001/* 002 * Copyright (C) 2007 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.collect; 018 019import static com.google.common.base.Preconditions.checkArgument; 020import static com.google.common.base.Preconditions.checkNotNull; 021import static com.google.common.collect.CollectPreconditions.checkNonnegative; 022import static java.lang.Math.min; 023import static java.util.Arrays.asList; 024 025import com.google.common.annotations.GwtCompatible; 026import com.google.common.annotations.GwtIncompatible; 027import com.google.common.annotations.J2ktIncompatible; 028import com.google.common.base.Predicate; 029import com.google.common.base.Predicates; 030import com.google.common.collect.Collections2.FilteredCollection; 031import com.google.common.math.IntMath; 032import com.google.errorprone.annotations.CanIgnoreReturnValue; 033import com.google.errorprone.annotations.DoNotCall; 034import com.google.errorprone.annotations.InlineMe; 035import com.google.errorprone.annotations.concurrent.LazyInit; 036import java.io.Serializable; 037import java.util.AbstractSet; 038import java.util.Arrays; 039import java.util.BitSet; 040import java.util.Collection; 041import java.util.Collections; 042import java.util.Comparator; 043import java.util.EnumSet; 044import java.util.HashSet; 045import java.util.Iterator; 046import java.util.LinkedHashSet; 047import java.util.List; 048import java.util.Map; 049import java.util.NavigableSet; 050import java.util.NoSuchElementException; 051import java.util.Set; 052import java.util.SortedSet; 053import java.util.TreeSet; 054import java.util.concurrent.ConcurrentHashMap; 055import java.util.concurrent.CopyOnWriteArraySet; 056import java.util.function.Consumer; 057import java.util.stream.Collector; 058import java.util.stream.Stream; 059import org.jspecify.annotations.NonNull; 060import org.jspecify.annotations.Nullable; 061 062/** 063 * Static utility methods pertaining to {@link Set} instances. Also see this class's counterparts 064 * {@link Lists}, {@link Maps} and {@link Queues}. 065 * 066 * <p>See the Guava User Guide article on <a href= 067 * "https://github.com/google/guava/wiki/CollectionUtilitiesExplained#sets">{@code Sets}</a>. 068 * 069 * @author Kevin Bourrillion 070 * @author Jared Levy 071 * @author Chris Povirk 072 * @since 2.0 073 */ 074@GwtCompatible(emulated = true) 075public final class Sets { 076 private Sets() {} 077 078 /** 079 * {@link AbstractSet} substitute without the potentially-quadratic {@code removeAll} 080 * implementation. 081 */ 082 abstract static class ImprovedAbstractSet<E extends @Nullable Object> extends AbstractSet<E> { 083 @Override 084 public boolean removeAll(Collection<?> c) { 085 return removeAllImpl(this, c); 086 } 087 088 @Override 089 public boolean retainAll(Collection<?> c) { 090 return super.retainAll(checkNotNull(c)); // GWT compatibility 091 } 092 } 093 094 /** 095 * Returns an immutable set instance containing the given enum elements. Internally, the returned 096 * set will be backed by an {@link EnumSet}. 097 * 098 * <p>The iteration order of the returned set follows the enum's iteration order, not the order in 099 * which the elements are provided to the method. 100 * 101 * @param anElement one of the elements the set should contain 102 * @param otherElements the rest of the elements the set should contain 103 * @return an immutable set containing those elements, minus duplicates 104 */ 105 @GwtCompatible(serializable = true) 106 public static <E extends Enum<E>> ImmutableSet<E> immutableEnumSet( 107 E anElement, E... otherElements) { 108 return ImmutableEnumSet.asImmutable(EnumSet.of(anElement, otherElements)); 109 } 110 111 /** 112 * Returns an immutable set instance containing the given enum elements. Internally, the returned 113 * set will be backed by an {@link EnumSet}. 114 * 115 * <p>The iteration order of the returned set follows the enum's iteration order, not the order in 116 * which the elements appear in the given collection. 117 * 118 * @param elements the elements, all of the same {@code enum} type, that the set should contain 119 * @return an immutable set containing those elements, minus duplicates 120 */ 121 @GwtCompatible(serializable = true) 122 public static <E extends Enum<E>> ImmutableSet<E> immutableEnumSet(Iterable<E> elements) { 123 if (elements instanceof ImmutableEnumSet) { 124 return (ImmutableEnumSet<E>) elements; 125 } else if (elements instanceof Collection) { 126 Collection<E> collection = (Collection<E>) elements; 127 if (collection.isEmpty()) { 128 return ImmutableSet.of(); 129 } else { 130 return ImmutableEnumSet.asImmutable(EnumSet.copyOf(collection)); 131 } 132 } else { 133 Iterator<E> itr = elements.iterator(); 134 if (itr.hasNext()) { 135 EnumSet<E> enumSet = EnumSet.of(itr.next()); 136 Iterators.addAll(enumSet, itr); 137 return ImmutableEnumSet.asImmutable(enumSet); 138 } else { 139 return ImmutableSet.of(); 140 } 141 } 142 } 143 144 /** 145 * Returns a {@code Collector} that accumulates the input elements into a new {@code ImmutableSet} 146 * with an implementation specialized for enums. Unlike {@link ImmutableSet#toImmutableSet}, the 147 * resulting set will iterate over elements in their enum definition order, not encounter order. 148 * 149 * @since 21.0 150 */ 151 public static <E extends Enum<E>> Collector<E, ?, ImmutableSet<E>> toImmutableEnumSet() { 152 return CollectCollectors.toImmutableEnumSet(); 153 } 154 155 /** 156 * Returns a new, <i>mutable</i> {@code EnumSet} instance containing the given elements in their 157 * natural order. This method behaves identically to {@link EnumSet#copyOf(Collection)}, but also 158 * accepts non-{@code Collection} iterables and empty iterables. 159 */ 160 public static <E extends Enum<E>> EnumSet<E> newEnumSet( 161 Iterable<E> iterable, Class<E> elementType) { 162 EnumSet<E> set = EnumSet.noneOf(elementType); 163 Iterables.addAll(set, iterable); 164 return set; 165 } 166 167 // HashSet 168 169 /** 170 * Creates a <i>mutable</i>, initially empty {@code HashSet} instance. 171 * 172 * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSet#of()} instead. If {@code 173 * E} is an {@link Enum} type, use {@link EnumSet#noneOf} instead. Otherwise, strongly consider 174 * using a {@code LinkedHashSet} instead, at the cost of increased memory footprint, to get 175 * deterministic iteration behavior. 176 * 177 * <p><b>Note:</b> this method is now unnecessary and should be treated as deprecated. Instead, 178 * use the {@code HashSet} constructor directly, taking advantage of <a 179 * href="https://docs.oracle.com/javase/tutorial/java/generics/genTypeInference.html#type-inference-instantiation">"diamond" 180 * syntax</a>. 181 */ 182 @SuppressWarnings("NonApiType") // acts as a direct substitute for a constructor call 183 public static <E extends @Nullable Object> HashSet<E> newHashSet() { 184 return new HashSet<>(); 185 } 186 187 /** 188 * Creates a <i>mutable</i> {@code HashSet} instance initially containing the given elements. 189 * 190 * <p><b>Note:</b> if elements are non-null and won't be added or removed after this point, use 191 * {@link ImmutableSet#of()} or {@link ImmutableSet#copyOf(Object[])} instead. If {@code E} is an 192 * {@link Enum} type, use {@link EnumSet#of(Enum, Enum[])} instead. Otherwise, strongly consider 193 * using a {@code LinkedHashSet} instead, at the cost of increased memory footprint, to get 194 * deterministic iteration behavior. 195 * 196 * <p>This method is just a small convenience, either for {@code newHashSet(}{@link Arrays#asList 197 * asList}{@code (...))}, or for creating an empty set then calling {@link Collections#addAll}. 198 * This method is not actually very useful and will likely be deprecated in the future. 199 */ 200 @SuppressWarnings("NonApiType") // acts as a direct substitute for a constructor call 201 public static <E extends @Nullable Object> HashSet<E> newHashSet(E... elements) { 202 HashSet<E> set = newHashSetWithExpectedSize(elements.length); 203 Collections.addAll(set, elements); 204 return set; 205 } 206 207 /** 208 * Creates a <i>mutable</i> {@code HashSet} instance containing the given elements. A very thin 209 * convenience for creating an empty set then calling {@link Collection#addAll} or {@link 210 * Iterables#addAll}. 211 * 212 * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link 213 * ImmutableSet#copyOf(Iterable)} instead. (Or, change {@code elements} to be a {@link 214 * FluentIterable} and call {@code elements.toSet()}.) 215 * 216 * <p><b>Note:</b> if {@code E} is an {@link Enum} type, use {@link #newEnumSet(Iterable, Class)} 217 * instead. 218 * 219 * <p><b>Note:</b> if {@code elements} is a {@link Collection}, you don't need this method. 220 * Instead, use the {@code HashSet} constructor directly, taking advantage of <a 221 * href="https://docs.oracle.com/javase/tutorial/java/generics/genTypeInference.html#type-inference-instantiation">"diamond" 222 * syntax</a>. 