001/* 002 * Copyright (C) 2008 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 005 * in compliance with the License. You may obtain a copy of the License at 006 * 007 * http://www.apache.org/licenses/LICENSE-2.0 008 * 009 * Unless required by applicable law or agreed to in writing, software distributed under the License 010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express 011 * or implied. See the License for the specific language governing permissions and limitations under 012 * the License. 013 */ 014 015package com.google.common.net; 016 017import static com.google.common.base.Preconditions.checkArgument; 018import static com.google.common.base.Preconditions.checkNotNull; 019import static java.lang.Math.max; 020import static java.util.Objects.requireNonNull; 021 022import com.google.common.annotations.GwtIncompatible; 023import com.google.common.annotations.J2ktIncompatible; 024import com.google.common.base.CharMatcher; 025import com.google.common.base.MoreObjects; 026import com.google.common.hash.Hashing; 027import com.google.common.io.ByteStreams; 028import com.google.common.primitives.Ints; 029import com.google.errorprone.annotations.CanIgnoreReturnValue; 030import java.math.BigInteger; 031import java.net.Inet4Address; 032import java.net.Inet6Address; 033import java.net.InetAddress; 034import java.net.NetworkInterface; 035import java.net.SocketException; 036import java.net.UnknownHostException; 037import java.nio.ByteBuffer; 038import java.util.Arrays; 039import java.util.Locale; 040import javax.annotation.CheckForNull; 041import org.checkerframework.checker.nullness.qual.Nullable; 042 043/** 044 * Static utility methods pertaining to {@link InetAddress} instances. 045 * 046 * <p><b>Important note:</b> Unlike {@code InetAddress.getByName()}, the methods of this class never 047 * cause DNS services to be accessed. For this reason, you should prefer these methods as much as 048 * possible over their JDK equivalents whenever you are expecting to handle only IP address string 049 * literals -- there is no blocking DNS penalty for a malformed string. 050 * 051 * <p>When dealing with {@link Inet4Address} and {@link Inet6Address} objects as byte arrays (vis. 052 * {@code InetAddress.getAddress()}) they are 4 and 16 bytes in length, respectively, and represent 053 * the address in network byte order. 054 * 055 * <p>Examples of IP addresses and their byte representations: 056 * 057 * <dl> 058 * <dt>The IPv4 loopback address, {@code "127.0.0.1"}. 059 * <dd>{@code 7f 00 00 01} 060 * <dt>The IPv6 loopback address, {@code "::1"}. 061 * <dd>{@code 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01} 062 * <dt>From the IPv6 reserved documentation prefix ({@code 2001:db8::/32}), {@code "2001:db8::1"}. 063 * <dd>{@code 20 01 0d b8 00 00 00 00 00 00 00 00 00 00 00 01} 064 * <dt>An IPv6 "IPv4 compatible" (or "compat") address, {@code "::192.168.0.1"}. 065 * <dd>{@code 00 00 00 00 00 00 00 00 00 00 00 00 c0 a8 00 01} 066 * <dt>An IPv6 "IPv4 mapped" address, {@code "::ffff:192.168.0.1"}. 067 * <dd>{@code 00 00 00 00 00 00 00 00 00 00 ff ff c0 a8 00 01} 068 * </dl> 069 * 070 * <p>A few notes about IPv6 "IPv4 mapped" addresses and their observed use in Java. 071 * 072 * <p>"IPv4 mapped" addresses were originally a representation of IPv4 addresses for use on an IPv6 073 * socket that could receive both IPv4 and IPv6 connections (by disabling the {@code IPV6_V6ONLY} 074 * socket option on an IPv6 socket). Yes, it's confusing. Nevertheless, these "mapped" addresses 075 * were never supposed to be seen on the wire. That assumption was dropped, some say mistakenly, in 076 * later RFCs with the apparent aim of making IPv4-to-IPv6 transition simpler. 077 * 078 * <p>Technically one <i>can</i> create a 128bit IPv6 address with the wire format of a "mapped" 079 * address, as shown above, and transmit it in an IPv6 packet header. However, Java's InetAddress 080 * creation methods appear to adhere doggedly to the original intent of the "mapped" address: all 081 * "mapped" addresses return {@link Inet4Address} objects. 082 * 083 * <p>For added safety, it is common for IPv6 network operators to filter all packets where either 084 * the source or destination address appears to be a "compat" or "mapped" address. Filtering 085 * suggestions usually recommend discarding any packets with source or destination addresses in the 086 * invalid range {@code ::/3}, which includes both of these bizarre address formats. For more 087 * information on "bogons", including lists of IPv6 bogon space, see: 088 * 089 * <ul> 090 * <li><a target="_parent" 091 * href="http://en.wikipedia.org/wiki/Bogon_filtering">http://en.wikipedia. 092 * org/wiki/Bogon_filtering</a> 093 * <li><a target="_parent" 094 * href="http://www.cymru.com/Bogons/ipv6.txt">http://www.cymru.com/Bogons/ ipv6.txt</a> 095 * <li><a target="_parent" href="http://www.cymru.com/Bogons/v6bogon.html">http://www.cymru.com/ 096 * Bogons/v6bogon.html</a> 097 * <li><a target="_parent" href="http://www.space.net/~gert/RIPE/ipv6-filters.html">http://www. 098 * space.net/~gert/RIPE/ipv6-filters.html</a> 099 * </ul> 100 * 101 * @author Erik Kline 102 * @since 5.0 103 */ 104@J2ktIncompatible 105@GwtIncompatible 106@ElementTypesAreNonnullByDefault 107public final class InetAddresses { 108 private static final int IPV4_PART_COUNT = 4; 109 private static final int IPV6_PART_COUNT = 8; 110 private static final char IPV4_DELIMITER = '.'; 111 private static final char IPV6_DELIMITER = ':'; 112 private static final CharMatcher IPV4_DELIMITER_MATCHER = CharMatcher.is(IPV4_DELIMITER); 113 private static final CharMatcher IPV6_DELIMITER_MATCHER = CharMatcher.is(IPV6_DELIMITER); 114 private static final Inet4Address LOOPBACK4 = (Inet4Address) forString("127.0.0.1"); 115 private static final Inet4Address ANY4 = (Inet4Address) forString("0.0.0.0"); 116 117 private InetAddresses() {} 118 119 /** 120 * Returns an {@link Inet4Address}, given a byte array representation of the IPv4 address. 