001/*
002 * Copyright (C) 2011 The Guava Authors
003 *
004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
005 * in compliance with the License. You may obtain a copy of the License at
006 *
007 * http://www.apache.org/licenses/LICENSE-2.0
008 *
009 * Unless required by applicable law or agreed to in writing, software distributed under the License
010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
011 * or implied. See the License for the specific language governing permissions and limitations under
012 * the License.
013 */
014
015package com.google.common.math;
016
017import static com.google.common.base.Preconditions.checkArgument;
018import static com.google.common.base.Preconditions.checkNotNull;
019import static com.google.common.math.MathPreconditions.checkNonNegative;
020import static com.google.common.math.MathPreconditions.checkPositive;
021import static com.google.common.math.MathPreconditions.checkRoundingUnnecessary;
022import static java.math.RoundingMode.CEILING;
023import static java.math.RoundingMode.FLOOR;
024import static java.math.RoundingMode.HALF_EVEN;
025
026import com.google.common.annotations.GwtCompatible;
027import com.google.common.annotations.GwtIncompatible;
028import com.google.common.annotations.VisibleForTesting;
029import java.math.BigDecimal;
030import java.math.BigInteger;
031import java.math.RoundingMode;
032import java.util.ArrayList;
033import java.util.List;
034
035/**
036 * A class for arithmetic on values of type {@code BigInteger}.
037 *
038 * <p>The implementations of many methods in this class are based on material from Henry S. Warren,
039 * Jr.'s <i>Hacker's Delight</i>, (Addison Wesley, 2002).
040 *
041 * <p>Similar functionality for {@code int} and for {@code long} can be found in {@link IntMath} and
042 * {@link LongMath} respectively.
043 *
044 * @author Louis Wasserman
045 * @since 11.0
046 */
047@GwtCompatible(emulated = true)
048public final class BigIntegerMath {
049  /**
050   * Returns the smallest power of two greater than or equal to {@code x}. This is equivalent to
051   * {@code BigInteger.valueOf(2).pow(log2(x, CEILING))}.
052   *
053   * @throws IllegalArgumentException if {@code x <= 0}
054   * @since 20.0
055   */
056  public static BigInteger ceilingPowerOfTwo(BigInteger x) {
057    return BigInteger.ZERO.setBit(log2(x, CEILING));
058  }
059
060  /**
061   * Returns the largest power of two less than or equal to {@code x}. This is equivalent to {@code
062   * BigInteger.valueOf(2).pow(log2(x, FLOOR))}.
063   *
064   * @throws IllegalArgumentException if {@code x <= 0}
065   * @since 20.0
066   */
067  public static BigInteger floorPowerOfTwo(BigInteger x) {
068    return BigInteger.ZERO.setBit(log2(x, FLOOR));
069  }
070
071  /** Returns {@code true} if {@code x} represents a power of two. */
072  public static boolean isPowerOfTwo(BigInteger x) {
073    checkNotNull(x);
074    return x.signum() > 0 && x.getLowestSetBit() == x.bitLength() - 1;
075  }
076
077  /**
078   * Returns the base-2 logarithm of {@code x}, rounded according to the specified rounding mode.
079   *
080   * @throws IllegalArgumentException if {@code x <= 0}
081   * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and {@code x}
082   *     is not a power of two
083   */
084  @SuppressWarnings("fallthrough")
085  // TODO(kevinb): remove after this warning is disabled globally
086  public static int log2(BigInteger x, RoundingMode mode) {
087    checkPositive("x", checkNotNull(x));
088    int logFloor = x.bitLength() - 1;
089    switch (mode) {
090      case UNNECESSARY:
091        checkRoundingUnnecessary(isPowerOfTwo(x)); // fall through
092      case DOWN:
093      case FLOOR:
094        return logFloor;
095
096      case UP:
097      case CEILING:
098        return isPowerOfTwo(x) ? logFloor : logFloor + 1;
099
100      case HALF_DOWN:
101      case HALF_UP:
102      case HALF_EVEN:
103        if (logFloor < SQRT2_PRECOMPUTE_THRESHOLD) {
104          BigInteger halfPower =
105              SQRT2_PRECOMPUTED_BITS.shiftRight(SQRT2_PRECOMPUTE_THRESHOLD - logFloor);
106          if (x.compareTo(halfPower) <= 0) {
107            return logFloor;
108          } else {
109            return logFloor + 1;
110          }
111        }
112        // Since sqrt(2) is irrational, log2(x) - logFloor cannot be exactly 0.5
113        //
114        // To determine which side of logFloor.5 the logarithm is,
115        // we compare x^2 to 2^(2 * logFloor + 1).