223 * 224 * <p>Overall, this method is not very useful and will likely be deprecated in the future. 225 */ 226 @SuppressWarnings("NonApiType") // acts as a direct substitute for a constructor call 227 public static <E extends @Nullable Object> HashSet<E> newHashSet(Iterable<? extends E> elements) { 228 return (elements instanceof Collection) 229 ? new HashSet<E>((Collection<? extends E>) elements) 230 : newHashSet(elements.iterator()); 231 } 232 233 /** 234 * Creates a <i>mutable</i> {@code HashSet} instance containing the given elements. A very thin 235 * convenience for creating an empty set and then calling {@link Iterators#addAll}. 236 * 237 * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link 238 * ImmutableSet#copyOf(Iterator)} instead. 239 * 240 * <p><b>Note:</b> if {@code E} is an {@link Enum} type, you should create an {@link EnumSet} 241 * instead. 242 * 243 * <p>Overall, this method is not very useful and will likely be deprecated in the future. 244 */ 245 @SuppressWarnings("NonApiType") // acts as a direct substitute for a constructor call 246 public static <E extends @Nullable Object> HashSet<E> newHashSet(Iterator<? extends E> elements) { 247 HashSet<E> set = newHashSet(); 248 Iterators.addAll(set, elements); 249 return set; 250 } 251 252 /** 253 * Returns a new hash set using the smallest initial table size that can hold {@code expectedSize} 254 * elements without resizing. Note that this is not what {@link HashSet#HashSet(int)} does, but it 255 * is what most users want and expect it to do. 256 * 257 * <p>This behavior can't be broadly guaranteed, but has been tested with OpenJDK 1.7 and 1.8. 258 * 259 * @param expectedSize the number of elements you expect to add to the returned set 260 * @return a new, empty hash set with enough capacity to hold {@code expectedSize} elements 261 * without resizing 262 * @throws IllegalArgumentException if {@code expectedSize} is negative 263 */ 264 @SuppressWarnings("NonApiType") // acts as a direct substitute for a constructor call 265 public static <E extends @Nullable Object> HashSet<E> newHashSetWithExpectedSize( 266 int expectedSize) { 267 return new HashSet<>(Maps.capacity(expectedSize)); 268 } 269 270 /** 271 * Creates a thread-safe set backed by a hash map. The set is backed by a {@link 272 * ConcurrentHashMap} instance, and thus carries the same concurrency guarantees. 273 * 274 * <p>Unlike {@code HashSet}, this class does NOT allow {@code null} to be used as an element. The 275 * set is serializable. 276 * 277 * @return a new, empty thread-safe {@code Set} 278 * @since 15.0 279 */ 280 public static <E> Set<E> newConcurrentHashSet() { 281 return Platform.newConcurrentHashSet(); 282 } 283 284 /** 285 * Creates a thread-safe set backed by a hash map and containing the given elements. The set is 286 * backed by a {@link ConcurrentHashMap} instance, and thus carries the same concurrency 287 * guarantees. 288 * 289 * <p>Unlike {@code HashSet}, this class does NOT allow {@code null} to be used as an element. The 290 * set is serializable. 291 * 292 * @param elements the elements that the set should contain 293 * @return a new thread-safe set containing those elements (minus duplicates) 294 * @throws NullPointerException if {@code elements} or any of its contents is null 295 * @since 15.0 296 */ 297 public static <E> Set<E> newConcurrentHashSet(Iterable<? extends E> elements) { 298 Set<E> set = newConcurrentHashSet(); 299 Iterables.addAll(set, elements); 300 return set; 301 } 302 303 // LinkedHashSet 304 305 /** 306 * Creates a <i>mutable</i>, empty {@code LinkedHashSet} instance. 307 * 308 * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSet#of()} instead. 309 * 310 * <p><b>Note:</b> this method is now unnecessary and should be treated as deprecated. Instead, 311 * use the {@code LinkedHashSet} constructor directly, taking advantage of <a 312 * href="https://docs.oracle.com/javase/tutorial/java/generics/genTypeInference.html#type-inference-instantiation">"diamond" 313 * syntax</a>. 314 * 315 * @return a new, empty {@code LinkedHashSet} 316 */ 317 @SuppressWarnings("NonApiType") // acts as a direct substitute for a constructor call 318 public static <E extends @Nullable Object> LinkedHashSet<E> newLinkedHashSet() { 319 return new LinkedHashSet<>(); 320 } 321 322 /** 323 * Creates a <i>mutable</i> {@code LinkedHashSet} instance containing the given elements in order. 324 * 325 * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link 326 * ImmutableSet#copyOf(Iterable)} instead. 327 * 328 * <p><b>Note:</b> if {@code elements} is a {@link Collection}, you don't need this method. 329 * Instead, use the {@code LinkedHashSet} constructor directly, taking advantage of <a 330 * href="https://docs.oracle.com/javase/tutorial/java/generics/genTypeInference.html#type-inference-instantiation">"diamond" 331 * syntax</a>. 332 * 333 * <p>Overall, this method is not very useful and will likely be deprecated in the future. 334 * 335 * @param elements the elements that the set should contain, in order 336 * @return a new {@code LinkedHashSet} containing those elements (minus duplicates) 337 */ 338 @SuppressWarnings("NonApiType") // acts as a direct substitute for a constructor call 339 public static <E extends @Nullable Object> LinkedHashSet<E> newLinkedHashSet( 340 Iterable<? extends E> elements) { 341 if (elements instanceof Collection) { 342 return new LinkedHashSet<>((Collection<? extends E>) elements); 343 } 344 LinkedHashSet<E> set = newLinkedHashSet(); 345 Iterables.addAll(set, elements); 346 return set; 347 } 348 349 /** 350 * Creates a {@code LinkedHashSet} instance, with a high enough "initial capacity" that it 351 * <i>should</i> hold {@code expectedSize} elements without growth. This behavior cannot be 352 * broadly guaranteed, but it is observed to be true for OpenJDK 1.7. It also can't be guaranteed 353 * that the method isn't inadvertently <i>oversizing</i> the returned set. 354 * 355 * @param expectedSize the number of elements you expect to add to the returned set 356 * @return a new, empty {@code LinkedHashSet} with enough capacity to hold {@code expectedSize} 357 * elements without resizing 358 * @throws IllegalArgumentException if {@code expectedSize} is negative 359 * @since 11.0 360 */ 361 @SuppressWarnings("NonApiType") // acts as a direct substitute for a constructor call 362 public static <E extends @Nullable Object> LinkedHashSet<E> newLinkedHashSetWithExpectedSize( 363 int expectedSize) { 364 return new LinkedHashSet<>(Maps.capacity(expectedSize)); 365 } 366 367 // TreeSet 368 369 /** 370 * Creates a <i>mutable</i>, empty {@code TreeSet} instance sorted by the natural sort ordering of 371 * its elements. 372 * 373 * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSortedSet#of()} instead. 374 * 375 * <p><b>Note:</b> this method is now unnecessary and should be treated as deprecated. Instead, 376 * use the {@code TreeSet} constructor directly, taking advantage of <a 377 * href="https://docs.oracle.com/javase/tutorial/java/generics/genTypeInference.html#type-inference-instantiation">"diamond" 378 * syntax</a>. 379 * 380 * @return a new, empty {@code TreeSet} 381 */ 382 @SuppressWarnings({ 383 "rawtypes", // https://github.com/google/guava/issues/989 384 "NonApiType", // acts as a direct substitute for a constructor call 385 }) 386 public static <E extends Comparable> TreeSet<E> newTreeSet() { 387 return new TreeSet<>(); 388 } 389 390 /** 391 * Creates a <i>mutable</i> {@code TreeSet} instance containing the given elements sorted by their 392 * natural ordering. 393 * 394 * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSortedSet#copyOf(Iterable)} 395 * instead. 396 * 397 * <p><b>Note:</b> If {@code elements} is a {@code SortedSet} with an explicit comparator, this 398 * method has different behavior than {@link TreeSet#TreeSet(SortedSet)}, which returns a {@code 399 * TreeSet} with that comparator. 400 * 401 * <p><b>Note:</b> this method is now unnecessary and should be treated as deprecated. Instead, 402 * use the {@code TreeSet} constructor directly, taking advantage of <a 403 * href="https://docs.oracle.com/javase/tutorial/java/generics/genTypeInference.html#type-inference-instantiation">"diamond" 404 * syntax</a>. 405 * 406 * <p>This method is just a small convenience for creating an empty set and then calling {@link 407 * Iterables#addAll}. This method is not very useful and will likely be deprecated in the future. 408 * 409 * @param elements the elements that the set should contain 410 * @return a new {@code TreeSet} containing those elements (minus duplicates) 411 */ 412 @SuppressWarnings({ 413 "rawtypes", // https://github.com/google/guava/issues/989 414 "NonApiType", // acts as a direct substitute for a constructor call 415 }) 416 public static <E extends Comparable> TreeSet<E> newTreeSet(Iterable<? extends E> elements) { 417 TreeSet<E> set = newTreeSet(); 418 Iterables.addAll(set, elements); 419 return set; 420 } 421 422 /** 423 * Creates a <i>mutable</i>, empty {@code TreeSet} instance with the given comparator. 