121 * 122 * @param bytes byte array representing an IPv4 address (should be of length 4) 123 * @return {@link Inet4Address} corresponding to the supplied byte array 124 * @throws IllegalArgumentException if a valid {@link Inet4Address} can not be created 125 */ 126 private static Inet4Address getInet4Address(byte[] bytes) { 127 checkArgument( 128 bytes.length == 4, 129 "Byte array has invalid length for an IPv4 address: %s != 4.", 130 bytes.length); 131 132 // Given a 4-byte array, this cast should always succeed. 133 return (Inet4Address) bytesToInetAddress(bytes, null); 134 } 135 136 /** 137 * Returns the {@link InetAddress} having the given string representation. 138 * 139 * <p>This deliberately avoids all nameservice lookups (e.g. no DNS). 140 * 141 * <p>This method accepts non-ASCII digits, for example {@code "192.168.0.1"} (those are fullwidth 142 * characters). That is consistent with {@link InetAddress}, but not with various RFCs. If you 143 * want to accept ASCII digits only, you can use something like {@code 144 * CharMatcher.ascii().matchesAllOf(ipString)}. 145 * 146 * <p>The scope ID is validated against the interfaces on the machine, which requires permissions 147 * under Android. 148 * 149 * <p><b>Android users on API >= 29:</b> Prefer {@code InetAddresses.parseNumericAddress}. 150 * 151 * @param ipString {@code String} containing an IPv4 or IPv6 string literal, e.g. {@code 152 * "192.168.0.1"} or {@code "2001:db8::1"} or with a scope ID, e.g. {@code "2001:db8::1%eth0"} 153 * @return {@link InetAddress} representing the argument 154 * @throws IllegalArgumentException if the argument is not a valid IP string literal or if the 155 * address has a scope ID that fails validation against the interfaces on the machine (as 156 * required by Java's {@link InetAddress}) 157 */ 158 @CanIgnoreReturnValue // TODO(b/219820829): consider removing 159 public static InetAddress forString(String ipString) { 160 Scope scope = new Scope(); 161 byte[] addr = ipStringToBytes(ipString, scope); 162 163 // The argument was malformed, i.e. not an IP string literal. 164 if (addr == null) { 165 throw formatIllegalArgumentException("'%s' is not an IP string literal.", ipString); 166 } 167 168 return bytesToInetAddress(addr, scope.scope); 169 } 170 171 /** 172 * Returns {@code true} if the supplied string is a valid IP string literal, {@code false} 173 * otherwise. 174 * 175 * <p>This method accepts non-ASCII digits, for example {@code "192.168.0.1"} (those are fullwidth 176 * characters). That is consistent with {@link InetAddress}, but not with various RFCs. If you 177 * want to accept ASCII digits only, you can use something like {@code 178 * CharMatcher.ascii().matchesAllOf(ipString)}. 179 * 180 * <p>Note that if this method returns {@code true}, a call to {@link #forString(String)} can 181 * still throw if the address has a scope ID that fails validation against the interfaces on the 182 * machine. 183 * 184 * @param ipString {@code String} to evaluated as an IP string literal 185 * @return {@code true} if the argument is a valid IP string literal 186 */ 187 public static boolean isInetAddress(String ipString) { 188 return ipStringToBytes(ipString, null) != null; 189 } 190 191 private static final class Scope { 192 private String scope; 193 } 194 195 /** Returns {@code null} if unable to parse into a {@code byte[]}. */ 196 @CheckForNull 197 private static byte[] ipStringToBytes(String ipStringParam, @Nullable Scope scope) { 198 String ipString = ipStringParam; 199 // Make a first pass to categorize the characters in this string. 200 boolean hasColon = false; 201 boolean hasDot = false; 202 int percentIndex = -1; 203 for (int i = 0; i < ipString.length(); i++) { 204 char c = ipString.charAt(i); 205 if (c == '.') { 206 hasDot = true; 207 } else if (c == ':') { 208 if (hasDot) { 209 return null; // Colons must not appear after dots. 210 } 211 hasColon = true; 212 } else if (c == '%') { 213 percentIndex = i; 214 break; 215 } else if (Character.digit(c, 16) == -1) { 216 return null; // Everything else must be a decimal or hex digit. 217 } 218 } 219 220 // Now decide which address family to parse. 221 if (hasColon) { 222 if (hasDot) { 223 ipString = convertDottedQuadToHex(ipString); 224 if (ipString == null) { 225 return null; 226 } 227 } 228 if (percentIndex != -1) { 229 if (scope != null) { 230 scope.scope = ipString.substring(percentIndex + 1); 231 } 232 ipString = ipString.substring(0, percentIndex); 233 } 234 return textToNumericFormatV6(ipString); 235 } else if (hasDot) { 236 if (percentIndex != -1) { 237 return null; // Scope IDs are not supported for IPV4 238 } 239 return textToNumericFormatV4(ipString); 240 } 241 return null; 242 } 243 244 @CheckForNull 245 private static byte[] textToNumericFormatV4(String ipString) { 246 if (IPV4_DELIMITER_MATCHER.countIn(ipString) + 1 != IPV4_PART_COUNT) { 247 return null; // Wrong number of parts 248 } 249 250 byte[] bytes = new byte[IPV4_PART_COUNT]; 251 int start = 0; 252 // Iterate through the parts of the ip string. 253 // Invariant: start is always the beginning of an octet. 254 for (int i = 0; i < IPV4_PART_COUNT; i++) { 255 int end = ipString.indexOf(IPV4_DELIMITER, start); 256 if (end == -1) { 257 end = ipString.length(); 258 } 259 try { 260 bytes[i] = parseOctet(ipString, start, end); 261 } catch (NumberFormatException ex) { 262 return null; 263 } 264 start = end + 1; 265 } 266 267 return bytes; 268 } 269 270 @CheckForNull 271 private static byte[] textToNumericFormatV6(String ipString) { 272 // An address can have [2..8] colons. 273 int delimiterCount = IPV6_DELIMITER_MATCHER.countIn(ipString); 274 if (delimiterCount < 2 || delimiterCount > IPV6_PART_COUNT) { 275 return null; 276 } 277 int partsSkipped = IPV6_PART_COUNT - (delimiterCount + 1); // estimate; may be modified later 278 boolean hasSkip = false; 279 // Scan for the appearance of ::, to mark a skip-format IPV6 string and adjust the partsSkipped 280 // estimate. 281 for (int i = 0; i < ipString.length() - 1; i++) { 282 if (ipString.charAt(i) == IPV6_DELIMITER && ipString.charAt(i + 1) == IPV6_DELIMITER) { 283 if (hasSkip) { 284 return null; // Can't have more than one :: 285 } 286 hasSkip = true; 287 partsSkipped++; // :: means we skipped an extra part in between the two delimiters. 