001/* 002 * Copyright (C) 2014 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.graph; 018 019import static com.google.common.base.Preconditions.checkArgument; 020import static com.google.common.graph.GraphConstants.NODE_NOT_IN_GRAPH; 021import static java.util.Objects.requireNonNull; 022 023import com.google.common.annotations.Beta; 024import com.google.common.base.Objects; 025import com.google.common.collect.ImmutableSet; 026import com.google.common.collect.Iterables; 027import com.google.common.collect.Iterators; 028import com.google.common.collect.Maps; 029import com.google.errorprone.annotations.CanIgnoreReturnValue; 030import java.util.ArrayDeque; 031import java.util.Collection; 032import java.util.Deque; 033import java.util.HashSet; 034import java.util.Iterator; 035import java.util.Map; 036import java.util.Optional; 037import java.util.Queue; 038import java.util.Set; 039import javax.annotation.CheckForNull; 040 041/** 042 * Static utility methods for {@link Graph}, {@link ValueGraph}, and {@link Network} instances. 043 * 044 * @author James Sexton 045 * @author Joshua O'Madadhain 046 * @since 20.0 047 */ 048@Beta 049@ElementTypesAreNonnullByDefault 050public final class Graphs extends GraphsBridgeMethods { 051 052 private Graphs() {} 053 054 // Graph query methods 055 056 /** 057 * Returns true if {@code graph} has at least one cycle. A cycle is defined as a non-empty subset 058 * of edges in a graph arranged to form a path (a sequence of adjacent outgoing edges) starting 059 * and ending with the same node. 060 * 061 * <p>This method will detect any non-empty cycle, including self-loops (a cycle of length 1). 062 */ 063 public static <N> boolean hasCycle(Graph<N> graph) { 064 int numEdges = graph.edges().size(); 065 if (numEdges == 0) { 066 return false; // An edge-free graph is acyclic by definition. 067 } 068 if (!graph.isDirected() && numEdges >= graph.nodes().size()) { 069 return true; // Optimization for the undirected case: at least one cycle must exist. 070 } 071 072 Map<Object, NodeVisitState> visitedNodes = 073 Maps.newHashMapWithExpectedSize(graph.nodes().size()); 074 for (N node : graph.nodes()) { 075 if (subgraphHasCycle(graph, visitedNodes, node)) { 076 return true; 077 } 078 } 079 return false; 080 } 081 082 /** 083 * Returns true if {@code network} has at least one cycle. A cycle is defined as a non-empty 084 * subset of edges in a graph arranged to form a path (a sequence of adjacent outgoing edges) 085 * starting and ending with the same node. 086 * 087 * <p>This method will detect any non-empty cycle, including self-loops (a cycle of length 1). 088 */ 089 public static boolean hasCycle(Network<?, ?> network) { 090 // In a directed graph, parallel edges cannot introduce a cycle in an acyclic graph. 091 // However, in an undirected graph, any parallel edge induces a cycle in the graph. 092 if (!network.isDirected() 093 && network.allowsParallelEdges() 094 && network.edges().size() > network.asGraph().edges().size()) { 095 return true; 096 } 097 return hasCycle(network.asGraph()); 098 } 099 100 /** 101 * Performs a traversal of the nodes reachable from {@code startNode}. If we ever reach a node 102 * we've already visited (following only outgoing edges and without reusing edges), we know 103 * there's a cycle in the graph. 