424 * 425 * <p><b>Note:</b> if mutability is not required, use {@code 426 * ImmutableSortedSet.orderedBy(comparator).build()} instead. 427 * 428 * <p><b>Note:</b> this method is now unnecessary and should be treated as deprecated. Instead, 429 * use the {@code TreeSet} constructor directly, taking advantage of <a 430 * href="https://docs.oracle.com/javase/tutorial/java/generics/genTypeInference.html#type-inference-instantiation">"diamond" 431 * syntax</a>. One caveat to this is that the {@code TreeSet} constructor uses a null {@code 432 * Comparator} to mean "natural ordering," whereas this factory rejects null. Clean your code 433 * accordingly. 434 * 435 * @param comparator the comparator to use to sort the set 436 * @return a new, empty {@code TreeSet} 437 * @throws NullPointerException if {@code comparator} is null 438 */ 439 @SuppressWarnings("NonApiType") // acts as a direct substitute for a constructor call 440 public static <E extends @Nullable Object> TreeSet<E> newTreeSet( 441 Comparator<? super E> comparator) { 442 return new TreeSet<>(checkNotNull(comparator)); 443 } 444 445 /** 446 * Creates an empty {@code Set} that uses identity to determine equality. It compares object 447 * references, instead of calling {@code equals}, to determine whether a provided object matches 448 * an element in the set. For example, {@code contains} returns {@code false} when passed an 449 * object that equals a set member, but isn't the same instance. This behavior is similar to the 450 * way {@code IdentityHashMap} handles key lookups. 451 * 452 * @since 8.0 453 */ 454 public static <E extends @Nullable Object> Set<E> newIdentityHashSet() { 455 return Collections.newSetFromMap(Maps.<E, Boolean>newIdentityHashMap()); 456 } 457 458 /** 459 * Creates an empty {@code CopyOnWriteArraySet} instance. 460 * 461 * <p><b>Note:</b> if you need an immutable empty {@link Set}, use {@link Collections#emptySet} 462 * instead. 463 * 464 * @return a new, empty {@code CopyOnWriteArraySet} 465 * @since 12.0 466 */ 467 @J2ktIncompatible 468 @GwtIncompatible // CopyOnWriteArraySet 469 public static <E extends @Nullable Object> CopyOnWriteArraySet<E> newCopyOnWriteArraySet() { 470 return new CopyOnWriteArraySet<>(); 471 } 472 473 /** 474 * Creates a {@code CopyOnWriteArraySet} instance containing the given elements. 475 * 476 * @param elements the elements that the set should contain, in order 477 * @return a new {@code CopyOnWriteArraySet} containing those elements 478 * @since 12.0 479 */ 480 @J2ktIncompatible 481 @GwtIncompatible // CopyOnWriteArraySet 482 public static <E extends @Nullable Object> CopyOnWriteArraySet<E> newCopyOnWriteArraySet( 483 Iterable<? extends E> elements) { 484 // We copy elements to an ArrayList first, rather than incurring the 485 // quadratic cost of adding them to the COWAS directly. 486 Collection<? extends E> elementsCollection = 487 (elements instanceof Collection) 488 ? (Collection<? extends E>) elements 489 : Lists.newArrayList(elements); 490 return new CopyOnWriteArraySet<>(elementsCollection); 491 } 492 493 /** 494 * Creates an {@code EnumSet} consisting of all enum values that are not in the specified 495 * collection. If the collection is an {@link EnumSet}, this method has the same behavior as 496 * {@link EnumSet#complementOf}. Otherwise, the specified collection must contain at least one 497 * element, in order to determine the element type. If the collection could be empty, use {@link 498 * #complementOf(Collection, Class)} instead of this method. 499 * 500 * @param collection the collection whose complement should be stored in the enum set 501 * @return a new, modifiable {@code EnumSet} containing all values of the enum that aren't present 502 * in the given collection 503 * @throws IllegalArgumentException if {@code collection} is not an {@code EnumSet} instance and 504 * contains no elements 505 */ 506 @J2ktIncompatible 507 @GwtIncompatible // EnumSet.complementOf 508 public static <E extends Enum<E>> EnumSet<E> complementOf(Collection<E> collection) { 509 if (collection instanceof EnumSet) { 510 return EnumSet.complementOf((EnumSet<E>) collection); 511 } 512 checkArgument( 513 !collection.isEmpty(), "collection is empty; use the other version of this method"); 514 Class<E> type = collection.iterator().next().getDeclaringClass(); 515 return makeComplementByHand(collection, type); 516 } 517 518 /** 519 * Creates an {@code EnumSet} consisting of all enum values that are not in the specified 520 * collection. This is equivalent to {@link EnumSet#complementOf}, but can act on any input 521 * collection, as long as the elements are of enum type. 522 * 523 * @param collection the collection whose complement should be stored in the {@code EnumSet} 524 * @param type the type of the elements in the set 525 * @return a new, modifiable {@code EnumSet} initially containing all the values of the enum not 526 * present in the given collection 527 */ 528 @J2ktIncompatible 529 @GwtIncompatible // EnumSet.complementOf 530 public static <E extends Enum<E>> EnumSet<E> complementOf( 531 Collection<E> collection, Class<E> type) { 532 checkNotNull(collection); 533 return (collection instanceof EnumSet) 534 ? EnumSet.complementOf((EnumSet<E>) collection) 535 : makeComplementByHand(collection, type); 536 } 537 538 @J2ktIncompatible 539 @GwtIncompatible 540 private static <E extends Enum<E>> EnumSet<E> makeComplementByHand( 541 Collection<E> collection, Class<E> type) { 542 EnumSet<E> result = EnumSet.allOf(type); 543 result.removeAll(collection); 544 return result; 545 } 546 547 /** 548 * Returns a set backed by the specified map. The resulting set displays the same ordering, 549 * concurrency, and performance characteristics as the backing map. In essence, this factory 550 * method provides a {@link Set} implementation corresponding to any {@link Map} implementation. 551 * There is no need to use this method on a {@link Map} implementation that already has a 552 * corresponding {@link Set} implementation (such as {@link java.util.HashMap} or {@link 553 * java.util.TreeMap}). 554 * 555 * <p>Each method invocation on the set returned by this method results in exactly one method 556 * invocation on the backing map or its {@code keySet} view, with one exception. The {@code 557 * addAll} method is implemented as a sequence of {@code put} invocations on the backing map. 558 * 559 * <p>The specified map must be empty at the time this method is invoked, and should not be 560 * accessed directly after this method returns. These conditions are ensured if the map is created 561 * empty, passed directly to this method, and no reference to the map is retained, as illustrated 562 * in the following code fragment: 563 * 564 * <pre>{@code 565 * Set<Object> identityHashSet = Sets.newSetFromMap( 566 * new IdentityHashMap<Object, Boolean>()); 567 * }</pre> 568 * 569 * <p>The returned set is serializable if the backing map is. 570 * 571 * @param map the backing map 572 * @return the set backed by the map 573 * @throws IllegalArgumentException if {@code map} is not empty 574 * @deprecated Use {@link Collections#newSetFromMap} instead. 575 */ 576 @InlineMe(replacement = "Collections.newSetFromMap(map)", imports = "java.util.Collections") 577 @Deprecated 578 public static <E extends @Nullable Object> Set<E> newSetFromMap( 579 Map<E, Boolean> map) { 580 return Collections.newSetFromMap(map); 581 } 582 583 /** 584 * An unmodifiable view of a set which may be backed by other sets; this view will change as the 585 * backing sets do. Contains methods to copy the data into a new set which will then remain 586 * stable. There is usually no reason to retain a reference of type {@code SetView}; typically, 587 * you either use it as a plain {@link Set}, or immediately invoke {@link #immutableCopy} or 588 * {@link #copyInto} and forget the {@code SetView} itself. 589 * 590 * @since 2.0 591 */ 592 public abstract static class SetView<E extends @Nullable Object> extends AbstractSet<E> { 593 private SetView() {} // no subclasses but our own 594 595 /** 596 * Returns an immutable copy of the current contents of this set view. Does not support null 597 * elements. 598 * 599 * <p><b>Warning:</b> this may have unexpected results if a backing set of this view uses a 600 * nonstandard notion of equivalence, for example if it is a {@link TreeSet} using a comparator 601 * that is inconsistent with {@link Object#equals(Object)}. 602 */ 603 public ImmutableSet<@NonNull E> immutableCopy() { 604 // Not using ImmutableSet.copyOf() to avoid iterating thrice (isEmpty, size, iterator). 