrNull(ipString, /* parseScope= */ false) != null;
659  }
660
661  /**
662   * Evaluates whether the argument is an IPv6 "compat" address.
663   *
664   * <p>An "IPv4 compatible", or "compat", address is one with 96 leading bits of zero, with the
665   * remaining 32 bits interpreted as an IPv4 address. These are conventionally represented in
666   * string literals as {@code "::192.168.0.1"}, though {@code "::c0a8:1"} is also considered an
667   * IPv4 compatible address (and equivalent to {@code "::192.168.0.1"}).
668   *
669   * <p>For more on IPv4 compatible addresses see section 2.5.5.1 of <a target="_parent"
670   * href="http://tools.ietf.org/html/rfc4291#section-2.5.5.1">RFC 4291</a>.
671   *
672   * <p>NOTE: This method is different from {@link Inet6Address#isIPv4CompatibleAddress} in that it
673   * more correctly classifies {@code "::"} and {@code "::1"} as proper IPv6 addresses (which they
674   * are), NOT IPv4 compatible addresses (which they are generally NOT considered to be).
675   *
676   * @param ip {@link Inet6Address} to be examined for embedded IPv4 compatible address format
677   * @return {@code true} if the argument is a valid "compat" address
678   */
679  public static boolean isCompatIPv4Address(Inet6Address ip) {
680    if (!ip.isIPv4CompatibleAddress()) {
681      return false;
682    }
683
684    byte[] bytes = ip.getAddress();
685    if ((bytes[12] == 0)
686        && (bytes[13] == 0)
687        && (bytes[14] == 0)
688        && ((bytes[15] == 0) || (bytes[15] == 1))) {
689      return false;
690    }
691
692    return true;
693  }
694
695  /**
696   * Returns the IPv4 address embedded in an IPv4 compatible address.
697   *
698   * @param ip {@link Inet6Address} to be examined for an embedded IPv4 address
699   * @return {@link Inet4Address} of the embedded IPv4 address
700   * @throws IllegalArgumentException if the argument is not a valid IPv4 compatible address
701   */
702  public static Inet4Address getCompatIPv4Address(Inet6Address ip) {
703    checkArgument(
704        isCompatIPv4Address(ip), "Address '%s' is not IPv4-compatible.", toAddrString(ip));
705
706    return getInet4Address(Arrays.copyOfRange(ip.getAddress(), 12, 16));
707  }
708
709  /**
710   * Evaluates whether the argument is a 6to4 address.
711   *
712   * <p>6to4 addresses begin with the {@code "2002::/16"} prefix. The next 32 bits are the IPv4
713   * address of the host to which IPv6-in-IPv4 tunneled packets should be routed.
714   *
715   * <p>For more on 6to4 addresses see section 2 of <a target="_parent"
716   * href="http://tools.ietf.org/html/rfc3056#section-2">RFC 3056</a>.
717   *
718   * @param ip {@link Inet6Address} to be examined for 6to4 address format
719   * @return {@code true} if the argument is a 6to4 address
720   */
721  public static boolean is6to4Address(Inet6Address ip) {
722    byte[] bytes = ip.getAddress();
723    return (bytes[0] == (byte) 0x20) && (bytes[1] == (byte) 0x02);
724  }
725
726  /**
727   * Returns the IPv4 address embedded in a 6to4 address.
728   *
729   * @param ip {@link Inet6Address} to be examined for embedded IPv4 in 6to4 address
730   * @return {@link Inet4Address} of embedded IPv4 in 6to4 address
731   * @throws IllegalArgumentException if the argument is not a valid IPv6 6to4 address
732   */
733  public static Inet4Address get6to4IPv4Address(Inet6Address ip) {
734    checkArgument(is6to4Address(ip), "Address '%s' is not a 6to4 address.", toAddrString(ip));
735
736    return getInet4Address(Arrays.copyOfRange(ip.getAddress(), 2, 6));
737  }
738
739  /**
740   * A simple immutable data class to encapsulate the information to be found in a Teredo address.
741   *
742   * <p>All of the fields in this class are encoded in various portions of the IPv6 address as part
743   * of the protocol. More protocols details can be found at: <a target="_parent"
744   * href="http://en.wikipedia.org/wiki/Teredo_tunneling">http://en.wikipedia.