104 */ 105 private static <N> boolean subgraphHasCycle( 106 Graph<N> graph, Map<Object, NodeVisitState> visitedNodes, N startNode) { 107 Deque<NodeAndRemainingSuccessors<N>> stack = new ArrayDeque<>(); 108 stack.addLast(new NodeAndRemainingSuccessors<>(startNode)); 109 110 while (!stack.isEmpty()) { 111 // To peek at the top two items, we need to temporarily remove one. 112 NodeAndRemainingSuccessors<N> top = stack.removeLast(); 113 NodeAndRemainingSuccessors<N> prev = stack.peekLast(); 114 stack.addLast(top); 115 116 N node = top.node; 117 N previousNode = prev == null ? null : prev.node; 118 if (top.remainingSuccessors == null) { 119 NodeVisitState state = visitedNodes.get(node); 120 if (state == NodeVisitState.COMPLETE) { 121 stack.removeLast(); 122 continue; 123 } 124 if (state == NodeVisitState.PENDING) { 125 return true; 126 } 127 128 visitedNodes.put(node, NodeVisitState.PENDING); 129 top.remainingSuccessors = new ArrayDeque<>(graph.successors(node)); 130 } 131 132 if (!top.remainingSuccessors.isEmpty()) { 133 N nextNode = top.remainingSuccessors.remove(); 134 if (canTraverseWithoutReusingEdge(graph, nextNode, previousNode)) { 135 stack.addLast(new NodeAndRemainingSuccessors<>(nextNode)); 136 continue; 137 } 138 } 139 140 stack.removeLast(); 141 visitedNodes.put(node, NodeVisitState.COMPLETE); 142 } 143 return false; 144 } 145 146 private static final class NodeAndRemainingSuccessors<N> { 147 final N node; 148 149 /** 150 * The successors left to be visited, or {@code null} if we just added this {@code 151 * NodeAndRemainingSuccessors} instance to the stack. In the latter case, we'll compute the 152 * successors if we determine that we need them after we've performed the initial processing of 153 * the node. 154 */ 155 @CheckForNull Queue<N> remainingSuccessors; 156 157 NodeAndRemainingSuccessors(N node) { 158 this.node = node; 159 } 160 } 161 162 /** 163 * Determines whether an edge has already been used during traversal. In the directed case a cycle 164 * is always detected before reusing an edge, so no special logic is required. In the undirected 165 * case, we must take care not to "backtrack" over an edge (i.e. going from A to B and then going 166 * from B to A). 167 */ 168 private static boolean canTraverseWithoutReusingEdge( 169 Graph<?> graph, Object nextNode, @CheckForNull Object previousNode) { 170 if (graph.isDirected() || !Objects.equal(previousNode, nextNode)) { 171 return true; 172 } 173 // This falls into the undirected A->B->A case. The Graph interface does not support parallel 174 // edges, so this traversal would require reusing the undirected AB edge. 175 return false; 176 } 177 178 /** 179 * Returns the transitive closure of {@code graph}. The transitive closure of a graph is another 180 * graph with an edge connecting node A to node B if node B is {@link #reachableNodes(Graph, 181 * Object) reachable} from node A. 182 * 183 * <p>This is a "snapshot" based on the current topology of {@code graph}, rather than a live view 184 * of the transitive closure of {@code graph}. In other words, the returned {@link Graph} will not 185 * be updated after modifications to {@code graph}. 186 * 187 * @since 33.1.0 (present with return type {@code Graph} since 20.0) 188 */ 189 // TODO(b/31438252): Consider potential optimizations for this algorithm. 190 public static <N> ImmutableGraph<N> transitiveClosure(Graph<N> graph) { 191 ImmutableGraph.Builder<N> transitiveClosure = 192 GraphBuilder.from(graph).allowsSelfLoops(true).<N>immutable(); 193 // Every node is, at a minimum, reachable from itself. Since the resulting transitive closure 194 // will have no isolated nodes, we can skip adding nodes explicitly and let putEdge() do it. 195 196 if (graph.isDirected()) { 197 // Note: works for both directed and undirected graphs, but we only use in the directed case. 198 for (N node : graph.nodes()) { 199 for (N reachableNode : reachableNodes(graph, node)) { 200 transitiveClosure.putEdge(node, reachableNode); 201 } 202 } 203 } else { 204 // An optimization for the undirected case: for every node B reachable from node A, 205 // node A and node B have the same reachability set. 206 Set<N> visitedNodes = new HashSet<>(); 207 for (N node : graph.nodes()) { 208 if (!visitedNodes.contains(node)) { 209 Set<N> reachableNodes = reachableNodes(graph, node); 