605 int upperBoundSize = upperBoundSize(); 606 if (upperBoundSize == 0) { 607 return ImmutableSet.of(); 608 } 609 ImmutableSet.Builder<@NonNull E> builder = 610 ImmutableSet.builderWithExpectedSize(upperBoundSize); 611 for (E element : this) { 612 builder.add(checkNotNull(element)); 613 } 614 return builder.build(); 615 } 616 617 /** 618 * Copies the current contents of this set view into an existing set. This method has equivalent 619 * behavior to {@code set.addAll(this)}, assuming that all the sets involved are based on the 620 * same notion of equivalence. 621 * 622 * @return a reference to {@code set}, for convenience 623 */ 624 // Note: S should logically extend Set<? super E> but can't due to either 625 // some javac bug or some weirdness in the spec, not sure which. 626 @CanIgnoreReturnValue 627 public <S extends Set<E>> S copyInto(S set) { 628 set.addAll(this); 629 return set; 630 } 631 632 /** 633 * Guaranteed to throw an exception and leave the collection unmodified. 634 * 635 * @throws UnsupportedOperationException always 636 * @deprecated Unsupported operation. 637 */ 638 @CanIgnoreReturnValue 639 @Deprecated 640 @Override 641 @DoNotCall("Always throws UnsupportedOperationException") 642 public final boolean add(@ParametricNullness E e) { 643 throw new UnsupportedOperationException(); 644 } 645 646 /** 647 * Guaranteed to throw an exception and leave the collection unmodified. 648 * 649 * @throws UnsupportedOperationException always 650 * @deprecated Unsupported operation. 651 */ 652 @CanIgnoreReturnValue 653 @Deprecated 654 @Override 655 @DoNotCall("Always throws UnsupportedOperationException") 656 public final boolean remove(@Nullable Object object) { 657 throw new UnsupportedOperationException(); 658 } 659 660 /** 661 * Guaranteed to throw an exception and leave the collection unmodified. 662 * 663 * @throws UnsupportedOperationException always 664 * @deprecated Unsupported operation. 665 */ 666 @CanIgnoreReturnValue 667 @Deprecated 668 @Override 669 @DoNotCall("Always throws UnsupportedOperationException") 670 public final boolean addAll(Collection<? extends E> newElements) { 671 throw new UnsupportedOperationException(); 672 } 673 674 /** 675 * Guaranteed to throw an exception and leave the collection unmodified. 676 * 677 * @throws UnsupportedOperationException always 678 * @deprecated Unsupported operation. 679 */ 680 @CanIgnoreReturnValue 681 @Deprecated 682 @Override 683 @DoNotCall("Always throws UnsupportedOperationException") 684 public final boolean removeAll(Collection<?> oldElements) { 685 throw new UnsupportedOperationException(); 686 } 687 688 /** 689 * Guaranteed to throw an exception and leave the collection unmodified. 690 * 691 * @throws UnsupportedOperationException always 692 * @deprecated Unsupported operation. 693 */ 694 @CanIgnoreReturnValue 695 @Deprecated 696 @Override 697 @DoNotCall("Always throws UnsupportedOperationException") 698 public final boolean removeIf(java.util.function.Predicate<? super E> filter) { 699 throw new UnsupportedOperationException(); 700 } 701 702 /** 703 * Guaranteed to throw an exception and leave the collection unmodified. 704 * 705 * @throws UnsupportedOperationException always 706 * @deprecated Unsupported operation. 707 */ 708 @CanIgnoreReturnValue 709 @Deprecated 710 @Override 711 @DoNotCall("Always throws UnsupportedOperationException") 712 public final boolean retainAll(Collection<?> elementsToKeep) { 713 throw new UnsupportedOperationException(); 714 } 715 716 /** 717 * Guaranteed to throw an exception and leave the collection unmodified. 718 * 719 * @throws UnsupportedOperationException always 720 * @deprecated Unsupported operation. 721 */ 722 @Deprecated 723 @Override 724 @DoNotCall("Always throws UnsupportedOperationException") 725 public final void clear() { 726 throw new UnsupportedOperationException(); 727 } 728 729 /** 730 * Scope the return type to {@link UnmodifiableIterator} to ensure this is an unmodifiable view. 731 * 732 * @since 20.0 (present with return type {@link Iterator} since 2.0) 733 */ 734 @Override 735 public abstract UnmodifiableIterator<E> iterator(); 736 737 /** 738 * Returns the upper bound on the size of this set view. 739 * 740 * <p>This method is used to presize the underlying collection when converting to an {@link 741 * ImmutableSet}. 742 */ 743 abstract int upperBoundSize(); 744 745 static int upperBoundSize(Set<?> set) { 746 return set instanceof SetView ? ((SetView) set).upperBoundSize() : set.size(); 747 } 748 } 749 750 /** 751 * Returns an unmodifiable <b>view</b> of the union of two sets. The returned set contains all 752 * elements that are contained in either backing set. Iterating over the returned set iterates 753 * first over all the elements of {@code set1}, then over each element of {@code set2}, in order, 754 * that is not contained in {@code set1}. 755 * 756 * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different 757 * equivalence relations, for example if {@code set1} is a {@link HashSet} and {@code set2} is a 758 * {@link TreeSet} or the {@link Map#keySet} of an {@code IdentityHashMap}. 759 */ 760 public static <E extends @Nullable Object> SetView<E> union( 761 final Set<? extends E> set1, final Set<? extends E> set2) { 762 checkNotNull(set1, "set1"); 763 checkNotNull(set2, "set2"); 764 765 return new SetView<E>() { 766 @Override 767 public int size() { 768 int size = set1.size(); 769 for (E e : set2) { 770 if (!set1.contains(e)) { 771 size++; 772 } 773 } 774 return size; 775 } 776 777 @Override 778 public boolean isEmpty() { 779 return set1.isEmpty() && set2.isEmpty(); 780 } 781 782 @Override 783 public UnmodifiableIterator<E> iterator() { 784 return new AbstractIterator<E>() { 785 final Iterator<? extends E> itr1 = set1.iterator(); 786 final Iterator<? extends E> itr2 = set2.iterator(); 787 788 @Override 789 protected @Nullable E computeNext() { 790 if (itr1.hasNext()) { 791 return itr1.next(); 792 } 793 while (itr2.hasNext()) { 794 E e = itr2.next(); 795 if (!set1.contains(e)) { 796 return e; 797 } 798 } 799 return endOfData(); 800 } 801 }; 802 } 803 804 @Override 805 public Stream<E> stream() { 806 return Stream.concat(set1.stream(), set2.stream().filter((E e) -> !set1.contains(e))); 807 } 808 809 @Override 810 public Stream<E> parallelStream() { 811 return stream().parallel(); 812 } 813 814 @Override 815 public boolean contains(@Nullable Object object) { 816 return set1.contains(object) || set2.contains(object); 817 } 818 819 @Override 820 public <S extends Set<E>> S copyInto(S set) { 821 set.addAll(set1); 822 set.addAll(set2); 823 return set; 824 } 825 826 @Override 827 int upperBoundSize() { 828 return upperBoundSize(set1) + upperBoundSize(set2); 829 } 830 }; 831 } 832 833 /** 834 * Returns an unmodifiable <b>view</b> of the intersection of two sets. The returned set contains 835 * all elements that are contained by both backing sets. The iteration order of the returned set 836 * matches that of {@code set1}. 837 * 838 * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different 839 * equivalence relations, for example if {@code set1} is a {@link HashSet} and {@code set2} is a 840 * {@link TreeSet} or the {@link Map#keySet} of an {@code IdentityHashMap}. 841 * 842 * <p><b>Note:</b> The returned view performs slightly better when {@code set1} is the smaller of 843 * the two sets. If you have reason to believe one of your sets will generally be smaller than the 844 * other, pass it first. Unfortunately, since this method sets the generic type of the returned 845 * set based on the type of the first set passed, this could in rare cases force you to make a 846 * cast, for example: 847 * 848 * <pre>{@code 849 * Set<Object> aFewBadObjects = ... 850 * Set<String> manyBadStrings = ... 851 * 852 * // impossible for a non-String to be in the intersection 853 * SuppressWarnings("unchecked") 854 * Set<String> badStrings = (Set) Sets.intersection( 855 * aFewBadObjects, manyBadStrings); 856 * }</pre> 857 * 858 * <p>This is unfortunate, but should come up only very rarely. 859 */ 860 public static <E extends @Nullable Object> SetView<E> intersection( 861 final Set<E> set1, final Set<?> set2) { 862 checkNotNull(set1, "set1"); 863 checkNotNull(set2, "set2"); 864 865 return new SetView<E>() { 866 @Override 867 public UnmodifiableIterator<E> iterator() { 868 return new AbstractIterator<E>() { 869 final Iterator<E> itr = set1.iterator(); 870 871 @Override 872 protected @Nullable E computeNext() { 873 while (itr.hasNext()) { 874 E e = itr.next(); 875 if (set2.contains(e)) { 876 return e; 877 } 878 } 879 return endOfData(); 880 } 881 }; 882 } 883 884 @Override 885 public Stream<E> stream() { 886 return set1.stream().filter(set2::contains); 887 } 888 889 @Override 890 public Stream<E> parallelStream() { 891 return set1.parallelStream().filter(set2::contains); 892 } 893 894 @Override 895 public int size() { 896 int size = 0; 897 for (E e : set1) { 898 if (set2.contains(e)) { 899 size++; 900 } 901 } 902 return size; 903 } 904 905 @Override 906 public boolean isEmpty() { 907 return Collections.disjoint(set2, set1); 908 } 909 910 @Override 911 public boolean contains(@Nullable Object object) { 912 return set1.contains(object) && set2.contains(object); 913 } 914 915 @Override 916 public boolean containsAll(Collection<?