745   * org/wiki/Teredo_tunneling</a>.
746   *
747   * <p>The RFC can be found here: <a target="_parent" href="http://tools.ietf.org/html/rfc4380">RFC
748   * 4380</a>.
749   *
750   * @since 5.0
751   */
752  public static final class TeredoInfo {
753    private final Inet4Address server;
754    private final Inet4Address client;
755    private final int port;
756    private final int flags;
757
758    /**
759     * Constructs a TeredoInfo instance.
760     *
761     * <p>Both server and client can be {@code null}, in which case the value {@code "0.0.0.0"} will
762     * be assumed.
763     *
764     * @throws IllegalArgumentException if either of the {@code port} or the {@code flags} arguments
765     *     are out of range of an unsigned short
766     */
767    // TODO: why is this public?
768    public TeredoInfo(
769        @Nullable Inet4Address server, @Nullable Inet4Address client, int port, int flags) {
770      checkArgument(
771          (port >= 0) && (port <= 0xffff), "port '%s' is out of range (0 <= port <= 0xffff)", port);
772      checkArgument(
773          (flags >= 0) && (flags <= 0xffff),
774          "flags '%s' is out of range (0 <= flags <= 0xffff)",
775          flags);
776
777      this.server = MoreObjects.firstNonNull(server, ANY4);
778      this.client = MoreObjects.firstNonNull(client, ANY4);
779      this.port = port;
780      this.flags = flags;
781    }
782
783    public Inet4Address getServer() {
784      return server;
785    }
786
787    public Inet4Address getClient() {
788      return client;
789    }
790
791    public int getPort() {
792      return port;
793    }
794
795    public int getFlags() {
796      return flags;
797    }
798  }
799
800  /**
801   * Evaluates whether the argument is a Teredo address.
802   *
803   * <p>Teredo addresses begin with the {@code "2001::/32"} prefix.
804   *
805   * @param ip {@link Inet6Address} to be examined for Teredo address format
806   * @return {@code true} if the argument is a Teredo address
807   */
808  public static boolean isTeredoAddress(Inet6Address ip) {
809    byte[] bytes = ip.getAddress();
810    return (bytes[0] == (byte) 0x20)
811        && (bytes[1] == (byte) 0x01)
812        && (bytes[2] == 0)
813        && (bytes[3] == 0);
814  }
815
816  /**
817   * Returns the Teredo information embedded in a Teredo address.
818   *
819   * @param ip {@link Inet6Address} to be examined for embedded Teredo information
820   * @return extracted {@code TeredoInfo}
821   * @throws IllegalArgumentException if the argument is not a valid IPv6 Teredo address
822   */
823  public static TeredoInfo getTeredoInfo(Inet6Address ip) {
824    checkArgument(isTeredoAddress(ip), "Address '%s' is not a Teredo address.", toAddrString(ip));
825
826    byte[] bytes = ip.getAddress();
827    Inet4Address server = getInet4Address(Arrays.copyOfRange(bytes, 4, 8));
828
829    int flags = ByteStreams.newDataInput(bytes, 8).readShort() & 0xffff;
830
831    // Teredo obfuscates the mapped client port, per section 4 of the RFC.
832    int port = ~ByteStreams.newDataInput(bytes, 10).readShort() & 0xffff;
833
834    byte[] clientBytes = Arrays.copyOfRange(bytes, 12, 16);
835    for (int i = 0; i < clientBytes.length; i++) {
836      // Teredo obfuscates the mapped client IP, per section 4 of the RFC.
837      clientBytes[i] = (byte) ~clientBytes[i];
838    }
839    Inet4Address client = getInet4Address(clientBytes);
840
841    return new TeredoInfo(server, client, port, flags);
842  }
843
844  /**
845   * Evaluates whether the argument is an ISATAP address.
846   *
847   * <p>From RFC 5214: "ISATAP interface identifiers are constructed in Modified EUI-64 format [...]
848   * by concatenating the 24-bit IANA OUI (00-00-5E), the 8-bit hexadecimal value 0xFE, and a 32-bit
849   * IPv4 address in network byte order [...]"