210 visitedNodes.addAll(reachableNodes); 211 int pairwiseMatch = 1; // start at 1 to include self-loops 212 for (N nodeU : reachableNodes) { 213 for (N nodeV : Iterables.limit(reachableNodes, pairwiseMatch++)) { 214 transitiveClosure.putEdge(nodeU, nodeV); 215 } 216 } 217 } 218 } 219 } 220 221 return transitiveClosure.build(); 222 } 223 224 /** 225 * Returns the set of nodes that are reachable from {@code node}. Node B is defined as reachable 226 * from node A if there exists a path (a sequence of adjacent outgoing edges) starting at node A 227 * and ending at node B. Note that a node is always reachable from itself via a zero-length path. 228 * 229 * <p>This is a "snapshot" based on the current topology of {@code graph}, rather than a live view 230 * of the set of nodes reachable from {@code node}. In other words, the returned {@link Set} will 231 * not be updated after modifications to {@code graph}. 232 * 233 * @throws IllegalArgumentException if {@code node} is not present in {@code graph} 234 * @since 33.1.0 (present with return type {@code Set} since 20.0) 235 */ 236 public static <N> ImmutableSet<N> reachableNodes(Graph<N> graph, N node) { 237 checkArgument(graph.nodes().contains(node), NODE_NOT_IN_GRAPH, node); 238 return ImmutableSet.copyOf(Traverser.forGraph(graph).breadthFirst(node)); 239 } 240 241 // Graph mutation methods 242 243 // Graph view methods 244 245 /** 246 * Returns a view of {@code graph} with the direction (if any) of every edge reversed. All other 247 * properties remain intact, and further updates to {@code graph} will be reflected in the view. 248 */ 249 public static <N> Graph<N> transpose(Graph<N> graph) { 250 if (!graph.isDirected()) { 251 return graph; // the transpose of an undirected graph is an identical graph 252 } 253 254 if (graph instanceof TransposedGraph) { 255 return ((TransposedGraph<N>) graph).graph; 256 } 257 258 return new TransposedGraph<>(graph); 259 } 260 261 /** 262 * Returns a view of {@code graph} with the direction (if any) of every edge reversed. All other 263 * properties remain intact, and further updates to {@code graph} will be reflected in the view. 264 */ 265 public static <N, V> ValueGraph<N, V> transpose(ValueGraph<N, V> graph) { 266 if (!graph.isDirected()) { 267 return graph; // the transpose of an undirected graph is an identical graph 268 } 269 270 if (graph instanceof TransposedValueGraph) { 271 return ((TransposedValueGraph<N, V>) graph).graph; 272 } 273 274 return new TransposedValueGraph<>(graph); 275 } 276 277 /** 278 * Returns a view of {@code network} with the direction (if any) of every edge reversed. All other 279 * properties remain intact, and further updates to {@code network} will be reflected in the view. 280 */ 281 public static <N, E> Network<N, E> transpose(Network<N, E> network) { 282 if (!network.isDirected()) { 283 return network; // the transpose of an undirected network is an identical network 284 } 285 286 if (network instanceof TransposedNetwork) { 287 return ((TransposedNetwork<N, E>) network).network; 288 } 289 290 return new TransposedNetwork<>(network); 291 } 292 293 static <N> EndpointPair<N> transpose(EndpointPair<N> endpoints) { 294 if (endpoints.isOrdered()) { 295 return EndpointPair.ordered(endpoints.target(), endpoints.source()); 296 } 297 return endpoints; 298 } 299 300 // NOTE: this should work as long as the delegate graph's implementation of edges() (like that of 301 // AbstractGraph) derives its behavior from calling successors(). 