> collection) { 917 return set1.containsAll(collection) && set2.containsAll(collection); 918 } 919 920 @Override 921 int upperBoundSize() { 922 return min(upperBoundSize(set1), upperBoundSize(set2)); 923 } 924 }; 925 } 926 927 /** 928 * Returns an unmodifiable <b>view</b> of the difference of two sets. The returned set contains 929 * all elements that are contained by {@code set1} and not contained by {@code set2}. {@code set2} 930 * may also contain elements not present in {@code set1}; these are simply ignored. The iteration 931 * order of the returned set matches that of {@code set1}. 932 * 933 * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different 934 * equivalence relations, for example if {@code set1} is a {@link HashSet} and {@code set2} is a 935 * {@link TreeSet} or the {@link Map#keySet} of an {@code IdentityHashMap}. 936 */ 937 public static <E extends @Nullable Object> SetView<E> difference( 938 final Set<E> set1, final Set<?> set2) { 939 checkNotNull(set1, "set1"); 940 checkNotNull(set2, "set2"); 941 942 return new SetView<E>() { 943 @Override 944 public UnmodifiableIterator<E> iterator() { 945 return new AbstractIterator<E>() { 946 final Iterator<E> itr = set1.iterator(); 947 948 @Override 949 protected @Nullable E computeNext() { 950 while (itr.hasNext()) { 951 E e = itr.next(); 952 if (!set2.contains(e)) { 953 return e; 954 } 955 } 956 return endOfData(); 957 } 958 }; 959 } 960 961 @Override 962 public Stream<E> stream() { 963 return set1.stream().filter(e -> !set2.contains(e)); 964 } 965 966 @Override 967 public Stream<E> parallelStream() { 968 return set1.parallelStream().filter(e -> !set2.contains(e)); 969 } 970 971 @Override 972 public int size() { 973 int size = 0; 974 for (E e : set1) { 975 if (!set2.contains(e)) { 976 size++; 977 } 978 } 979 return size; 980 } 981 982 @Override 983 public boolean isEmpty() { 984 return set2.containsAll(set1); 985 } 986 987 @Override 988 public boolean contains(@Nullable Object element) { 989 return set1.contains(element) && !set2.contains(element); 990 } 991 992 @Override 993 int upperBoundSize() { 994 return upperBoundSize(set1); 995 } 996 }; 997 } 998 999 /** 1000 * Returns an unmodifiable <b>view</b> of the symmetric difference of two sets. The returned set 1001 * contains all elements that are contained in either {@code set1} or {@code set2} but not in 1002 * both. The iteration order of the returned set is undefined. 1003 * 1004 * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different 1005 * equivalence relations, for example if {@code set1} is a {@link HashSet} and {@code set2} is a 1006 * {@link TreeSet} or the {@link Map#keySet} of an {@code IdentityHashMap}. 1007 * 1008 * @since 3.0 1009 */ 1010 public static <E extends @Nullable Object> SetView<E> symmetricDifference( 1011 final Set<? extends E> set1, final Set<? extends E> set2) { 1012 checkNotNull(set1, "set1"); 1013 checkNotNull(set2, "set2"); 1014 1015 return new SetView<E>() { 1016 @Override 1017 public UnmodifiableIterator<E> iterator() { 1018 final Iterator<? extends E> itr1 = set1.iterator(); 1019 final Iterator<? extends E> itr2 = set2.iterator(); 1020 return new AbstractIterator<E>() { 1021 @Override 1022 public @Nullable E computeNext() { 1023 while (itr1.hasNext()) { 1024 E elem1 = itr1.next(); 1025 if (!set2.contains(elem1)) { 1026 return elem1; 1027 } 1028 } 1029 while (itr2.hasNext()) { 1030 E elem2 = itr2.next(); 1031 if (!set1.contains(elem2)) { 1032 return elem2; 1033 } 1034 } 1035 return endOfData(); 1036 } 1037 }; 1038 } 1039 1040 @Override 1041 public int size() { 1042 int size = 0; 1043 for (E e : set1) { 1044 if (!set2.contains(e)) { 1045 size++; 1046 } 1047 } 1048 for (E e : set2) { 1049 if (!set1.contains(e)) { 1050 size++; 1051 } 1052 } 1053 return size; 1054 } 1055 1056 @Override 1057 public boolean isEmpty() { 1058 return set1.equals(set2); 1059 } 1060 1061 @Override 1062 public boolean contains(@Nullable Object element) { 1063 return set1.contains(element) ^ set2.contains(element); 1064 } 1065 1066 @Override 1067 int upperBoundSize() { 1068 return upperBoundSize(set1) + upperBoundSize(set2); 1069 } 1070 }; 1071 } 1072 1073 /** 1074 * Returns the elements of {@code unfiltered} that satisfy a predicate. The returned set is a live 1075 * view of {@code unfiltered}; changes to one affect the other. 1076 * 1077 * <p>The resulting set's iterator does not support {@code remove()}, but all other set methods 1078 * are supported. When given an element that doesn't satisfy the predicate, the set's {@code 1079 * add()} and {@code addAll()} methods throw an {@link IllegalArgumentException}. When methods 1080 * such as {@code removeAll()} and {@code clear()} are called on the filtered set, only elements 1081 * that satisfy the filter will be removed from the underlying set. 1082 * 1083 * <p>The returned set isn't threadsafe or serializable, even if {@code unfiltered} is. 1084 * 1085 * <p>Many of the filtered set's methods, such as {@code size()}, iterate across every element in 1086 * the underlying set and determine which elements satisfy the filter. When a live view is 1087 * <i>not</i> needed, it may be faster to copy {@code Iterables.filter(unfiltered, predicate)} and 1088 * use the copy. 1089 * 1090 * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as documented at 1091 * {@link Predicate#apply}. Do not provide a predicate such as {@code 1092 * Predicates.instanceOf(ArrayList.class)}, which is inconsistent with equals. (See {@link 1093 * Iterables#filter(Iterable, Class)} for related functionality.) 1094 * 1095 * <p><b>Java 8+ users:</b> many use cases for this method are better addressed by {@link 1096 * java.util.stream.Stream#filter}. This method is not being deprecated, but we gently encourage 1097 * you to migrate to streams. 1098 */ 1099 // TODO(kevinb): how to omit that last sentence when building GWT javadoc? 1100 public static <E extends @Nullable Object> Set<E> filter( 1101 Set<E> unfiltered, Predicate<? super E> predicate) { 1102 if (unfiltered instanceof SortedSet) { 1103 return filter((SortedSet<E>) unfiltered, predicate); 1104 } 1105 if (unfiltered instanceof FilteredSet) { 1106 // Support clear(), removeAll(), and retainAll() when filtering a filtered 1107 // collection. 1108 FilteredSet<E> filtered = (FilteredSet<E>) unfiltered; 1109 Predicate<E> combinedPredicate = Predicates.and(filtered.predicate, predicate); 1110 return new FilteredSet<>((Set<E>) filtered.unfiltered, combinedPredicate); 1111 } 1112 1113 return new FilteredSet<>(checkNotNull(unfiltered), checkNotNull(predicate)); 1114 } 1115 1116 /** 1117 * Returns the elements of a {@code SortedSet}, {@code unfiltered}, that satisfy a predicate. The 1118 * returned set is a live view of {@code unfiltered}; changes to one affect the other. 1119 * 1120 * <p>The resulting set's iterator does not support {@code remove()}, but all other set methods 1121 * are supported. When given an element that doesn't satisfy the predicate, the set's {@code 1122 * add()} and {@code addAll()} methods throw an {@link IllegalArgumentException}. When methods 1123 * such as {@code removeAll()} and {@code clear()} are called on the filtered set, only elements 1124 * that satisfy the filter will be removed from the underlying set. 1125 * 1126 * <p>The returned set isn't threadsafe or serializable, even if {@code unfiltered} is. 1127 * 1128 * <p>Many of the filtered set's methods, such as {@code size()}, iterate across every element in 1129 * the underlying set and determine which elements satisfy the filter. When a live view is 1130 * <i>not</i> needed, it may be faster to copy {@code Iterables.filter(unfiltered, predicate)} and 1131 * use the copy. 1132 * 1133 * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as documented at 1134 * {@link Predicate#apply}. Do not provide a predicate such as {@code 1135 * Predicates.instanceOf(ArrayList.class)}, which is inconsistent with equals. (See {@link 1136 * Iterables#filter(Iterable, Class)} for related functionality.) 1137 * 1138 * @since 11.0 1139 */ 1140 public static <E extends @Nullable Object> SortedSet<E> filter( 1141 SortedSet<E> unfiltered, Predicate<? super E> predicate) { 1142 if (unfiltered instanceof FilteredSet) { 1143 // Support clear(), removeAll(), and retainAll() when filtering a filtered 1144 // collection. 1145 FilteredSet<E> filtered = (FilteredSet<E>) unfiltered; 1146 Predicate<E> combinedPredicate = Predicates.and(filtered.predicate, predicate); 1147 return new FilteredSortedSet<>((SortedSet<E>) filtered.unfiltered, combinedPredicate); 1148 } 1149 1150 return new FilteredSortedSet<>(checkNotNull(unfiltered), checkNotNull(predicate)); 1151 } 1152 1153 /** 1154 * Returns the elements of a {@code NavigableSet}, {@code unfiltered}, that satisfy a predicate. 