288 if (i == 0) { 289 partsSkipped++; // Begins with ::, so we skipped the part preceding the first : 290 } 291 if (i == ipString.length() - 2) { 292 partsSkipped++; // Ends with ::, so we skipped the part after the last : 293 } 294 } 295 } 296 if (ipString.charAt(0) == IPV6_DELIMITER && ipString.charAt(1) != IPV6_DELIMITER) { 297 return null; // ^: requires ^:: 298 } 299 if (ipString.charAt(ipString.length() - 1) == IPV6_DELIMITER 300 && ipString.charAt(ipString.length() - 2) != IPV6_DELIMITER) { 301 return null; // :$ requires ::$ 302 } 303 if (hasSkip && partsSkipped <= 0) { 304 return null; // :: must expand to at least one '0' 305 } 306 if (!hasSkip && delimiterCount + 1 != IPV6_PART_COUNT) { 307 return null; // Incorrect number of parts 308 } 309 310 ByteBuffer rawBytes = ByteBuffer.allocate(2 * IPV6_PART_COUNT); 311 try { 312 // Iterate through the parts of the ip string. 313 // Invariant: start is always the beginning of a hextet, or the second ':' of the skip 314 // sequence "::" 315 int start = 0; 316 if (ipString.charAt(0) == IPV6_DELIMITER) { 317 start = 1; 318 } 319 while (start < ipString.length()) { 320 int end = ipString.indexOf(IPV6_DELIMITER, start); 321 if (end == -1) { 322 end = ipString.length(); 323 } 324 if (ipString.charAt(start) == IPV6_DELIMITER) { 325 // expand zeroes 326 for (int i = 0; i < partsSkipped; i++) { 327 rawBytes.putShort((short) 0); 328 } 329 330 } else { 331 rawBytes.putShort(parseHextet(ipString, start, end)); 332 } 333 start = end + 1; 334 } 335 } catch (NumberFormatException ex) { 336 return null; 337 } 338 return rawBytes.array(); 339 } 340 341 @CheckForNull 342 private static String convertDottedQuadToHex(String ipString) { 343 int lastColon = ipString.lastIndexOf(':'); 344 String initialPart = ipString.substring(0, lastColon + 1); 345 String dottedQuad = ipString.substring(lastColon + 1); 346 byte[] quad = textToNumericFormatV4(dottedQuad); 347 if (quad == null) { 348 return null; 349 } 350 String penultimate = Integer.toHexString(((quad[0] & 0xff) << 8) | (quad[1] & 0xff)); 351 String ultimate = Integer.toHexString(((quad[2] & 0xff) << 8) | (quad[3] & 0xff)); 352 return initialPart + penultimate + ":" + ultimate; 353 } 354 355 private static byte parseOctet(String ipString, int start, int end) { 356 // Note: we already verified that this string contains only hex digits, but the string may still 357 // contain non-decimal characters. 358 int length = end - start; 359 if (length <= 0 || length > 3) { 360 throw new NumberFormatException(); 361 } 362 // Disallow leading zeroes, because no clear standard exists on 363 // whether these should be interpreted as decimal or octal. 364 if (length > 1 && ipString.charAt(start) == '0') { 365 throw new NumberFormatException(); 366 } 367 int octet = 0; 368 for (int i = start; i < end; i++) { 369 octet *= 10; 370 int digit = Character.digit(ipString.charAt(i), 10); 371 if (digit < 0) { 372 throw new NumberFormatException(); 373 } 374 octet += digit; 375 } 376 if (octet > 255) { 377 throw new NumberFormatException(); 378 } 379 return (byte) octet; 380 } 381 382 /** Returns a -1 if unable to parse */ 383 private static int tryParseDecimal(String string, int start, int end) { 384 int decimal = 0; 385 final int max = Integer.MAX_VALUE / 10; // for int overflow detection 386 for (int i = start; i < end; i++) { 387 if (decimal > max) { 388 return -1; 389 } 390 decimal *= 10; 391 int digit = Character.digit(string.charAt(i), 10); 392 if (digit < 0) { 393 return -1; 394 } 395 decimal += digit; 396 } 397 return decimal; 398 } 399 400 // Parse a hextet out of the ipString from start (inclusive) to end (exclusive) 401 private static short parseHextet(String ipString, int start, int end) { 402 // Note: we already verified that this string contains only hex digits. 403 int length = end - start; 404 if (length <= 0 || length > 4) { 405 throw new NumberFormatException(); 406 } 407 int hextet = 0; 408 for (int i = start; i < end; i++) { 409 hextet = hextet << 4; 410 hextet |= Character.digit(ipString.charAt(i), 16); 411 } 412 return (short) hextet; 413 } 414 415 /** 416 * Convert a byte array into an InetAddress. 417 * 418 * <p>{@link InetAddress#getByAddress} is documented as throwing a checked exception "if IP 419 * address is of illegal length." We replace it with an unchecked exception, for use by callers 420 * who already know that addr is an array of length 4 or 16. 421 * 422 * @param addr the raw 4-byte or 16-byte IP address in big-endian order 423 * @return an InetAddress object created from the raw IP address 424 */ 425 private static InetAddress bytesToInetAddress(byte[] addr, @Nullable String scope) { 426 try { 427 InetAddress address = InetAddress.getByAddress(addr); 428 if (scope == null) { 429 return address; 430 } 431 checkArgument( 432 address instanceof Inet6Address, "Unexpected state, scope should only appear for ipv6"); 433 Inet6Address v6Address = (Inet6Address) address; 434 int interfaceIndex = tryParseDecimal(scope, 0, scope.length()); 435 if (interfaceIndex != -1) { 436 return Inet6Address.getByAddress( 437 v6Address.getHostAddress(), v6Address.getAddress(), interfaceIndex); 438 } 439 try { 440 NetworkInterface asInterface = NetworkInterface.getByName(scope); 441 if (asInterface == null) { 442 throw formatIllegalArgumentException("No such interface: '%s'", scope); 443 } 444 return Inet6Address.getByAddress( 445 v6Address.getHostAddress(), v6Address.getAddress(), asInterface); 446 } catch (SocketException | UnknownHostException e) { 447 throw new IllegalArgumentException("No such interface: " + scope, e); 448 } 449 } catch (UnknownHostException e) { 450 throw new AssertionError(e); 451 } 452 } 453 454 /** 455 * Returns the string representation of an {@link InetAddress}. 