116        BigInteger x2 = x.pow(2);
117        int logX2Floor = x2.bitLength() - 1;
118        return (logX2Floor < 2 * logFloor + 1) ? logFloor : logFloor + 1;
119    }
120    throw new AssertionError();
121  }
122
123  /*
124   * The maximum number of bits in a square root for which we'll precompute an explicit half power
125   * of two. This can be any value, but higher values incur more class load time and linearly
126   * increasing memory consumption.
127   */
128  @VisibleForTesting static final int SQRT2_PRECOMPUTE_THRESHOLD = 256;
129
130  @VisibleForTesting
131  static final BigInteger SQRT2_PRECOMPUTED_BITS =
132      new BigInteger("16a09e667f3bcc908b2fb1366ea957d3e3adec17512775099da2f590b0667322a", 16);
133
134  /**
135   * Returns the base-10 logarithm of {@code x}, rounded according to the specified rounding mode.
136   *
137   * @throws IllegalArgumentException if {@code x <= 0}
138   * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and {@code x}
139   *     is not a power of ten
140   */
141  @GwtIncompatible // TODO
142  @SuppressWarnings("fallthrough")
143  public static int log10(BigInteger x, RoundingMode mode) {
144    checkPositive("x", x);
145    if (fitsInLong(x)) {
146      return LongMath.log10(x.longValue(), mode);
147    }
148
149    int approxLog10 = (int) (log2(x, FLOOR) * LN_2 / LN_10);
150    BigInteger approxPow = BigInteger.TEN.pow(approxLog10);
151    int approxCmp = approxPow.compareTo(x);
152
153    /*
154     * We adjust approxLog10 and approxPow until they're equal to floor(log10(x)) and
155     * 10^floor(log10(x)).
156     */
157
158    if (approxCmp > 0) {
159      /*
160       * The code is written so that even completely incorrect approximations will still yield the
161       * correct answer eventually, but in practice this branch should almost never be entered, and
162       * even then the loop should not run more than once.
163       */
164      do {
165        approxLog10--;
166        approxPow = approxPow.divide(BigInteger.TEN);
167        approxCmp = approxPow.compareTo(x);
168      } while (approxCmp > 0);
169    } else {
170      BigInteger nextPow = BigInteger.TEN.multiply(approxPow);
171      int nextCmp = nextPow.compareTo(x);
172      while (nextCmp <= 0) {
173        approxLog10++;
174        approxPow = nextPow;
175        approxCmp = nextCmp;
176        nextPow = BigInteger.TEN.multiply(approxPow);
177        nextCmp = nextPow.compareTo(x);
178      }
179    }
180
181    int floorLog = approxLog10;
182    BigInteger floorPow = approxPow;
183    int floorCmp = approxCmp;
184
185    switch (mode) {
186      case UNNECESSARY:
187        checkRoundingUnnecessary(floorCmp == 0);
188        // fall through
189      case FLOOR:
190      case DOWN:
191        return floorLog;
192
193      case CEILING:
194      case UP:
195        return floorPow.equals(x) ? floorLog : floorLog + 1;
196
197      case HALF_DOWN:
198      case HALF_UP:
199      case HALF_EVEN:
200        // Since sqrt(10) is irrational, log10(x) - floorLog can never be exactly 0.5
201        BigInteger x2 = x.pow(2);
202        BigInteger halfPowerSquared = floorPow.pow(2).multiply(BigInteger.TEN);
203        return (x2.compareTo(halfPowerSquared) <= 0) ? floorLog : floorLog + 1;
204    }
205    throw new AssertionError();
206  }
207
208  private static final double LN_10 = Math.log(10);
209  private static final double LN_2 = Math.log(2);
210
211  /**
212   * Returns the square root of {@code x}, rounded with the specified rounding mode.