1155 * The returned set is a live view of {@code unfiltered}; changes to one affect the other. 1156 * 1157 * <p>The resulting set's iterator does not support {@code remove()}, but all other set methods 1158 * are supported. When given an element that doesn't satisfy the predicate, the set's {@code 1159 * add()} and {@code addAll()} methods throw an {@link IllegalArgumentException}. When methods 1160 * such as {@code removeAll()} and {@code clear()} are called on the filtered set, only elements 1161 * that satisfy the filter will be removed from the underlying set. 1162 * 1163 * <p>The returned set isn't threadsafe or serializable, even if {@code unfiltered} is. 1164 * 1165 * <p>Many of the filtered set's methods, such as {@code size()}, iterate across every element in 1166 * the underlying set and determine which elements satisfy the filter. When a live view is 1167 * <i>not</i> needed, it may be faster to copy {@code Iterables.filter(unfiltered, predicate)} and 1168 * use the copy. 1169 * 1170 * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as documented at 1171 * {@link Predicate#apply}. Do not provide a predicate such as {@code 1172 * Predicates.instanceOf(ArrayList.class)}, which is inconsistent with equals. (See {@link 1173 * Iterables#filter(Iterable, Class)} for related functionality.) 1174 * 1175 * @since 14.0 1176 */ 1177 @GwtIncompatible // NavigableSet 1178 public static <E extends @Nullable Object> NavigableSet<E> filter( 1179 NavigableSet<E> unfiltered, Predicate<? super E> predicate) { 1180 if (unfiltered instanceof FilteredSet) { 1181 // Support clear(), removeAll(), and retainAll() when filtering a filtered 1182 // collection. 1183 FilteredSet<E> filtered = (FilteredSet<E>) unfiltered; 1184 Predicate<E> combinedPredicate = Predicates.and(filtered.predicate, predicate); 1185 return new FilteredNavigableSet<>((NavigableSet<E>) filtered.unfiltered, combinedPredicate); 1186 } 1187 1188 return new FilteredNavigableSet<>(checkNotNull(unfiltered), checkNotNull(predicate)); 1189 } 1190 1191 private static class FilteredSet<E extends @Nullable Object> extends FilteredCollection<E> 1192 implements Set<E> { 1193 FilteredSet(Set<E> unfiltered, Predicate<? super E> predicate) { 1194 super(unfiltered, predicate); 1195 } 1196 1197 @Override 1198 public boolean equals(@Nullable Object object) { 1199 return equalsImpl(this, object); 1200 } 1201 1202 @Override 1203 public int hashCode() { 1204 return hashCodeImpl(this); 1205 } 1206 } 1207 1208 private static class FilteredSortedSet<E extends @Nullable Object> extends FilteredSet<E> 1209 implements SortedSet<E> { 1210 1211 FilteredSortedSet(SortedSet<E> unfiltered, Predicate<? super E> predicate) { 1212 super(unfiltered, predicate); 1213 } 1214 1215 @Override 1216 public @Nullable Comparator<? super E> comparator() { 1217 return ((SortedSet<E>) unfiltered).comparator(); 1218 } 1219 1220 @Override 1221 public SortedSet<E> subSet(@ParametricNullness E fromElement, @ParametricNullness E toElement) { 1222 return new FilteredSortedSet<>( 1223 ((SortedSet<E>) unfiltered).subSet(fromElement, toElement), predicate); 1224 } 1225 1226 @Override 1227 public SortedSet<E> headSet(@ParametricNullness E toElement) { 1228 return new FilteredSortedSet<>(((SortedSet<E>) unfiltered).headSet(toElement), predicate); 1229 } 1230 1231 @Override 1232 public SortedSet<E> tailSet(@ParametricNullness E fromElement) { 1233 return new FilteredSortedSet<>(((SortedSet<E>) unfiltered).tailSet(fromElement), predicate); 1234 } 1235 1236 @Override 1237 @ParametricNullness 1238 public E first() { 1239 return Iterators.find(unfiltered.iterator(), predicate); 1240 } 1241 1242 @Override 1243 @ParametricNullness 1244 public E last() { 1245 SortedSet<E> sortedUnfiltered = (SortedSet<E>) unfiltered; 1246 while (true) { 1247 E element = sortedUnfiltered.last(); 1248 if (predicate.apply(element)) { 1249 return element; 1250 } 1251 sortedUnfiltered = sortedUnfiltered.headSet(element); 1252 } 1253 } 1254 } 1255 1256 @GwtIncompatible // NavigableSet 1257 private static class FilteredNavigableSet<E extends @Nullable Object> extends FilteredSortedSet<E> 1258 implements NavigableSet<E> { 1259 FilteredNavigableSet(NavigableSet<E> unfiltered, Predicate<? super E> predicate) { 1260 super(unfiltered, predicate); 1261 } 1262 1263 NavigableSet<E> unfiltered() { 1264 return (NavigableSet<E>) unfiltered; 1265 } 1266 1267 @Override 1268 public @Nullable E lower(@ParametricNullness E e) { 1269 return Iterators.find(unfiltered().headSet(e, false).descendingIterator(), predicate, null); 1270 } 1271 1272 @Override 1273 public @Nullable E floor(@ParametricNullness E e) { 1274 return Iterators.find(unfiltered().headSet(e, true).descendingIterator(), predicate, null); 1275 } 1276 1277 @Override 1278 public @Nullable E ceiling(@ParametricNullness E e) { 1279 return Iterables.find(unfiltered().tailSet(e, true), predicate, null); 1280 } 1281 1282 @Override 1283 public @Nullable E higher(@ParametricNullness E e) { 1284 return Iterables.find(unfiltered().tailSet(e, false), predicate, null); 1285 } 1286 1287 @Override 1288 public @Nullable E pollFirst() { 1289 return Iterables.removeFirstMatching(unfiltered(), predicate); 1290 } 1291 1292 @Override 1293 public @Nullable E pollLast() { 1294 return Iterables.removeFirstMatching(unfiltered().descendingSet(), predicate); 1295 } 1296 1297 @Override 1298 public NavigableSet<E> descendingSet() { 1299 return Sets.filter(unfiltered().descendingSet(), predicate); 1300 } 1301 1302 @Override 1303 public Iterator<E> descendingIterator() { 1304 return Iterators.filter(unfiltered().descendingIterator(), predicate); 1305 } 1306 1307 @Override 1308 @ParametricNullness 1309 public E last() { 1310 return Iterators.find(unfiltered().descendingIterator(), predicate); 1311 } 1312 1313 @Override 1314 public NavigableSet<E> subSet( 1315 @ParametricNullness E fromElement, 1316 boolean fromInclusive, 1317 @ParametricNullness E toElement, 1318 boolean toInclusive) { 1319 return filter( 1320 unfiltered().subSet(fromElement, fromInclusive, toElement, toInclusive), predicate); 1321 } 1322 1323 @Override 1324 public NavigableSet<E> headSet(@ParametricNullness E toElement, boolean inclusive) { 1325 return filter(unfiltered().headSet(toElement, inclusive), predicate); 1326 } 1327 1328 @Override 1329 public NavigableSet<E> tailSet(@ParametricNullness E fromElement, boolean inclusive) { 1330 return filter(unfiltered().tailSet(fromElement, inclusive), predicate); 1331 } 1332 } 1333 1334 /** 1335 * Returns every possible list that can be formed by choosing one element from each of the given 1336 * sets in order; the "n-ary <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian 1337 * product</a>" of the sets. For example: 1338 * 1339 * <pre>{@code 1340 * Sets.cartesianProduct(ImmutableList.of( 1341 * ImmutableSet.of(1, 2), 1342 * ImmutableSet.of("A", "B", "C"))) 1343 * }</pre> 1344 * 1345 * <p>returns a set containing six lists: 1346 * 1347 * <ul> 1348 * <li>{@code ImmutableList.of(1, "A")} 1349 * <li>{@code ImmutableList.of(1, "B")} 1350 * <li>{@code ImmutableList.of(1, "C")} 1351 * <li>{@code ImmutableList.of(2, "A")} 1352 * <li>{@code ImmutableList.of(2, "B")} 1353 * <li>{@code ImmutableList.of(2, "C")} 1354 * </ul> 1355 * 1356 * <p>The result is guaranteed to be in the "traditional", lexicographical order for Cartesian 1357 * products that you would get from nesting for loops: 1358 * 1359 * <pre>{@code 1360 * for (B b0 : sets.get(0)) { 1361 * for (B b1 : sets.get(1)) { 1362 * ... 1363 * ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...); 1364 * // operate on tuple 1365 * } 1366 * } 1367 * }</pre> 1368 * 1369 * <p>Note that if any input set is empty, the Cartesian product will also be empty. If no sets at 1370 * all are provided (an empty list), the resulting Cartesian product has one element, an empty 1371 * list (counter-intuitive, but mathematically consistent). 1372 * 1373 * <p><i>Performance notes:</i> while the cartesian product of sets of size {@code m, n, p} is a 1374 * set of size {@code m x n x p}, its actual memory consumption is much smaller. When the 1375 * cartesian set is constructed, the input sets are merely copied. Only as the resulting set is 1376 * iterated are the individual lists created, and these are not retained after iteration. 