850   *
851   * <p>For more on ISATAP addresses see section 6.1 of <a target="_parent"
852   * href="http://tools.ietf.org/html/rfc5214#section-6.1">RFC 5214</a>.
853   *
854   * @param ip {@link Inet6Address} to be examined for ISATAP address format
855   * @return {@code true} if the argument is an ISATAP address
856   */
857  public static boolean isIsatapAddress(Inet6Address ip) {
858
859    // If it's a Teredo address with the right port (41217, or 0xa101)
860    // which would be encoded as 0x5efe then it can't be an ISATAP address.
861    if (isTeredoAddress(ip)) {
862      return false;
863    }
864
865    byte[] bytes = ip.getAddress();
866
867    if ((bytes[8] | (byte) 0x03) != (byte) 0x03) {
868
869      // Verify that high byte of the 64 bit identifier is zero, modulo
870      // the U/L and G bits, with which we are not concerned.
871      return false;
872    }
873
874    return (bytes[9] == (byte) 0x00) && (bytes[10] == (byte) 0x5e) && (bytes[11] == (byte) 0xfe);
875  }
876
877  /**
878   * Returns the IPv4 address embedded in an ISATAP address.
879   *
880   * @param ip {@link Inet6Address} to be examined for embedded IPv4 in ISATAP address
881   * @return {@link Inet4Address} of embedded IPv4 in an ISATAP address
882   * @throws IllegalArgumentException if the argument is not a valid IPv6 ISATAP address
883   */
884  public static Inet4Address getIsatapIPv4Address(Inet6Address ip) {
885    checkArgument(isIsatapAddress(ip), "Address '%s' is not an ISATAP address.", toAddrString(ip));
886
887    return getInet4Address(Arrays.copyOfRange(ip.getAddress(), 12, 16));
888  }
889
890  /**
891   * Examines the Inet6Address to determine if it is an IPv6 address of one of the specified address
892   * types that contain an embedded IPv4 address.
893   *
894   * <p>NOTE: ISATAP addresses are explicitly excluded from this method due to their trivial
895   * spoofability. With other transition addresses spoofing involves (at least) infection of one's
896   * BGP routing table.
897   *
898   * @param ip {@link Inet6Address} to be examined for embedded IPv4 client address
899   * @return {@code true} if there is an embedded IPv4 client address
900   * @since 7.0
901   */
902  public static boolean hasEmbeddedIPv4ClientAddress(Inet6Address ip) {
903    return isCompatIPv4Address(ip) || is6to4Address(ip) || isTeredoAddress(ip);
904  }
905
906  /**
907   * Examines the Inet6Address to extract the embedded IPv4 client address if the InetAddress is an
908   * IPv6 address of one of the specified address types that contain an embedded IPv4 address.
909   *
910   * <p>NOTE: ISATAP addresses are explicitly excluded from this method due to their trivial
911   * spoofability. With other transition addresses spoofing involves (at least) infection of one's
912   * BGP routing table.
913   *
914   * @param ip {@link Inet6Address} to be examined for embedded IPv4 client address
915   * @return {@link Inet4Address} of embedded IPv4 client address
916   * @throws IllegalArgumentException if the argument does not have a valid embedded IPv4 address
917   */
918  public static Inet4Address getEmbeddedIPv4ClientAddress(Inet6Address ip) {
919    if (isCompatIPv4Address(ip)) {
920      return getCompatIPv4Address(ip);
921    }
922
923    if (is6to4Address(ip)) {
924      return get6to4IPv4Address(ip);
925    }
926
927    if (isTeredoAddress(ip)) {
928      return getTeredoInfo(ip).getClient();
929    }
930
931    throw formatIllegalArgumentException("'%s' has no embedded IPv4 address.", toAddrString(ip));
932  }
933
934  /**
935   * Evaluates whether the argument is an "IPv4 mapped" IPv6 address.
936   *
937   * <p>An "IPv4 mapped" address is anything in the range ::ffff:0:0/96 (sometimes written as
938   * ::ffff:0.0.0.0/96), with the last 32 bits interpreted as an IPv4 address.
939   *
940   * <p>For more on IPv4 mapped addresses see section 2.5.5.2 of <a target="_parent"
941   * href="http://tools.ietf.org/html/rfc4291#section-2.5.5.2">RFC 4291</a>.