213   *
214   * @throws IllegalArgumentException if {@code x < 0}
215   * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and {@code
216   *     sqrt(x)} is not an integer
217   */
218  @GwtIncompatible // TODO
219  @SuppressWarnings("fallthrough")
220  public static BigInteger sqrt(BigInteger x, RoundingMode mode) {
221    checkNonNegative("x", x);
222    if (fitsInLong(x)) {
223      return BigInteger.valueOf(LongMath.sqrt(x.longValue(), mode));
224    }
225    BigInteger sqrtFloor = sqrtFloor(x);
226    switch (mode) {
227      case UNNECESSARY:
228        checkRoundingUnnecessary(sqrtFloor.pow(2).equals(x)); // fall through
229      case FLOOR:
230      case DOWN:
231        return sqrtFloor;
232      case CEILING:
233      case UP:
234        int sqrtFloorInt = sqrtFloor.intValue();
235        boolean sqrtFloorIsExact =
236            (sqrtFloorInt * sqrtFloorInt == x.intValue()) // fast check mod 2^32
237                && sqrtFloor.pow(2).equals(x); // slow exact check
238        return sqrtFloorIsExact ? sqrtFloor : sqrtFloor.add(BigInteger.ONE);
239      case HALF_DOWN:
240      case HALF_UP:
241      case HALF_EVEN:
242        BigInteger halfSquare = sqrtFloor.pow(2).add(sqrtFloor);
243        /*
244         * We wish to test whether or not x <= (sqrtFloor + 0.5)^2 = halfSquare + 0.25. Since both x
245         * and halfSquare are integers, this is equivalent to testing whether or not x <=
246         * halfSquare.
247         */
248        return (halfSquare.compareTo(x) >= 0) ? sqrtFloor : sqrtFloor.add(BigInteger.ONE);
249    }
250    throw new AssertionError();
251  }
252
253  @GwtIncompatible // TODO
254  private static BigInteger sqrtFloor(BigInteger x) {
255    /*
256     * Adapted from Hacker's Delight, Figure 11-1.
257     *
258     * Using DoubleUtils.bigToDouble, getting a double approximation of x is extremely fast, and
259     * then we can get a double approximation of the square root. Then, we iteratively improve this
260     * guess with an application of Newton's method, which sets guess := (guess + (x / guess)) / 2.
261     * This iteration has the following two properties:
262     *
263     * a) every iteration (except potentially the first) has guess >= floor(sqrt(x)). This is
264     * because guess' is the arithmetic mean of guess and x / guess, sqrt(x) is the geometric mean,
265     * and the arithmetic mean is always higher than the geometric mean.
266     *
267     * b) this iteration converges to floor(sqrt(x)). In fact, the number of correct digits doubles
268     * with each iteration, so this algorithm takes O(log(digits)) iterations.
269     *
270     * We start out with a double-precision approximation, which may be higher or lower than the
271     * true value. Therefore, we perform at least one Newton iteration to get a guess that's
272     * definitely >= floor(sqrt(x)), and then continue the iteration until we reach a fixed point.
273     */
274    BigInteger sqrt0;
275    int log2 = log2(x, FLOOR);
276    if (log2 < Double.MAX_EXPONENT) {
277      sqrt0 = sqrtApproxWithDoubles(x);
278    } else {
279      int shift = (log2 - DoubleUtils.SIGNIFICAND_BITS) & ~1; // even!
280      /*
281       * We have that x / 2^shift < 2^54. Our initial approximation to sqrtFloor(x) will be
282       * 2^(shift/2) * sqrtApproxWithDoubles(x / 2^shift).
283       */
284      sqrt0 = sqrtApproxWithDoubles(x.shiftRight(shift)).shiftLeft(shift >> 1);
285    }
286    BigInteger sqrt1 = sqrt0.add(x.divide(sqrt0)).shiftRight(1);
287    if (sqrt0.equals(sqrt1)) {
288      return sqrt0;
289    }
290    do {
291      sqrt0 = sqrt1;
292      sqrt1 = sqrt0.add(x.divide(sqrt0)).shiftRight(1);
293    } while (sqrt1.compareTo(sqrt0) < 0);
294    return sqrt0;
295  }
296
297  @GwtIncompatible // TODO
298  private static BigInteger sqrtApproxWithDoubles(BigInteger x) {
299    return DoubleMath.roundToBigInteger(Math.sqrt(DoubleUtils.bigToDouble(x)), HALF_EVEN);
300  }
301
302  /**
303   * Returns {@code x}, rounded to a {@code double} with the specified rounding mode. If {@code x}
304   * is precisely representable as a {@code double}, its {@code double} value will be returned;
305   * otherwise, the rounding will choose between the two nearest representable values with {@code
306   * mode}.