302 private static class TransposedGraph<N> extends ForwardingGraph<N> { 303 private final Graph<N> graph; 304 305 TransposedGraph(Graph<N> graph) { 306 this.graph = graph; 307 } 308 309 @Override 310 Graph<N> delegate() { 311 return graph; 312 } 313 314 @Override 315 public Set<N> predecessors(N node) { 316 return delegate().successors(node); // transpose 317 } 318 319 @Override 320 public Set<N> successors(N node) { 321 return delegate().predecessors(node); // transpose 322 } 323 324 @Override 325 public Set<EndpointPair<N>> incidentEdges(N node) { 326 return new IncidentEdgeSet<N>(this, node) { 327 @Override 328 public Iterator<EndpointPair<N>> iterator() { 329 return Iterators.transform( 330 delegate().incidentEdges(node).iterator(), 331 edge -> EndpointPair.of(delegate(), edge.nodeV(), edge.nodeU())); 332 } 333 }; 334 } 335 336 @Override 337 public int inDegree(N node) { 338 return delegate().outDegree(node); // transpose 339 } 340 341 @Override 342 public int outDegree(N node) { 343 return delegate().inDegree(node); // transpose 344 } 345 346 @Override 347 public boolean hasEdgeConnecting(N nodeU, N nodeV) { 348 return delegate().hasEdgeConnecting(nodeV, nodeU); // transpose 349 } 350 351 @Override 352 public boolean hasEdgeConnecting(EndpointPair<N> endpoints) { 353 return delegate().hasEdgeConnecting(transpose(endpoints)); 354 } 355 } 356 357 // NOTE: this should work as long as the delegate graph's implementation of edges() (like that of 358 // AbstractValueGraph) derives its behavior from calling successors(). 359 private static class TransposedValueGraph<N, V> extends ForwardingValueGraph<N, V> { 360 private final ValueGraph<N, V> graph; 361 362 TransposedValueGraph(ValueGraph<N, V> graph) { 363 this.graph = graph; 364 } 365 366 @Override 367 ValueGraph<N, V> delegate() { 368 return graph; 369 } 370 371 @Override 372 public Set<N> predecessors(N node) { 373 return delegate().successors(node); // transpose 374 } 375 376 @Override 377 public Set<N> successors(N node) { 378 return delegate().predecessors(node); // transpose 379 } 380 381 @Override 382 public int inDegree(N node) { 383 return delegate().outDegree(node); // transpose 384 } 385 386 @Override 387 public int outDegree(N node) { 388 return delegate().inDegree(node); // transpose 389 } 390 391 @Override 392 public boolean hasEdgeConnecting(N nodeU, N nodeV) { 393 return delegate().hasEdgeConnecting(nodeV, nodeU); // transpose 394 } 395 396 @Override 397 public boolean hasEdgeConnecting(EndpointPair<N> endpoints) { 398 return delegate().hasEdgeConnecting(transpose(endpoints)); 399 } 400 401 @Override 402 public Optional<V> edgeValue(N nodeU, N nodeV) { 403 return delegate().edgeValue(nodeV, nodeU); // transpose 404 } 405 406 @Override 407 public Optional<V> edgeValue(EndpointPair<N> endpoints) { 408 return delegate().edgeValue(transpose(endpoints)); 409 } 410 411 @Override 412 @CheckForNull 413 public V edgeValueOrDefault(N nodeU, N nodeV, @CheckForNull V defaultValue) { 414 return delegate().edgeValueOrDefault(nodeV, nodeU, defaultValue); // transpose 415 } 416 417 @Override 418 @CheckForNull 419 public V edgeValueOrDefault(EndpointPair<N> endpoints, @CheckForNull V defaultValue) { 420 return delegate().edgeValueOrDefault(transpose(endpoints), defaultValue); 421 } 422 } 423 424 private static class TransposedNetwork<N, E> extends ForwardingNetwork<N, E> { 425 private final Network<N, E> network; 426 427 TransposedNetwork(Network<N, E> network) { 428 this.network = network; 429 } 430 431 @Override 432 Network<N, E> delegate() { 433 return network; 434 } 435 436 @Override 437 public Set<N> predecessors(N node) { 438 return delegate().successors(node); // transpose 439 } 440 441 @Override 442 public Set<N> successors(N node) { 443 return delegate().predecessors(node); // transpose 444 } 445 446 @Override 447 public int inDegree(N node) { 448 return delegate().outDegree(node); // transpose 449 } 450 451 @Override 452 public int outDegree(N node) { 453 return delegate().inDegree(node); // transpose 454 } 455 456 @Override 457 public Set<E> inEdges(N node) { 458 return delegate().outEdges(node); // transpose 