456 * 457 * <p>For IPv4 addresses, this is identical to {@link InetAddress#getHostAddress()}, but for IPv6 458 * addresses, the output follows <a href="http://tools.ietf.org/html/rfc5952">RFC 5952</a> section 459 * 4. The main difference is that this method uses "::" for zero compression, while Java's version 460 * uses the uncompressed form (except on Android, where the zero compression is also done). The 461 * other difference is that this method outputs any scope ID in the format that it was provided at 462 * creation time, while Android may always output it as an interface name, even if it was supplied 463 * as a numeric ID. 464 * 465 * <p>This method uses hexadecimal for all IPv6 addresses, including IPv4-mapped IPv6 addresses 466 * such as "::c000:201". 467 * 468 * @param ip {@link InetAddress} to be converted to an address string 469 * @return {@code String} containing the text-formatted IP address 470 * @since 10.0 471 */ 472 public static String toAddrString(InetAddress ip) { 473 checkNotNull(ip); 474 if (ip instanceof Inet4Address) { 475 // For IPv4, Java's formatting is good enough. 476 // requireNonNull accommodates Android's @RecentlyNullable annotation on getHostAddress 477 return requireNonNull(ip.getHostAddress()); 478 } 479 byte[] bytes = ip.getAddress(); 480 int[] hextets = new int[IPV6_PART_COUNT]; 481 for (int i = 0; i < hextets.length; i++) { 482 hextets[i] = Ints.fromBytes((byte) 0, (byte) 0, bytes[2 * i], bytes[2 * i + 1]); 483 } 484 compressLongestRunOfZeroes(hextets); 485 486 return hextetsToIPv6String(hextets) + scopeWithDelimiter((Inet6Address) ip); 487 } 488 489 private static String scopeWithDelimiter(Inet6Address ip) { 490 // getHostAddress on android sometimes maps the scope ID to an invalid interface name; if the 491 // mapped interface isn't present, fallback to use the scope ID (which has no validation against 492 // present interfaces) 493 NetworkInterface scopedInterface = ip.getScopedInterface(); 494 if (scopedInterface != null) { 495 return "%" + scopedInterface.getName(); 496 } 497 int scope = ip.getScopeId(); 498 if (scope != 0) { 499 return "%" + scope; 500 } 501 return ""; 502 } 503 504 /** 505 * Identify and mark the longest run of zeroes in an IPv6 address. 506 * 507 * <p>Only runs of two or more hextets are considered. In case of a tie, the leftmost run wins. If 508 * a qualifying run is found, its hextets are replaced by the sentinel value -1. 509 * 510 * @param hextets {@code int[]} mutable array of eight 16-bit hextets 511 */ 512 private static void compressLongestRunOfZeroes(int[] hextets) { 513 int bestRunStart = -1; 514 int bestRunLength = -1; 515 int runStart = -1; 516 for (int i = 0; i < hextets.length + 1; i++) { 517 if (i < hextets.length && hextets[i] == 0) { 518 if (runStart < 0) { 519 runStart = i; 520 } 521 } else if (runStart >= 0) { 522 int runLength = i - runStart; 523 if (runLength > bestRunLength) { 524 bestRunStart = runStart; 525 bestRunLength = runLength; 526 } 527 runStart = -1; 528 } 529 } 530 if (bestRunLength >= 2) { 531 Arrays.fill(hextets, bestRunStart, bestRunStart + bestRunLength, -1); 532 } 533 } 534 535 /** 536 * Convert a list of hextets into a human-readable IPv6 address. 537 * 538 * <p>In order for "::" compression to work, the input should contain negative sentinel values in 539 * place of the elided zeroes. 540 * 541 * @param hextets {@code int[]} array of eight 16-bit hextets, or -1s 542 */ 543 private static String hextetsToIPv6String(int[] hextets) { 544 // While scanning the array, handle these state transitions: 545 // start->num => "num" start->gap => "::" 546 // num->num => ":num" num->gap => "::" 547 // gap->num => "num" gap->gap => "" 548 StringBuilder buf = new StringBuilder(39); 549 boolean lastWasNumber = false; 550 for (int i = 0; i < hextets.length; i++) { 551 boolean thisIsNumber = hextets[i] >= 0; 552 if (thisIsNumber) { 553 if (lastWasNumber) { 554 buf.append(':'); 555 } 556 buf.append(Integer.toHexString(hextets[i])); 557 } else { 558 if (i == 0 || lastWasNumber) { 559 buf.append("::"); 560 } 561 } 562 lastWasNumber = thisIsNumber; 563 } 564 return buf.toString(); 565 } 566 567 /** 568 * Returns the string representation of an {@link InetAddress} suitable for inclusion in a URI. 569 * 570 * <p>For IPv4 addresses, this is identical to {@link InetAddress#getHostAddress()}, but for IPv6 571 * addresses it compresses zeroes and surrounds the text with square brackets; for example {@code 572 * "[2001:db8::1]"}. 573 * 574 * <p>Per section 3.2.2 of <a target="_parent" 575 * href="http://tools.ietf.org/html/rfc3986#section-3.2.2">RFC 3986</a>, a URI containing an IPv6 576 * string literal is of the form {@code "http://[2001:db8::1]:8888/index.html"}. 577 * 578 * <p>Use of either {@link InetAddresses#toAddrString}, {@link InetAddress#getHostAddress()}, or 579 * this method is recommended over {@link InetAddress#toString()} when an IP address string 580 * literal is desired. This is because {@link InetAddress#toString()} prints the hostname and the 581 * IP address string joined by a "/". 582 * 583 * @param ip {@link InetAddress} to be converted to URI string literal 584 * @return {@code String} containing URI-safe string literal 585 */ 586 public static String toUriString(InetAddress ip) { 587 if (ip instanceof Inet6Address) { 588 return "[" + toAddrString(ip) + "]"; 589 } 590 return toAddrString(ip); 591 } 592 593 /** 594 * Returns an InetAddress representing the literal IPv4 or IPv6 host portion of a URL, encoded in 595 * the format specified by RFC 3986 section 3.2.2. 596 * 597 * <p>This method is similar to {@link InetAddresses#forString(String)}, however, it requires that 598 * IPv6 addresses are surrounded by square brackets. 599 * 600 * <p>This method is the inverse of {@link InetAddresses#toUriString(java.net.InetAddress)}. 601 * 602 * <p>This method accepts non-ASCII digits, for example {@code "192.168.0.1"} (those are fullwidth 603 * characters). That is consistent with {@link InetAddress}, but not with various RFCs. If you 604 * want to accept ASCII digits only, you can use something like {@code 605 * CharMatcher.ascii().matchesAllOf(ipString)}. 