307   *
308   * <p>For the case of {@link RoundingMode#HALF_DOWN}, {@code HALF_UP}, and {@code HALF_EVEN},
309   * infinite {@code double} values are considered infinitely far away. For example, 2^2000 is not
310   * representable as a double, but {@code roundToDouble(BigInteger.valueOf(2).pow(2000), HALF_UP)}
311   * will return {@code Double.MAX_VALUE}, not {@code Double.POSITIVE_INFINITY}.
312   *
313   * <p>For the case of {@link RoundingMode#HALF_EVEN}, this implementation uses the IEEE 754
314   * default rounding mode: if the two nearest representable values are equally near, the one with
315   * the least significant bit zero is chosen. (In such cases, both of the nearest representable
316   * values are even integers; this method returns the one that is a multiple of a greater power of
317   * two.)
318   *
319   * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and {@code x}
320   *     is not precisely representable as a {@code double}
321   * @since 30.0
322   */
323  @GwtIncompatible
324  public static double roundToDouble(BigInteger x, RoundingMode mode) {
325    return BigIntegerToDoubleRounder.INSTANCE.roundToDouble(x, mode);
326  }
327
328  @GwtIncompatible
329  private static class BigIntegerToDoubleRounder extends ToDoubleRounder<BigInteger> {
330    static final BigIntegerToDoubleRounder INSTANCE = new BigIntegerToDoubleRounder();
331
332    private BigIntegerToDoubleRounder() {}
333
334    @Override
335    double roundToDoubleArbitrarily(BigInteger bigInteger) {
336      return DoubleUtils.bigToDouble(bigInteger);
337    }
338
339    @Override
340    int sign(BigInteger bigInteger) {
341      return bigInteger.signum();
342    }
343
344    @Override
345    BigInteger toX(double d, RoundingMode mode) {
346      return DoubleMath.roundToBigInteger(d, mode);
347    }
348
349    @Override
350    BigInteger minus(BigInteger a, BigInteger b) {
351      return a.subtract(b);
352    }
353  }
354
355  /**
356   * Returns the result of dividing {@code p} by {@code q}, rounding using the specified {@code
357   * RoundingMode}.
358   *
359   * @throws ArithmeticException if {@code q == 0}, or if {@code mode == UNNECESSARY} and {@code a}
360   *     is not an integer multiple of {@code b}
361   */
362  @GwtIncompatible // TODO
363  public static BigInteger divide(BigInteger p, BigInteger q, RoundingMode mode) {
364    BigDecimal pDec = new BigDecimal(p);
365    BigDecimal qDec = new BigDecimal(q);
366    return pDec.divide(qDec, 0, mode).toBigIntegerExact();
367  }
368
369  /**
370   * Returns {@code n!}, that is, the product of the first {@code n} positive integers, or {@code 1}
371   * if {@code n == 0}.
372   *
373   * <p><b>Warning:</b> the result takes <i>O(n log n)</i> space, so use cautiously.
374   *
375   * <p>This uses an efficient binary recursive algorithm to compute the factorial with balanced
376   * multiplies. It also removes all the 2s from the intermediate products (shifting them back in at
377   * the end).
378   *
379   * @throws IllegalArgumentException if {@code n < 0}
380   */
381  public static BigInteger factorial(int n) {
382    checkNonNegative("n", n);
383
384    // If the factorial is small enough, just use LongMath to do it.
385    if (n < LongMath.factorials.length) {
386      return BigInteger.valueOf(LongMath.factorials[n]);
387    }
388
389    // Pre-allocate space for our list of intermediate BigIntegers.
390    int approxSize = IntMath.divide(n * IntMath.log2(n, CEILING), Long.SIZE, CEILING);
391    ArrayList<BigInteger> bignums = new ArrayList<>(approxSize);
392
393    // Start from the pre-computed maximum long factorial.
394    int startingNumber = LongMath.factorials.length;
395    long product = LongMath.factorials[startingNumber - 1];
396    // Strip off 2s from this value.
397    int shift = Long.numberOfTrailingZeros(product);
398    product >>= shift;
399
400    // Use floor(log2(num)) + 1 to prevent overflow of multiplication.
401    int productBits = LongMath.log2(product, FLOOR) + 1;
402    int bits = LongMath.log2(startingNumber, FLOOR) + 1;
403    // Check for the next power of two boundary, to save us a CLZ operation.