459 } 460 461 @Override 462 public Set<E> outEdges(N node) { 463 return delegate().inEdges(node); // transpose 464 } 465 466 @Override 467 public EndpointPair<N> incidentNodes(E edge) { 468 EndpointPair<N> endpointPair = delegate().incidentNodes(edge); 469 return EndpointPair.of(network, endpointPair.nodeV(), endpointPair.nodeU()); // transpose 470 } 471 472 @Override 473 public Set<E> edgesConnecting(N nodeU, N nodeV) { 474 return delegate().edgesConnecting(nodeV, nodeU); // transpose 475 } 476 477 @Override 478 public Set<E> edgesConnecting(EndpointPair<N> endpoints) { 479 return delegate().edgesConnecting(transpose(endpoints)); 480 } 481 482 @Override 483 public Optional<E> edgeConnecting(N nodeU, N nodeV) { 484 return delegate().edgeConnecting(nodeV, nodeU); // transpose 485 } 486 487 @Override 488 public Optional<E> edgeConnecting(EndpointPair<N> endpoints) { 489 return delegate().edgeConnecting(transpose(endpoints)); 490 } 491 492 @Override 493 @CheckForNull 494 public E edgeConnectingOrNull(N nodeU, N nodeV) { 495 return delegate().edgeConnectingOrNull(nodeV, nodeU); // transpose 496 } 497 498 @Override 499 @CheckForNull 500 public E edgeConnectingOrNull(EndpointPair<N> endpoints) { 501 return delegate().edgeConnectingOrNull(transpose(endpoints)); 502 } 503 504 @Override 505 public boolean hasEdgeConnecting(N nodeU, N nodeV) { 506 return delegate().hasEdgeConnecting(nodeV, nodeU); // transpose 507 } 508 509 @Override 510 public boolean hasEdgeConnecting(EndpointPair<N> endpoints) { 511 return delegate().hasEdgeConnecting(transpose(endpoints)); 512 } 513 } 514 515 // Graph copy methods 516 517 /** 518 * Returns the subgraph of {@code graph} induced by {@code nodes}. This subgraph is a new graph 519 * that contains all of the nodes in {@code nodes}, and all of the {@link Graph#edges() edges} 520 * from {@code graph} for which both nodes are contained by {@code nodes}. 521 * 522 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 523 */ 524 public static <N> MutableGraph<N> inducedSubgraph(Graph<N> graph, Iterable<? extends N> nodes) { 525 MutableGraph<N> subgraph = 526 (nodes instanceof Collection) 527 ? GraphBuilder.from(graph).expectedNodeCount(((Collection) nodes).size()).build() 528 : GraphBuilder.from(graph).build(); 529 for (N node : nodes) { 530 subgraph.addNode(node); 531 } 532 for (N node : subgraph.nodes()) { 533 for (N successorNode : graph.successors(node)) { 534 if (subgraph.nodes().contains(successorNode)) { 535 subgraph.putEdge(node, successorNode); 536 } 537 } 538 } 539 return subgraph; 540 } 541 542 /** 543 * Returns the subgraph of {@code graph} induced by {@code nodes}. This subgraph is a new graph 544 * that contains all of the nodes in {@code nodes}, and all of the {@link Graph#edges() edges} 545 * (and associated edge values) from {@code graph} for which both nodes are contained by {@code 546 * nodes}. 547 * 548 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 549 */ 550 public static <N, V> MutableValueGraph<N, V> inducedSubgraph( 551 ValueGraph<N, V> graph, Iterable<? extends N> nodes) { 552 MutableValueGraph<N, V> subgraph = 553 (nodes instanceof Collection) 554 ? ValueGraphBuilder.from(graph).expectedNodeCount(((Collection) nodes).size()).build() 555 : ValueGraphBuilder.from(graph).build(); 556 for (N node : nodes) { 557 subgraph.addNode(node); 558 } 559 for (N node : subgraph.nodes()) { 560 for (N successorNode : graph.successors(node)) { 561 if (subgraph.nodes().contains(successorNode)) { 562 // requireNonNull is safe because the endpoint pair comes from the graph. 