606 * 607 * @param hostAddr an RFC 3986 section 3.2.2 encoded IPv4 or IPv6 address 608 * @return an InetAddress representing the address in {@code hostAddr} 609 * @throws IllegalArgumentException if {@code hostAddr} is not a valid IPv4 address, or IPv6 610 * address surrounded by square brackets, or if the address has a scope ID that fails 611 * validation against the interfaces on the machine (as required by Java's {@link 612 * InetAddress}) 613 */ 614 public static InetAddress forUriString(String hostAddr) { 615 InetAddress addr = forUriStringOrNull(hostAddr, /* parseScope= */ true); 616 if (addr == null) { 617 throw formatIllegalArgumentException("Not a valid URI IP literal: '%s'", hostAddr); 618 } 619 620 return addr; 621 } 622 623 @CheckForNull 624 private static InetAddress forUriStringOrNull(String hostAddr, boolean parseScope) { 625 checkNotNull(hostAddr); 626 627 // Decide if this should be an IPv6 or IPv4 address. 628 String ipString; 629 int expectBytes; 630 if (hostAddr.startsWith("[") && hostAddr.endsWith("]")) { 631 ipString = hostAddr.substring(1, hostAddr.length() - 1); 632 expectBytes = 16; 633 } else { 634 ipString = hostAddr; 635 expectBytes = 4; 636 } 637 638 // Parse the address, and make sure the length/version is correct. 639 Scope scope = parseScope ? new Scope() : null; 640 byte[] addr = ipStringToBytes(ipString, scope); 641 if (addr == null || addr.length != expectBytes) { 642 return null; 643 } 644 645 return bytesToInetAddress(addr, (scope != null) ? scope.scope : null); 646 } 647 648 /** 649 * Returns {@code true} if the supplied string is a valid URI IP string literal, {@code false} 650 * otherwise. 651 * 652 * <p>This method accepts non-ASCII digits, for example {@code "192.168.0.1"} (those are fullwidth 653 * characters). That is consistent with {@link InetAddress}, but not with various RFCs. If you 654 * want to accept ASCII digits only, you can use something like {@code 655 * CharMatcher.ascii().matchesAllOf(ipString)}. 656 * 657 * <p>Note that if this method returns {@code true}, a call to {@link #forUriString(String)} can 658 * still throw if the address has a scope ID that fails validation against the interfaces on the 659 * machine. 660 * 661 * @param ipString {@code String} to evaluated as an IP URI host string literal 662 * @return {@code true} if the argument is a valid IP URI host 663 */ 664 public static boolean isUriInetAddress(String ipString) { 665 return forUriStringOrNull(ipString, /* parseScope= */ false) != null; 666 } 667 668 /** 669 * Evaluates whether the argument is an IPv6 "compat" address. 670 * 671 * <p>An "IPv4 compatible", or "compat", address is one with 96 leading bits of zero, with the 672 * remaining 32 bits interpreted as an IPv4 address. These are conventionally represented in 673 * string literals as {@code "::192.168.0.1"}, though {@code "::c0a8:1"} is also considered an 674 * IPv4 compatible address (and equivalent to {@code "::192.168.0.1"}). 675 * 676 * <p>For more on IPv4 compatible addresses see section 2.5.5.1 of <a target="_parent" 677 * href="http://tools.ietf.org/html/rfc4291#section-2.5.5.1">RFC 4291</a>. 678 * 679 * <p>NOTE: This method is different from {@link Inet6Address#isIPv4CompatibleAddress} in that it 680 * more correctly classifies {@code "::"} and {@code "::1"} as proper IPv6 addresses (which they 681 * are), NOT IPv4 compatible addresses (which they are generally NOT considered to be). 682 * 683 * @param ip {@link Inet6Address} to be examined for embedded IPv4 compatible address format 684 * @return {@code true} if the argument is a valid "compat" address 685 */ 686 public static boolean isCompatIPv4Address(Inet6Address ip) { 687 if (!ip.isIPv4CompatibleAddress()) { 688 return false; 689 } 690 691 byte[] bytes = ip.getAddress(); 692 if ((bytes[12] == 0) 693 && (bytes[13] == 0) 694 && (bytes[14] == 0) 695 && ((bytes[15] == 0) || (bytes[15] == 1))) { 696 return false; 697 } 698 699 return true; 700 } 701 702 /** 703 * Returns the IPv4 address embedded in an IPv4 compatible address. 704 * 705 * @param ip {@link Inet6Address} to be examined for an embedded IPv4 address 706 * @return {@link Inet4Address} of the embedded IPv4 address 707 * @throws IllegalArgumentException if the argument is not a valid IPv4 compatible address 708 */ 709 public static Inet4Address getCompatIPv4Address(Inet6Address ip) { 710 checkArgument( 711 isCompatIPv4Address(ip), "Address '%s' is not IPv4-compatible.", toAddrString(ip)); 712 713 return getInet4Address(Arrays.copyOfRange(ip.getAddress(), 12, 16)); 714 } 715 716 /** 717 * Evaluates whether the argument is a 6to4 address. 718 * 719 * <p>6to4 addresses begin with the {@code "2002::/16"} prefix. The next 32 bits are the IPv4 720 * address of the host to which IPv6-in-IPv4 tunneled packets should be routed. 721 * 722 * <p>For more on 6to4 addresses see section 2 of <a target="_parent" 723 * href="http://tools.ietf.org/html/rfc3056#section-2">RFC 3056</a>. 724 * 725 * @param ip {@link Inet6Address} to be examined for 6to4 address format 726 * @return {@code true} if the argument is a 6to4 address 727 */ 728 public static boolean is6to4Address(Inet6Address ip) { 729 byte[] bytes = ip.getAddress(); 730 return (bytes[0] == (byte) 0x20) && (bytes[1] == (byte) 0x02); 731 } 732 733 /** 734 * Returns the IPv4 address embedded in a 6to4 address. 735 * 736 * @param ip {@link Inet6Address} to be examined for embedded IPv4 in 6to4 address 737 * @return {@link Inet4Address} of embedded IPv4 in 6to4 address 738 * @throws IllegalArgumentException if the argument is not a valid IPv6 6to4 address 739 */ 740 public static Inet4Address get6to4IPv4Address(Inet6Address ip) { 741 checkArgument(is6to4Address(ip), "Address '%s' is not a 6to4 address.", toAddrString(ip)); 742 743 return getInet4Address(Arrays.copyOfRange(ip.getAddress(), 2, 6)); 744 } 745 746 /** 747 * A simple immutable data class to encapsulate the information to be found in a Teredo address. 748 * 749 * <p>All of the fields in this class are encoded in various portions of the IPv6 address as part 750 * of the protocol. More protocols details can be found at: <a target="_parent" 751 * href="http://en.wikipedia.org/wiki/Teredo_tunneling">http://en.wikipedia. 752 * org/wiki/Teredo_tunneling</a>. 753 * 754 * <p>The RFC can be found here: <a target="_parent" href="http://tools.ietf.org/html/rfc4380">RFC 755 * 4380</a>. 