1377 * 1378 * @param sets the sets to choose elements from, in the order that the elements chosen from those 1379 * sets should appear in the resulting lists 1380 * @param <B> any common base class shared by all axes (often just {@link Object}) 1381 * @return the Cartesian product, as an immutable set containing immutable lists 1382 * @throws NullPointerException if {@code sets}, any one of the {@code sets}, or any element of a 1383 * provided set is null 1384 * @throws IllegalArgumentException if the cartesian product size exceeds the {@code int} range 1385 * @since 2.0 1386 */ 1387 public static <B> Set<List<B>> cartesianProduct(List<? extends Set<? extends B>> sets) { 1388 return CartesianSet.create(sets); 1389 } 1390 1391 /** 1392 * Returns every possible list that can be formed by choosing one element from each of the given 1393 * sets in order; the "n-ary <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian 1394 * product</a>" of the sets. For example: 1395 * 1396 * <pre>{@code 1397 * Sets.cartesianProduct( 1398 * ImmutableSet.of(1, 2), 1399 * ImmutableSet.of("A", "B", "C")) 1400 * }</pre> 1401 * 1402 * <p>returns a set containing six lists: 1403 * 1404 * <ul> 1405 * <li>{@code ImmutableList.of(1, "A")} 1406 * <li>{@code ImmutableList.of(1, "B")} 1407 * <li>{@code ImmutableList.of(1, "C")} 1408 * <li>{@code ImmutableList.of(2, "A")} 1409 * <li>{@code ImmutableList.of(2, "B")} 1410 * <li>{@code ImmutableList.of(2, "C")} 1411 * </ul> 1412 * 1413 * <p>The result is guaranteed to be in the "traditional", lexicographical order for Cartesian 1414 * products that you would get from nesting for loops: 1415 * 1416 * <pre>{@code 1417 * for (B b0 : sets.get(0)) { 1418 * for (B b1 : sets.get(1)) { 1419 * ... 1420 * ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...); 1421 * // operate on tuple 1422 * } 1423 * } 1424 * }</pre> 1425 * 1426 * <p>Note that if any input set is empty, the Cartesian product will also be empty. If no sets at 1427 * all are provided (an empty list), the resulting Cartesian product has one element, an empty 1428 * list (counter-intuitive, but mathematically consistent). 1429 * 1430 * <p><i>Performance notes:</i> while the cartesian product of sets of size {@code m, n, p} is a 1431 * set of size {@code m x n x p}, its actual memory consumption is much smaller. When the 1432 * cartesian set is constructed, the input sets are merely copied. Only as the resulting set is 1433 * iterated are the individual lists created, and these are not retained after iteration. 1434 * 1435 * @param sets the sets to choose elements from, in the order that the elements chosen from those 1436 * sets should appear in the resulting lists 1437 * @param <B> any common base class shared by all axes (often just {@link Object}) 1438 * @return the Cartesian product, as an immutable set containing immutable lists 1439 * @throws NullPointerException if {@code sets}, any one of the {@code sets}, or any element of a 1440 * provided set is null 1441 * @throws IllegalArgumentException if the cartesian product size exceeds the {@code int} range 1442 * @since 2.0 1443 */ 1444 @SafeVarargs 1445 public static <B> Set<List<B>> cartesianProduct(Set<? extends B>... sets) { 1446 return cartesianProduct(asList(sets)); 1447 } 1448 1449 private static final class CartesianSet<E> extends ForwardingCollection<List<E>> 1450 implements Set<List<E>> { 1451 private final transient ImmutableList<ImmutableSet<E>> axes; 1452 private final transient CartesianList<E> delegate; 1453 1454 static <E> Set<List<E>> create(List<? extends Set<? extends E>> sets) { 1455 ImmutableList.Builder<ImmutableSet<E>> axesBuilder = new ImmutableList.Builder<>(sets.size()); 1456 for (Set<? extends E> set : sets) { 1457 ImmutableSet<E> copy = ImmutableSet.copyOf(set); 1458 if (copy.isEmpty()) { 1459 return ImmutableSet.of(); 1460 } 1461 axesBuilder.add(copy); 1462 } 1463 final ImmutableList<ImmutableSet<E>> axes = axesBuilder.build(); 1464 ImmutableList<List<E>> listAxes = 1465 new ImmutableList<List<E>>() { 1466 @Override 1467 public int size() { 1468 return axes.size(); 1469 } 1470 1471 @Override 1472 public List<E> get(int index) { 1473 return axes.get(index).asList(); 1474 } 1475 1476 @Override 1477 boolean isPartialView() { 1478 return true; 1479 } 1480 1481 // redeclare to help optimizers with b/310253115 1482 @SuppressWarnings("RedundantOverride") 1483 @Override 1484 @J2ktIncompatible // serialization 1485 @GwtIncompatible // serialization 1486 Object writeReplace() { 1487 return super.writeReplace(); 1488 } 1489 }; 1490 return new CartesianSet<E>(axes, new CartesianList<E>(listAxes)); 1491 } 1492 1493 private CartesianSet(ImmutableList<ImmutableSet<E>> axes, CartesianList<E> delegate) { 1494 this.axes = axes; 1495 this.delegate = delegate; 1496 } 1497 1498 @Override 1499 protected Collection<List<E>> delegate() { 1500 return delegate; 1501 } 1502 1503 @Override 1504 public boolean contains(@Nullable Object object) { 1505 if (!(object instanceof List)) { 1506 return false; 1507 } 1508 List<?> list = (List<?>) object; 1509 if (list.size() != axes.size()) { 1510 return false; 1511 } 1512 int i = 0; 1513 for (Object o : list) { 1514 if (!axes.get(i).contains(o)) { 1515 return false; 1516 } 1517 i++; 1518 } 1519 return true; 1520 } 1521 1522 @Override 1523 public boolean equals(@Nullable Object object) { 1524 // Warning: this is broken if size() == 0, so it is critical that we 1525 // substitute an empty ImmutableSet to the user in place of this 1526 if (object instanceof CartesianSet) { 1527 CartesianSet<?> that = (CartesianSet<?>) object; 1528 return this.axes.equals(that.axes); 1529 } 1530 if (object instanceof Set) { 1531 Set<?> that = (Set<?>) object; 1532 return this.size() == that.size() && this.containsAll(that); 1533 } 1534 return false; 1535 } 1536 1537 @Override 1538 public int hashCode() { 1539 // Warning: this is broken if size() == 0, so it is critical that we 1540 // substitute an empty ImmutableSet to the user in place of this 1541 1542 // It's a weird formula, but tests prove it works. 1543 int adjust = size() - 1; 1544 for (int i = 0; i < axes.size(); i++) { 1545 adjust *= 31; 1546 adjust = ~~adjust; 1547 // in GWT, we have to deal with integer overflow carefully 1548 } 1549 int hash = 1; 1550 for (Set<E> axis : axes) { 1551 hash = 31 * hash + (size() / axis.size() * axis.hashCode()); 1552 1553 hash = ~~hash; 1554 } 1555 hash += adjust; 1556 return ~~hash; 1557 } 1558 } 1559 1560 /** 1561 * Returns the set of all possible subsets of {@code set}. For example, {@code 1562 * powerSet(ImmutableSet.of(1, 2))} returns the set {@code {{}, {1}, {2}, {1, 2}}}. 1563 * 1564 * <p>Elements appear in these subsets in the same iteration order as they appeared in the input 1565 * set. The order in which these subsets appear in the outer set is undefined. Note that the power 1566 * set of the empty set is not the empty set, but a one-element set containing the empty set. 1567 * 1568 * <p>The returned set and its constituent sets use {@code equals} to decide whether two elements 1569 * are identical, even if the input set uses a different concept of equivalence. 1570 * 1571 * <p><i>Performance notes:</i> while the power set of a set with size {@code n} is of size {@code 1572 * 2^n}, its memory usage is only {@code O(n)}. When the power set is constructed, the input set 1573 * is merely copied. Only as the power set is iterated are the individual subsets created, and 1574 * these subsets themselves occupy only a small constant amount of memory. 1575 * 1576 * @param set the set of elements to construct a power set from 1577 * @return the power set, as an immutable set of immutable sets 1578 * @throws IllegalArgumentException if {@code set} has more than 30 unique elements (causing the 1579 * power set size to exceed the {@code int} range) 1580 * @throws NullPointerException if {@code set} is or contains {@code null} 1581 * @see <a href="http://en.wikipedia.org/wiki/Power_set">Power set article at Wikipedia</a> 1582 * @since 4.0 1583 */ 1584 @GwtCompatible(serializable = false) 1585 public static <E> Set<Set<E>> powerSet(Set<E> set) { 1586 return new PowerSet<E>(set); 1587 } 1588 1589 private static final class SubSet<E> extends AbstractSet<E> { 1590 private final ImmutableMap<E, Integer> inputSet; 1591 private final int mask; 1592 1593 SubSet(ImmutableMap<E, Integer> inputSet, int mask) { 1594 this.inputSet = inputSet; 1595 this.mask = mask; 1596 } 1597 1598 @Override 1599 public Iterator<E> iterator() { 1600 return new UnmodifiableIterator<E>() { 1601 final ImmutableList<E> elements = inputSet.keySet().asList(); 1602 int remainingSetBits = mask; 1603 1604 @Override 1605 public boolean hasNext() { 1606 return remainingSetBits != 0; 1607 } 1608 1609 @Override 1610 public E next() { 1611 int index = Integer.numberOfTrailingZeros(remainingSetBits); 1612 if (index == 32) { 1613 throw new NoSuchElementException(); 1614 } 1615 remainingSetBits &= ~(1 << index); 1616 return elements.get(index); 1617 } 1618 }; 1619 } 1620 1621 @Override 1622 public int size() { 1623 return Integer.bitCount(mask); 1624 } 1625 1626 @Override 1627 public boolean contains(@Nullable Object o) { 1628 Integer index = inputSet.get(o); 1629 return index != null && (mask & (1 << index)) != 0; 1630 } 1631 } 1632 1633 private static final class PowerSet<E> extends AbstractSet<Set<E>> { 1634 final ImmutableMap<E, Integer> inputSet; 1635 1636 PowerSet(Set<E> input) { 1637 checkArgument( 1638 input.size() <= 30, "Too many elements to create power set: %s > 30", input.size()); 1639 this.inputSet = Maps.indexMap(input); 1640 } 1641 1642 @Override 1643 public int size() { 1644 return 1 << inputSet.size(); 1645 } 1646 1647 @Override 1648 public boolean isEmpty() { 1649 return false; 1650 } 1651 1652 @Override 1653 public Iterator<Set<E>> iterator() { 1654 return new AbstractIndexedListIterator<Set<E>>(size()) { 1655 @Override 1656 protected Set<E> get(final int setBits) { 1657 return new SubSet<>(inputSet, setBits); 1658 } 1659 }; 1660 } 1661 1662 @Override 1663 public boolean contains(@Nullable Object obj) { 1664 if (obj instanceof Set) { 1665 Set<?