563 subgraph.putEdgeValue( 564 node, 565 successorNode, 566 requireNonNull(graph.edgeValueOrDefault(node, successorNode, null))); 567 } 568 } 569 } 570 return subgraph; 571 } 572 573 /** 574 * Returns the subgraph of {@code network} induced by {@code nodes}. This subgraph is a new graph 575 * that contains all of the nodes in {@code nodes}, and all of the {@link Network#edges() edges} 576 * from {@code network} for which the {@link Network#incidentNodes(Object) incident nodes} are 577 * both contained by {@code nodes}. 578 * 579 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 580 */ 581 public static <N, E> MutableNetwork<N, E> inducedSubgraph( 582 Network<N, E> network, Iterable<? extends N> nodes) { 583 MutableNetwork<N, E> subgraph = 584 (nodes instanceof Collection) 585 ? NetworkBuilder.from(network).expectedNodeCount(((Collection) nodes).size()).build() 586 : NetworkBuilder.from(network).build(); 587 for (N node : nodes) { 588 subgraph.addNode(node); 589 } 590 for (N node : subgraph.nodes()) { 591 for (E edge : network.outEdges(node)) { 592 N successorNode = network.incidentNodes(edge).adjacentNode(node); 593 if (subgraph.nodes().contains(successorNode)) { 594 subgraph.addEdge(node, successorNode, edge); 595 } 596 } 597 } 598 return subgraph; 599 } 600 601 /** Creates a mutable copy of {@code graph} with the same nodes and edges. */ 602 public static <N> MutableGraph<N> copyOf(Graph<N> graph) { 603 MutableGraph<N> copy = GraphBuilder.from(graph).expectedNodeCount(graph.nodes().size()).build(); 604 for (N node : graph.nodes()) { 605 copy.addNode(node); 606 } 607 for (EndpointPair<N> edge : graph.edges()) { 608 copy.putEdge(edge.nodeU(), edge.nodeV()); 609 } 610 return copy; 611 } 612 613 /** Creates a mutable copy of {@code graph} with the same nodes, edges, and edge values. */ 614 public static <N, V> MutableValueGraph<N, V> copyOf(ValueGraph<N, V> graph) { 615 MutableValueGraph<N, V> copy = 616 ValueGraphBuilder.from(graph).expectedNodeCount(graph.nodes().size()).build(); 617 for (N node : graph.nodes()) { 618 copy.addNode(node); 619 } 620 for (EndpointPair<N> edge : graph.edges()) { 621 // requireNonNull is safe because the endpoint pair comes from the graph. 622 copy.putEdgeValue( 623 edge.nodeU(), 624 edge.nodeV(), 625 requireNonNull(graph.edgeValueOrDefault(edge.nodeU(), edge.nodeV(), null))); 626 } 627 return copy; 628 } 629 630 /** Creates a mutable copy of {@code network} with the same nodes and edges. */ 631 public static <N, E> MutableNetwork<N, E> copyOf(Network<N, E> network) { 632 MutableNetwork<N, E> copy = 633 NetworkBuilder.from(network) 634 .expectedNodeCount(network.nodes().size()) 635 .expectedEdgeCount(network.edges().size()) 636 .build(); 637 for (N node : network.nodes()) { 638 copy.addNode(node); 639 } 640 for (E edge : network.edges()) { 641 EndpointPair<N> endpointPair = network.incidentNodes(edge); 642 copy.addEdge(endpointPair.nodeU(), endpointPair.nodeV(), edge); 643 } 644 return copy; 645 } 646 647 @CanIgnoreReturnValue 648 static int checkNonNegative(int value) { 649 checkArgument(value >= 0, "Not true that %s is non-negative.", value); 650 return value; 651 } 652 653 @CanIgnoreReturnValue 654 static long checkNonNegative(long value) { 655 checkArgument(value >= 0, "Not true that %s is non-negative.", value); 656 return value; 657 } 658 659 @CanIgnoreReturnValue 660 static int checkPositive(int value) { 661 checkArgument(value > 0, "Not true that %s is positive.", value); 662 return value; 663 } 664 665 @CanIgnoreReturnValue 666 static long checkPositive(long value) { 667 checkArgument(value > 0, "Not true that %s is positive.", value); 668 return value; 669 } 670 671 /** 672 * An enum representing the state of a node during DFS. {@code PENDING} means that the node is on 673 * the stack of the DFS, while {@code COMPLETE} means that the node and all its successors have 674 * been already explored. Any node that has not been explored will not have a state at all. 675 */ 676 private enum NodeVisitState { 677 PENDING, 678 COMPLETE 679 } 680}