756 * 757 * @since 5.0 758 */ 759 public static final class TeredoInfo { 760 private final Inet4Address server; 761 private final Inet4Address client; 762 private final int port; 763 private final int flags; 764 765 /** 766 * Constructs a TeredoInfo instance. 767 * 768 * <p>Both server and client can be {@code null}, in which case the value {@code "0.0.0.0"} will 769 * be assumed. 770 * 771 * @throws IllegalArgumentException if either of the {@code port} or the {@code flags} arguments 772 * are out of range of an unsigned short 773 */ 774 // TODO: why is this public? 775 public TeredoInfo( 776 @CheckForNull Inet4Address server, @CheckForNull Inet4Address client, int port, int flags) { 777 checkArgument( 778 (port >= 0) && (port <= 0xffff), "port '%s' is out of range (0 <= port <= 0xffff)", port); 779 checkArgument( 780 (flags >= 0) && (flags <= 0xffff), 781 "flags '%s' is out of range (0 <= flags <= 0xffff)", 782 flags); 783 784 this.server = MoreObjects.firstNonNull(server, ANY4); 785 this.client = MoreObjects.firstNonNull(client, ANY4); 786 this.port = port; 787 this.flags = flags; 788 } 789 790 public Inet4Address getServer() { 791 return server; 792 } 793 794 public Inet4Address getClient() { 795 return client; 796 } 797 798 public int getPort() { 799 return port; 800 } 801 802 public int getFlags() { 803 return flags; 804 } 805 } 806 807 /** 808 * Evaluates whether the argument is a Teredo address. 809 * 810 * <p>Teredo addresses begin with the {@code "2001::/32"} prefix. 811 * 812 * @param ip {@link Inet6Address} to be examined for Teredo address format 813 * @return {@code true} if the argument is a Teredo address 814 */ 815 public static boolean isTeredoAddress(Inet6Address ip) { 816 byte[] bytes = ip.getAddress(); 817 return (bytes[0] == (byte) 0x20) 818 && (bytes[1] == (byte) 0x01) 819 && (bytes[2] == 0) 820 && (bytes[3] == 0); 821 } 822 823 /** 824 * Returns the Teredo information embedded in a Teredo address. 825 * 826 * @param ip {@link Inet6Address} to be examined for embedded Teredo information 827 * @return extracted {@code TeredoInfo} 828 * @throws IllegalArgumentException if the argument is not a valid IPv6 Teredo address 829 */ 830 public static TeredoInfo getTeredoInfo(Inet6Address ip) { 831 checkArgument(isTeredoAddress(ip), "Address '%s' is not a Teredo address.", toAddrString(ip)); 832 833 byte[] bytes = ip.getAddress(); 834 Inet4Address server = getInet4Address(Arrays.copyOfRange(bytes, 4, 8)); 835 836 int flags = ByteStreams.newDataInput(bytes, 8).readShort() & 0xffff; 837 838 // Teredo obfuscates the mapped client port, per section 4 of the RFC. 839 int port = ~ByteStreams.newDataInput(bytes, 10).readShort() & 0xffff; 840 841 byte[] clientBytes = Arrays.copyOfRange(bytes, 12, 16); 842 for (int i = 0; i < clientBytes.length; i++) { 843 // Teredo obfuscates the mapped client IP, per section 4 of the RFC. 844 clientBytes[i] = (byte) ~clientBytes[i]; 845 } 846 Inet4Address client = getInet4Address(clientBytes); 847 848 return new TeredoInfo(server, client, port, flags); 849 } 850 851 /** 852 * Evaluates whether the argument is an ISATAP address. 853 * 854 * <p>From RFC 5214: "ISATAP interface identifiers are constructed in Modified EUI-64 format [...] 855 * by concatenating the 24-bit IANA OUI (00-00-5E), the 8-bit hexadecimal value 0xFE, and a 32-bit 856 * IPv4 address in network byte order [...]" 857 * 858 * <p>For more on ISATAP addresses see section 6.1 of <a target="_parent" 859 * href="http://tools.ietf.org/html/rfc5214#section-6.1">RFC 5214</a>. 860 * 861 * @param ip {@link Inet6Address} to be examined for ISATAP address format 862 * @return {@code true} if the argument is an ISATAP address 863 */ 864 public static boolean isIsatapAddress(Inet6Address ip) { 865 866 // If it's a Teredo address with the right port (41217, or 0xa101) 867 // which would be encoded as 0x5efe then it can't be an ISATAP address. 868 if (isTeredoAddress(ip)) { 869 return false; 870 } 871 872 byte[] bytes = ip.getAddress(); 873 874 if ((bytes[8] | (byte) 0x03) != (byte) 0x03) { 875 876 // Verify that high byte of the 64 bit identifier is zero, modulo 877 // the U/L and G bits, with which we are not concerned. 878 return false; 879 } 880 881 return (bytes[9] == (byte) 0x00) && (bytes[10] == (byte) 0x5e) && (bytes[11] == (byte) 0xfe); 882 } 883 884 /** 885 * Returns the IPv4 address embedded in an ISATAP address. 886 * 887 * @param ip {@link Inet6Address} to be examined for embedded IPv4 in ISATAP address 888 * @return {@link Inet4Address} of embedded IPv4 in an ISATAP address 889 * @throws IllegalArgumentException if the argument is not a valid IPv6 ISATAP address 890 */ 891 public static Inet4Address getIsatapIPv4Address(Inet6Address ip) { 892 checkArgument(isIsatapAddress(ip), "Address '%s' is not an ISATAP address.", toAddrString(ip)); 893 894 return getInet4Address(Arrays.copyOfRange(ip.getAddress(), 12, 16)); 895 } 896 897 /** 898 * Examines the Inet6Address to determine if it is an IPv6 address of one of the specified address 899 * types that contain an embedded IPv4 address. 900 * 901 * <p>NOTE: ISATAP addresses are explicitly excluded from this method due to their trivial 902 * spoofability. With other transition addresses spoofing involves (at least) infection of one's 903 * BGP routing table. 904 * 905 * @param ip {@link Inet6Address} to be examined for embedded IPv4 client address 906 * @return {@code true} if there is an embedded IPv4 client address 907 * @since 7.0 908 */ 909 public static boolean hasEmbeddedIPv4ClientAddress(Inet6Address ip) { 910 return isCompatIPv4Address(ip) || is6to4Address(ip) || isTeredoAddress(ip); 911 } 912 913 /** 914 * Examines the Inet6Address to extract the embedded IPv4 client address if the InetAddress is an 915 * IPv6 address of one of the specified address types that contain an embedded IPv4 address. 916 * 917 * <p>NOTE: ISATAP addresses are explicitly excluded from this method due to their trivial 918 * spoofability. With other transition addresses spoofing involves (at least) infection of one's 919 * BGP routing table. 