942   *
943   * <p>Note: This method takes a {@code String} argument because {@link InetAddress} automatically
944   * collapses mapped addresses to IPv4. (It is actually possible to avoid this using one of the
945   * obscure {@link Inet6Address} methods, but it would be unwise to depend on such a
946   * poorly-documented feature.)
947   *
948   * <p>This method accepts non-ASCII digits. That is consistent with {@link InetAddress}, but not
949   * with various RFCs. If you want to accept ASCII digits only, you can use something like {@code
950   * CharMatcher.ascii().matchesAllOf(ipString)}.
951   *
952   * @param ipString {@code String} to be examined for embedded IPv4-mapped IPv6 address format
953   * @return {@code true} if the argument is a valid "mapped" address
954   * @since 10.0
955   */
956  public static boolean isMappedIPv4Address(String ipString) {
957    byte[] bytes = ipStringToBytes(ipString, null);
958    if (bytes != null && bytes.length == 16) {
959      for (int i = 0; i < 10; i++) {
960        if (bytes[i] != 0) {
961          return false;
962        }
963      }
964      for (int i = 10; i < 12; i++) {
965        if (bytes[i] != (byte) 0xff) {
966          return false;
967        }
968      }
969      return true;
970    }
971    return false;
972  }
973
974  /**
975   * Coerces an IPv6 address into an IPv4 address.
976   *
977   * <p>HACK: As long as applications continue to use IPv4 addresses for indexing into tables,
978   * accounting, et cetera, it may be necessary to <b>coerce</b> IPv6 addresses into IPv4 addresses.
979   * This method does so by hashing 64 bits of the IPv6 address into {@code 224.0.0.0/3} (64 bits
980   * into 29 bits):
981   *
982   * <ul>
983   *   <li>If the IPv6 address contains an embedded IPv4 address, the function hashes that.
984   *   <li>Otherwise, it hashes the upper 64 bits of the IPv6 address.
985   * </ul>
986   *
987   * <p>A "coerced" IPv4 address is equivalent to itself.
988   *
989   * <p>NOTE: This method is failsafe for security purposes: ALL IPv6 addresses (except localhost
990   * (::1)) are hashed to avoid the security risk associated with extracting an embedded IPv4
991   * address that might permit elevated privileges.
992   *
993   * @param ip {@link InetAddress} to "coerce"
994   * @return {@link Inet4Address} represented "coerced" address
995   * @since 7.0
996   */
997  public static Inet4Address getCoercedIPv4Address(InetAddress ip) {
998    if (ip instanceof Inet4Address) {
999      return (Inet4Address) ip;
1000    }
1001
1002    // Special cases:
1003    byte[] bytes = ip.getAddress();
1004    boolean leadingBytesOfZero = true;
1005    for (int i = 0; i < 15; ++i) {
1006      if (bytes[i] != 0) {
1007        leadingBytesOfZero = false;
1008        break;
1009      }
1010    }
1011    if (leadingBytesOfZero && (bytes[15] == 1)) {
1012      return LOOPBACK4; // ::1
1013    } else if (leadingBytesOfZero && (bytes[15] == 0)) {
1014      return ANY4; // ::0
1015    }
1016
1017    Inet6Address ip6 = (Inet6Address) ip;
1018    long addressAsLong = 0;
1019    if (hasEmbeddedIPv4ClientAddress(ip6)) {
1020      addressAsLong = getEmbeddedIPv4ClientAddress(ip6).hashCode();
1021    } else {
1022      // Just extract the high 64 bits (assuming the rest is user-modifiable).
1023      addressAsLong = ByteBuffer.wrap(ip6.getAddress(), 0, 8).getLong();
1024    }
1025
1026    // Many strategies for hashing are possible. This might suffice for now.
1027    int coercedHash = Hashing.murmur3_32_fixed().hashLong(addressAsLong).asInt();
1028
1029    // Squash into 224/4 Multicast and 240/4 Reserved space (i.e. 224/3).
1030    coercedHash |= 0xe0000000;
1031
1032    // Fixup to avoid some "illegal" values. Currently the only potential
1033    // illegal value is 255.255.255.255.