404    int nextPowerOfTwo = 1 << (bits - 1);
405
406    // Iteratively multiply the longs as big as they can go.
407    for (long num = startingNumber; num <= n; num++) {
408      // Check to see if the floor(log2(num)) + 1 has changed.
409      if ((num & nextPowerOfTwo) != 0) {
410        nextPowerOfTwo <<= 1;
411        bits++;
412      }
413      // Get rid of the 2s in num.
414      int tz = Long.numberOfTrailingZeros(num);
415      long normalizedNum = num >> tz;
416      shift += tz;
417      // Adjust floor(log2(num)) + 1.
418      int normalizedBits = bits - tz;
419      // If it won't fit in a long, then we store off the intermediate product.
420      if (normalizedBits + productBits >= Long.SIZE) {
421        bignums.add(BigInteger.valueOf(product));
422        product = 1;
423        productBits = 0;
424      }
425      product *= normalizedNum;
426      productBits = LongMath.log2(product, FLOOR) + 1;
427    }
428    // Check for leftovers.
429    if (product > 1) {
430      bignums.add(BigInteger.valueOf(product));
431    }
432    // Efficiently multiply all the intermediate products together.
433    return listProduct(bignums).shiftLeft(shift);
434  }
435
436  static BigInteger listProduct(List<BigInteger> nums) {
437    return listProduct(nums, 0, nums.size());
438  }
439
440  static BigInteger listProduct(List<BigInteger> nums, int start, int end) {
441    switch (end - start) {
442      case 0:
443        return BigInteger.ONE;
444      case 1:
445        return nums.get(start);
446      case 2:
447        return nums.get(start).multiply(nums.get(start + 1));
448      case 3:
449        return nums.get(start).multiply(nums.get(start + 1)).multiply(nums.get(start + 2));
450      default:
451        // Otherwise, split the list in half and recursively do this.
452        int m = (end + start) >>> 1;
453        return listProduct(nums, start, m).multiply(listProduct(nums, m, end));
454    }
455  }
456
457  /**
458   * Returns {@code n} choose {@code k}, also known as the binomial coefficient of {@code n} and
459   * {@code k}, that is, {@code n! / (k! (n - k)!)}.
460   *
461   * <p><b>Warning:</b> the result can take as much as <i>O(k log n)</i> space.
462   *
463   * @throws IllegalArgumentException if {@code n < 0}, {@code k < 0}, or {@code k > n}
464   */
465  public static BigInteger binomial(int n, int k) {
466    checkNonNegative("n", n);
467    checkNonNegative("k", k);
468    checkArgument(k <= n, "k (%s) > n (%s)", k, n);
469    if (k > (n >> 1)) {
470      k = n - k;
471    }
472    if (k < LongMath.biggestBinomials.length && n <= LongMath.biggestBinomials[k]) {
473      return BigInteger.valueOf(LongMath.binomial(n, k));
474    }
475
476    BigInteger accum = BigInteger.ONE;
477
478    long numeratorAccum = n;
479    long denominatorAccum = 1;
480
481    int bits = LongMath.log2(n, CEILING);
482
483    int numeratorBits = bits;
484
485    for (int i = 1; i < k; i++) {
486      int p = n - i;
487      int q = i + 1;
488
489      // log2(p) >= bits - 1, because p >= n/2
490
491      if (numeratorBits + bits >= Long.SIZE - 1) {
492        // The numerator is as big as it can get without risking overflow.
493        // Multiply numeratorAccum / denominatorAccum into accum.
494        accum =
495            accum
496                .multiply(BigInteger.valueOf(numeratorAccum))
497                .divide(BigInteger.valueOf(denominatorAccum));
498        numeratorAccum = p;
499        denominatorAccum = q;
500        numeratorBits = bits;
501      } else {
502        // We can definitely multiply into the long accumulators without overflowing them.
503        numeratorAccum *= p;
504        denominatorAccum *= q;
505        numeratorBits += bits;
506      }
507    }
508    return accum
509        .multiply(BigInteger.valueOf(numeratorAccum))
510        .divide(BigInteger.valueOf(denominatorAccum));
511  }
512
513  // Returns true if BigInteger.valueOf(x.longValue()).equals(x).
514  @GwtIncompatible // TODO
515  static boolean fitsInLong(BigInteger x) {
516    return x.bitLength() <= Long.SIZE - 1;
517  }
518
519  private BigIntegerMath() {}
520}