920 * 921 * @param ip {@link Inet6Address} to be examined for embedded IPv4 client address 922 * @return {@link Inet4Address} of embedded IPv4 client address 923 * @throws IllegalArgumentException if the argument does not have a valid embedded IPv4 address 924 */ 925 public static Inet4Address getEmbeddedIPv4ClientAddress(Inet6Address ip) { 926 if (isCompatIPv4Address(ip)) { 927 return getCompatIPv4Address(ip); 928 } 929 930 if (is6to4Address(ip)) { 931 return get6to4IPv4Address(ip); 932 } 933 934 if (isTeredoAddress(ip)) { 935 return getTeredoInfo(ip).getClient(); 936 } 937 938 throw formatIllegalArgumentException("'%s' has no embedded IPv4 address.", toAddrString(ip)); 939 } 940 941 /** 942 * Evaluates whether the argument is an "IPv4 mapped" IPv6 address. 943 * 944 * <p>An "IPv4 mapped" address is anything in the range ::ffff:0:0/96 (sometimes written as 945 * ::ffff:0.0.0.0/96), with the last 32 bits interpreted as an IPv4 address. 946 * 947 * <p>For more on IPv4 mapped addresses see section 2.5.5.2 of <a target="_parent" 948 * href="http://tools.ietf.org/html/rfc4291#section-2.5.5.2">RFC 4291</a>. 949 * 950 * <p>Note: This method takes a {@code String} argument because {@link InetAddress} automatically 951 * collapses mapped addresses to IPv4. (It is actually possible to avoid this using one of the 952 * obscure {@link Inet6Address} methods, but it would be unwise to depend on such a 953 * poorly-documented feature.) 954 * 955 * <p>This method accepts non-ASCII digits. That is consistent with {@link InetAddress}, but not 956 * with various RFCs. If you want to accept ASCII digits only, you can use something like {@code 957 * CharMatcher.ascii().matchesAllOf(ipString)}. 958 * 959 * @param ipString {@code String} to be examined for embedded IPv4-mapped IPv6 address format 960 * @return {@code true} if the argument is a valid "mapped" address 961 * @since 10.0 962 */ 963 public static boolean isMappedIPv4Address(String ipString) { 964 byte[] bytes = ipStringToBytes(ipString, null); 965 if (bytes != null && bytes.length == 16) { 966 for (int i = 0; i < 10; i++) { 967 if (bytes[i] != 0) { 968 return false; 969 } 970 } 971 for (int i = 10; i < 12; i++) { 972 if (bytes[i] != (byte) 0xff) { 973 return false; 974 } 975 } 976 return true; 977 } 978 return false; 979 } 980 981 /** 982 * Coerces an IPv6 address into an IPv4 address. 983 * 984 * <p>HACK: As long as applications continue to use IPv4 addresses for indexing into tables, 985 * accounting, et cetera, it may be necessary to <b>coerce</b> IPv6 addresses into IPv4 addresses. 986 * This method does so by hashing 64 bits of the IPv6 address into {@code 224.0.0.0/3} (64 bits 987 * into 29 bits): 988 * 989 * <ul> 990 * <li>If the IPv6 address contains an embedded IPv4 address, the function hashes that. 991 * <li>Otherwise, it hashes the upper 64 bits of the IPv6 address. 992 * </ul> 993 * 994 * <p>A "coerced" IPv4 address is equivalent to itself. 995 * 996 * <p>NOTE: This method is failsafe for security purposes: ALL IPv6 addresses (except localhost 997 * (::1)) are hashed to avoid the security risk associated with extracting an embedded IPv4 998 * address that might permit elevated privileges. 999 * 1000 * @param ip {@link InetAddress} to "coerce" 1001 * @return {@link Inet4Address} represented "coerced" address 1002 * @since 7.0 1003 */ 1004 public static Inet4Address getCoercedIPv4Address(InetAddress ip) { 1005 if (ip instanceof Inet4Address) { 1006 return (Inet4Address) ip; 1007 } 1008 1009 // Special cases: 1010 byte[] bytes = ip.getAddress(); 1011 boolean leadingBytesOfZero = true; 1012 for (int i = 0; i < 15; ++i) { 1013 if (bytes[i] != 0) { 1014 leadingBytesOfZero = false; 1015 break; 1016 } 1017 } 1018 if (leadingBytesOfZero && (bytes[15] == 1)) { 1019 return LOOPBACK4; // ::1 1020 } else if (leadingBytesOfZero && (bytes[15] == 0)) { 1021 return ANY4; // ::0 1022 } 1023 1024 Inet6Address ip6 = (Inet6Address) ip; 1025 long addressAsLong = 0; 1026 if (hasEmbeddedIPv4ClientAddress(ip6)) { 1027 addressAsLong = getEmbeddedIPv4ClientAddress(ip6).hashCode(); 1028 } else { 1029 // Just extract the high 64 bits (assuming the rest is user-modifiable). 1030 addressAsLong = ByteBuffer.wrap(ip6.getAddress(), 0, 8).getLong(); 1031 } 1032 1033 // Many strategies for hashing are possible. This might suffice for now. 1034 int coercedHash = Hashing.murmur3_32_fixed().hashLong(addressAsLong).asInt(); 1035 1036 // Squash into 224/4 Multicast and 240/4 Reserved space (i.e. 224/3). 1037 coercedHash |= 0xe0000000; 1038 1039 // Fixup to avoid some "illegal" values. Currently the only potential 1040 // illegal value is 255.255.255.255. 1041 if (coercedHash == 0xffffffff) { 1042 coercedHash = 0xfffffffe; 1043 } 1044 1045 return getInet4Address(Ints.toByteArray(coercedHash)); 1046 } 1047 1048 /** 1049 * Returns an integer representing an IPv4 address regardless of whether the supplied argument is 1050 * an IPv4 address or not. 1051 * 1052 * <p>IPv6 addresses are <b>coerced</b> to IPv4 addresses before being converted to integers. 1053 * 1054 * <p>As long as there are applications that assume that all IP addresses are IPv4 addresses and 1055 * can therefore be converted safely to integers (for whatever purpose) this function can be used 1056 * to handle IPv6 addresses as well until the application is suitably fixed. 1057 * 1058 * <p>NOTE: an IPv6 address coerced to an IPv4 address can only be used for such purposes as 1059 * rudimentary identification or indexing into a collection of real {@link InetAddress}es. They 1060 * cannot be used as real addresses for the purposes of network communication. 1061 * 1062 * @param ip {@link InetAddress} to convert 1063 * @return {@code int}, "coerced" if ip is not an IPv4 address 1064 * @since 7.0 1065 */ 1066 public static int coerceToInteger(InetAddress ip) { 1067 return ByteStreams.newDataInput(getCoercedIPv4Address(ip).getAddress()).readInt(); 1068 } 1069 1070 /** 1071 * Returns a BigInteger representing the address. 1072 * 1073 * <p>Unlike {@code coerceToInteger}, IPv6 addresses are not coerced to IPv4 addresses. 1074 * 1075 * @param address {@link InetAddress} to convert 1076 * @return {@code BigInteger} representation of the address 1077 * @since 28.2 1078 */ 1079 public static BigInteger toBigInteger(InetAddress address) { 1080 return new BigInteger(1, address.getAddress()); 1081 } 1082 1083 /** 1084 * Returns an Inet4Address having the integer value specified by the argument. 