1034    if (coercedHash == 0xffffffff) {
1035      coercedHash = 0xfffffffe;
1036    }
1037
1038    return getInet4Address(Ints.toByteArray(coercedHash));
1039  }
1040
1041  /**
1042   * Returns an integer representing an IPv4 address regardless of whether the supplied argument is
1043   * an IPv4 address or not.
1044   *
1045   * <p>IPv6 addresses are <b>coerced</b> to IPv4 addresses before being converted to integers.
1046   *
1047   * <p>As long as there are applications that assume that all IP addresses are IPv4 addresses and
1048   * can therefore be converted safely to integers (for whatever purpose) this function can be used
1049   * to handle IPv6 addresses as well until the application is suitably fixed.
1050   *
1051   * <p>NOTE: an IPv6 address coerced to an IPv4 address can only be used for such purposes as
1052   * rudimentary identification or indexing into a collection of real {@link InetAddress}es. They
1053   * cannot be used as real addresses for the purposes of network communication.
1054   *
1055   * @param ip {@link InetAddress} to convert
1056   * @return {@code int}, "coerced" if ip is not an IPv4 address
1057   * @since 7.0
1058   */
1059  public static int coerceToInteger(InetAddress ip) {
1060    return ByteStreams.newDataInput(getCoercedIPv4Address(ip).getAddress()).readInt();
1061  }
1062
1063  /**
1064   * Returns a BigInteger representing the address.
1065   *
1066   * <p>Unlike {@code coerceToInteger}, IPv6 addresses are not coerced to IPv4 addresses.
1067   *
1068   * @param address {@link InetAddress} to convert
1069   * @return {@code BigInteger} representation of the address
1070   * @since 28.2
1071   */
1072  public static BigInteger toBigInteger(InetAddress address) {
1073    return new BigInteger(1, address.getAddress());
1074  }
1075
1076  /**
1077   * Returns an Inet4Address having the integer value specified by the argument.
1078   *
1079   * @param address {@code int}, the 32bit integer address to be converted
1080   * @return {@link Inet4Address} equivalent of the argument
1081   */
1082  public static Inet4Address fromInteger(int address) {
1083    return getInet4Address(Ints.toByteArray(address));
1084  }
1085
1086  /**
1087   * Returns the {@code Inet4Address} corresponding to a given {@code BigInteger}.
1088   *
1089   * @param address BigInteger representing the IPv4 address
1090   * @return Inet4Address representation of the given BigInteger
1091   * @throws IllegalArgumentException if the BigInteger is not between 0 and 2^32-1
1092   * @since 28.2
1093   */
1094  public static Inet4Address fromIPv4BigInteger(BigInteger address) {
1095    return (Inet4Address) fromBigInteger(address, false);
1096  }
1097
1098  /**
1099   * Returns the {@code Inet6Address} corresponding to a given {@code BigInteger}.
1100   *
1101   * @param address BigInteger representing the IPv6 address
1102   * @return Inet6Address representation of the given BigInteger
1103   * @throws IllegalArgumentException if the BigInteger is not between 0 and 2^128-1
1104   * @since 28.2
1105   */
1106  public static Inet6Address fromIPv6BigInteger(BigInteger address) {
1107    return (Inet6Address) fromBigInteger(address, true);
1108  }
1109
1110  /**
1111   * Converts a BigInteger to either an IPv4 or IPv6 address. If the IP is IPv4, it must be
1112   * constrained to 32 bits, otherwise it is constrained to 128 bits.
1113   *
1114   * @param address the address represented as a big integer
1115   * @param isIpv6 whether the created address should be IPv4 or IPv6
1116   * @return the BigInteger converted to an address
1117   * @throws IllegalArgumentException if the BigInteger is not between 0 and maximum value for IPv4
1118   *     or IPv6 respectively
1119   */
1120  private static InetAddress fromBigInteger(BigInteger address, boolean isIpv6) {
1121    checkArgument(address.signum() >= 0, "BigInteger must be greater than or equal to 0");
1122
1123    int numBytes = isIpv6 ? 16 : 4;
1124
1125    byte[] addressBytes = address.toByteArray();
1126    byte[] targetCopyArray = new byte[numBytes];
1127
1128    int srcPos = max(0, addressBytes.length - numBytes);
1129    int copyLength = addressBytes.length - srcPos;
1130    int destPos = numBytes - copyLength;
1131
1132    // Check the extra bytes in the BigInteger are all zero.