1085 * 1086 * @param address {@code int}, the 32bit integer address to be converted 1087 * @return {@link Inet4Address} equivalent of the argument 1088 */ 1089 public static Inet4Address fromInteger(int address) { 1090 return getInet4Address(Ints.toByteArray(address)); 1091 } 1092 1093 /** 1094 * Returns the {@code Inet4Address} corresponding to a given {@code BigInteger}. 1095 * 1096 * @param address BigInteger representing the IPv4 address 1097 * @return Inet4Address representation of the given BigInteger 1098 * @throws IllegalArgumentException if the BigInteger is not between 0 and 2^32-1 1099 * @since 28.2 1100 */ 1101 public static Inet4Address fromIPv4BigInteger(BigInteger address) { 1102 return (Inet4Address) fromBigInteger(address, false); 1103 } 1104 /** 1105 * Returns the {@code Inet6Address} corresponding to a given {@code BigInteger}. 1106 * 1107 * @param address BigInteger representing the IPv6 address 1108 * @return Inet6Address representation of the given BigInteger 1109 * @throws IllegalArgumentException if the BigInteger is not between 0 and 2^128-1 1110 * @since 28.2 1111 */ 1112 public static Inet6Address fromIPv6BigInteger(BigInteger address) { 1113 return (Inet6Address) fromBigInteger(address, true); 1114 } 1115 1116 /** 1117 * Converts a BigInteger to either an IPv4 or IPv6 address. If the IP is IPv4, it must be 1118 * constrained to 32 bits, otherwise it is constrained to 128 bits. 1119 * 1120 * @param address the address represented as a big integer 1121 * @param isIpv6 whether the created address should be IPv4 or IPv6 1122 * @return the BigInteger converted to an address 1123 * @throws IllegalArgumentException if the BigInteger is not between 0 and maximum value for IPv4 1124 * or IPv6 respectively 1125 */ 1126 private static InetAddress fromBigInteger(BigInteger address, boolean isIpv6) { 1127 checkArgument(address.signum() >= 0, "BigInteger must be greater than or equal to 0"); 1128 1129 int numBytes = isIpv6 ? 16 : 4; 1130 1131 byte[] addressBytes = address.toByteArray(); 1132 byte[] targetCopyArray = new byte[numBytes]; 1133 1134 int srcPos = max(0, addressBytes.length - numBytes); 1135 int copyLength = addressBytes.length - srcPos; 1136 int destPos = numBytes - copyLength; 1137 1138 // Check the extra bytes in the BigInteger are all zero. 1139 for (int i = 0; i < srcPos; i++) { 1140 if (addressBytes[i] != 0x00) { 1141 throw formatIllegalArgumentException( 1142 "BigInteger cannot be converted to InetAddress because it has more than %d" 1143 + " bytes: %s", 1144 numBytes, address); 1145 } 1146 } 1147 1148 // Copy the bytes into the least significant positions. 1149 System.arraycopy(addressBytes, srcPos, targetCopyArray, destPos, copyLength); 1150 1151 try { 1152 return InetAddress.getByAddress(targetCopyArray); 1153 } catch (UnknownHostException impossible) { 1154 throw new AssertionError(impossible); 1155 } 1156 } 1157 1158 /** 1159 * Returns an address from a <b>little-endian ordered</b> byte array (the opposite of what {@link 1160 * InetAddress#getByAddress} expects). 1161 * 1162 * <p>IPv4 address byte array must be 4 bytes long and IPv6 byte array must be 16 bytes long. 1163 * 1164 * @param addr the raw IP address in little-endian byte order 1165 * @return an InetAddress object created from the raw IP address 1166 * @throws UnknownHostException if IP address is of illegal length 1167 */ 1168 public static InetAddress fromLittleEndianByteArray(byte[] addr) throws UnknownHostException { 1169 byte[] reversed = new byte[addr.length]; 1170 for (int i = 0; i < addr.length; i++) { 1171 reversed[i] = addr[addr.length - i - 1]; 1172 } 1173 return InetAddress.getByAddress(reversed); 1174 } 1175 1176 /** 1177 * Returns a new InetAddress that is one less than the passed in address. This method works for 1178 * both IPv4 and IPv6 addresses. 1179 * 1180 * @param address the InetAddress to decrement 1181 * @return a new InetAddress that is one less than the passed in address 1182 * @throws IllegalArgumentException if InetAddress is at the beginning of its range 1183 * @since 18.0 1184 */ 1185 public static InetAddress decrement(InetAddress address) { 1186 byte[] addr = address.getAddress(); 1187 int i = addr.length - 1; 1188 while (i >= 0 && addr[i] == (byte) 0x00) { 1189 addr[i] = (byte) 0xff; 1190 i--; 1191 } 1192 1193 checkArgument(i >= 0, "Decrementing %s would wrap.", address); 1194 1195 addr[i]--; 1196 return bytesToInetAddress(addr, null); 1197 } 1198 1199 /** 1200 * Returns a new InetAddress that is one more than the passed in address. This method works for 1201 * both IPv4 and IPv6 addresses. 1202 * 1203 * @param address the InetAddress to increment 1204 * @return a new InetAddress that is one more than the passed in address 1205 * @throws IllegalArgumentException if InetAddress is at the end of its range 1206 * @since 10.0 1207 */ 1208 public static InetAddress increment(InetAddress address) { 1209 byte[] addr = address.getAddress(); 1210 int i = addr.length - 1; 1211 while (i >= 0 && addr[i] == (byte) 0xff) { 1212 addr[i] = 0; 1213 i--; 1214 } 1215 1216 checkArgument(i >= 0, "Incrementing %s would wrap.", address); 1217 1218 addr[i]++; 1219 return bytesToInetAddress(addr, null); 1220 } 1221 1222 /** 1223 * Returns true if the InetAddress is either 255.255.255.255 for IPv4 or 1224 * ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff for IPv6. 1225 * 1226 * @return true if the InetAddress is either 255.255.255.255 for IPv4 or 1227 * ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff for IPv6 1228 * @since 10.0 1229 */ 1230 public static boolean isMaximum(InetAddress address) { 1231 byte[] addr = address.getAddress(); 1232 for (byte b : addr) { 1233 if (b != (byte) 0xff) { 1234 return false; 1235 } 1236 } 1237 return true; 1238 } 1239 1240 private static IllegalArgumentException formatIllegalArgumentException( 1241 String format, Object... args) { 1242 return new IllegalArgumentException(String.format(Locale.ROOT, format, args)); 1243 } 1244}