1133    for (int i = 0; i < srcPos; i++) {
1134      if (addressBytes[i] != 0x00) {
1135        throw formatIllegalArgumentException(
1136            "BigInteger cannot be converted to InetAddress because it has more than %d"
1137                + " bytes: %s",
1138            numBytes, address);
1139      }
1140    }
1141
1142    // Copy the bytes into the least significant positions.
1143    System.arraycopy(addressBytes, srcPos, targetCopyArray, destPos, copyLength);
1144
1145    try {
1146      return InetAddress.getByAddress(targetCopyArray);
1147    } catch (UnknownHostException impossible) {
1148      throw new AssertionError(impossible);
1149    }
1150  }
1151
1152  /**
1153   * Returns an address from a <b>little-endian ordered</b> byte array (the opposite of what {@link
1154   * InetAddress#getByAddress} expects).
1155   *
1156   * <p>IPv4 address byte array must be 4 bytes long and IPv6 byte array must be 16 bytes long.
1157   *
1158   * @param addr the raw IP address in little-endian byte order
1159   * @return an InetAddress object created from the raw IP address
1160   * @throws UnknownHostException if IP address is of illegal length
1161   */
1162  public static InetAddress fromLittleEndianByteArray(byte[] addr) throws UnknownHostException {
1163    byte[] reversed = new byte[addr.length];
1164    for (int i = 0; i < addr.length; i++) {
1165      reversed[i] = addr[addr.length - i - 1];
1166    }
1167    return InetAddress.getByAddress(reversed);
1168  }
1169
1170  /**
1171   * Returns a new InetAddress that is one less than the passed in address. This method works for
1172   * both IPv4 and IPv6 addresses.
1173   *
1174   * @param address the InetAddress to decrement
1175   * @return a new InetAddress that is one less than the passed in address
1176   * @throws IllegalArgumentException if InetAddress is at the beginning of its range
1177   * @since 18.0
1178   */
1179  public static InetAddress decrement(InetAddress address) {
1180    byte[] addr = address.getAddress();
1181    int i = addr.length - 1;
1182    while (i >= 0 && addr[i] == (byte) 0x00) {
1183      addr[i] = (byte) 0xff;
1184      i--;
1185    }
1186
1187    checkArgument(i >= 0, "Decrementing %s would wrap.", address);
1188
1189    addr[i]--;
1190    return bytesToInetAddress(addr, null);
1191  }
1192
1193  /**
1194   * Returns a new InetAddress that is one more than the passed in address. This method works for
1195   * both IPv4 and IPv6 addresses.
1196   *
1197   * @param address the InetAddress to increment
1198   * @return a new InetAddress that is one more than the passed in address
1199   * @throws IllegalArgumentException if InetAddress is at the end of its range
1200   * @since 10.0
1201   */
1202  public static InetAddress increment(InetAddress address) {
1203    byte[] addr = address.getAddress();
1204    int i = addr.length - 1;
1205    while (i >= 0 && addr[i] == (byte) 0xff) {
1206      addr[i] = 0;
1207      i--;
1208    }
1209
1210    checkArgument(i >= 0, "Incrementing %s would wrap.", address);
1211
1212    addr[i]++;
1213    return bytesToInetAddress(addr, null);
1214  }
1215
1216  /**
1217   * Returns true if the InetAddress is either 255.255.255.255 for IPv4 or
1218   * ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff for IPv6.
1219   *
1220   * @return true if the InetAddress is either 255.255.255.255 for IPv4 or
1221   *     ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff for IPv6
1222   * @since 10.0
1223   */
1224  public static boolean isMaximum(InetAddress address) {
1225    byte[] addr = address.getAddress();
1226    for (byte b : addr) {
1227      if (b != (byte) 0xff) {
1228        return false;
1229      }
1230    }
1231    return true;
1232  }
1233
1234  private static IllegalArgumentException formatIllegalArgumentException(
1235      String format, Object... args) {
1236    return new IllegalArgumentException(String.format(Locale.ROOT, format, args));
1237  }
1238}