> set = (Set<?>) obj; 1666 return inputSet.keySet().containsAll(set); 1667 } 1668 return false; 1669 } 1670 1671 @Override 1672 public boolean equals(@Nullable Object obj) { 1673 if (obj instanceof PowerSet) { 1674 PowerSet<?> that = (PowerSet<?>) obj; 1675 return inputSet.keySet().equals(that.inputSet.keySet()); 1676 } 1677 return super.equals(obj); 1678 } 1679 1680 @Override 1681 public int hashCode() { 1682 /* 1683 * The sum of the sums of the hash codes in each subset is just the sum of 1684 * each input element's hash code times the number of sets that element 1685 * appears in. Each element appears in exactly half of the 2^n sets, so: 1686 */ 1687 return inputSet.keySet().hashCode() << (inputSet.size() - 1); 1688 } 1689 1690 @Override 1691 public String toString() { 1692 return "powerSet(" + inputSet + ")"; 1693 } 1694 } 1695 1696 /** 1697 * Returns the set of all subsets of {@code set} of size {@code size}. For example, {@code 1698 * combinations(ImmutableSet.of(1, 2, 3), 2)} returns the set {@code {{1, 2}, {1, 3}, {2, 3}}}. 1699 * 1700 * <p>Elements appear in these subsets in the same iteration order as they appeared in the input 1701 * set. The order in which these subsets appear in the outer set is undefined. 1702 * 1703 * <p>The returned set and its constituent sets use {@code equals} to decide whether two elements 1704 * are identical, even if the input set uses a different concept of equivalence. 1705 * 1706 * <p><i>Performance notes:</i> the memory usage of the returned set is only {@code O(n)}. When 1707 * the result set is constructed, the input set is merely copied. Only as the result set is 1708 * iterated are the individual subsets created. Each of these subsets occupies an additional O(n) 1709 * memory but only for as long as the user retains a reference to it. That is, the set returned by 1710 * {@code combinations} does not retain the individual subsets. 1711 * 1712 * @param set the set of elements to take combinations of 1713 * @param size the number of elements per combination 1714 * @return the set of all combinations of {@code size} elements from {@code set} 1715 * @throws IllegalArgumentException if {@code size} is not between 0 and {@code set.size()} 1716 * inclusive 1717 * @throws NullPointerException if {@code set} is or contains {@code null} 1718 * @since 23.0 1719 */ 1720 public static <E> Set<Set<E>> combinations(Set<E> set, final int size) { 1721 final ImmutableMap<E, Integer> index = Maps.indexMap(set); 1722 checkNonnegative(size, "size"); 1723 checkArgument(size <= index.size(), "size (%s) must be <= set.size() (%s)", size, index.size()); 1724 if (size == 0) { 1725 return ImmutableSet.<Set<E>>of(ImmutableSet.<E>of()); 1726 } else if (size == index.size()) { 1727 return ImmutableSet.<Set<E>>of(index.keySet()); 1728 } 1729 return new AbstractSet<Set<E>>() { 1730 @Override 1731 public boolean contains(@Nullable Object o) { 1732 if (o instanceof Set) { 1733 Set<?> s = (Set<?>) o; 1734 return s.size() == size && index.keySet().containsAll(s); 1735 } 1736 return false; 1737 } 1738 1739 @Override 1740 public Iterator<Set<E>> iterator() { 1741 return new AbstractIterator<Set<E>>() { 1742 final BitSet bits = new BitSet(index.size()); 1743 1744 @Override 1745 protected @Nullable Set<E> computeNext() { 1746 if (bits.isEmpty()) { 1747 bits.set(0, size); 1748 } else { 1749 int firstSetBit = bits.nextSetBit(0); 1750 int bitToFlip = bits.nextClearBit(firstSetBit); 1751 1752 if (bitToFlip == index.size()) { 1753 return endOfData(); 1754 } 1755 1756 /* 1757 * The current set in sorted order looks like 1758 * {firstSetBit, firstSetBit + 1, ..., bitToFlip - 1, ...} 1759 * where it does *not* contain bitToFlip. 1760 * 1761 * The next combination is 1762 * 1763 * {0, 1, ..., bitToFlip - firstSetBit - 2, bitToFlip, ...} 1764 * 1765 * This is lexicographically next if you look at the combinations in descending order 1766 * e.g. {2, 1, 0}, {3, 1, 0}, {3, 2, 0}, {3, 2, 1}, {4, 1, 0}... 1767 */ 1768 1769 bits.set(0, bitToFlip - firstSetBit - 1); 1770 bits.clear(bitToFlip - firstSetBit - 1, bitToFlip); 1771 bits.set(bitToFlip); 1772 } 1773 final BitSet copy = (BitSet) bits.clone(); 1774 return new AbstractSet<E>() { 1775 @Override 1776 public boolean contains(@Nullable Object o) { 1777 Integer i = index.get(o); 1778 return i != null && copy.get(i); 1779 } 1780 1781 @Override 1782 public Iterator<E> iterator() { 1783 return new AbstractIterator<E>() { 1784 int i = -1; 1785 1786 @Override 1787 protected @Nullable E computeNext() { 1788 i = copy.nextSetBit(i + 1); 1789 if (i == -1) { 1790 return endOfData(); 1791 } 1792 return index.keySet().asList().get(i); 1793 } 1794 }; 1795 } 1796 1797 @Override 1798 public int size() { 1799 return size; 1800 } 1801 }; 1802 } 1803 }; 1804 } 1805 1806 @Override 1807 public int size() { 1808 return IntMath.binomial(index.size(), size); 1809 } 1810 1811 @Override 1812 public String toString() { 1813 return "Sets.combinations(" + index.keySet() + ", " + size + ")"; 1814 } 1815 }; 1816 } 1817 1818 /** An implementation for {@link Set#hashCode()}. */ 1819 static int hashCodeImpl(Set<?> s) { 1820 int hashCode = 0; 1821 for (Object o : s) { 1822 hashCode += o != null ? o.hashCode() : 0; 1823 1824 hashCode = ~~hashCode; 1825 // Needed to deal with unusual integer overflow in GWT. 1826 } 1827 return hashCode; 1828 } 1829 1830 /** An implementation for {@link Set#equals(Object)}. */ 1831 static boolean equalsImpl(Set<?> s, @Nullable Object object) { 1832 if (s == object) { 1833 return true; 1834 } 1835 if (object instanceof Set) { 1836 Set<?> o = (Set<?>) object; 1837 1838 try { 1839 return s.size() == o.size() && s.containsAll(o); 1840 } catch (NullPointerException | ClassCastException ignored) { 1841 return false; 1842 } 1843 } 1844 return false; 1845 } 1846 1847 /** 1848 * Returns an unmodifiable view of the specified navigable set. This method allows modules to 1849 * provide users with "read-only" access to internal navigable sets. Query operations on the 1850 * returned set "read through" to the specified set, and attempts to modify the returned set, 1851 * whether direct or via its collection views, result in an {@code UnsupportedOperationException}. 1852 * 1853 * <p>The returned navigable set will be serializable if the specified navigable set is 1854 * serializable. 1855 * 1856 * <p><b>Java 8+ users and later:</b> Prefer {@link Collections#unmodifiableNavigableSet}. 1857 * 1858 * @param set the navigable set for which an unmodifiable view is to be returned 1859 * @return an unmodifiable view of the specified navigable set 1860 * @since 12.0 1861 */ 1862 public static <E extends @Nullable Object> NavigableSet<E> unmodifiableNavigableSet( 1863 NavigableSet<E> set) { 1864 if (set instanceof ImmutableCollection || set instanceof UnmodifiableNavigableSet) { 1865 return set; 1866 } 1867 return new UnmodifiableNavigableSet<>(set); 1868 } 1869 1870 static final class UnmodifiableNavigableSet<E extends @Nullable Object> 1871 extends ForwardingSortedSet<E> implements NavigableSet<E>, Serializable { 1872 private final NavigableSet<E> delegate; 1873 private final SortedSet<E> unmodifiableDelegate; 1874 1875 UnmodifiableNavigableSet(NavigableSet<E> delegate) { 1876 this.delegate = checkNotNull(delegate); 1877 this.unmodifiableDelegate = Collections.unmodifiableSortedSet(delegate); 1878 } 1879 1880 @Override 1881 protected SortedSet<E> delegate() { 1882 return unmodifiableDelegate; 1883 } 1884 1885 // default methods not forwarded by ForwardingSortedSet 1886 1887 @Override 1888 public boolean removeIf(java.util.function.Predicate<? super E> filter) { 1889 throw new UnsupportedOperationException(); 1890 } 1891 1892 @Override 1893 public Stream<E> stream() { 1894 return delegate.stream(); 1895 } 1896 1897 @Override 1898 public Stream<E> parallelStream() { 1899 return delegate.parallelStream(); 1900 } 1901 1902 @Override 1903 public void forEach(Consumer<? super E> action) { 1904 delegate.forEach(action); 1905 } 1906 1907 @Override 1908 public @Nullable E lower(@ParametricNullness E e) { 1909 return delegate.lower(e); 1910 } 1911 1912 @Override 1913 public @Nullable E floor(@ParametricNullness E e) { 1914 return delegate.floor(e); 1915 } 1916 1917 @Override 1918 public @Nullable E ceiling(@ParametricNullness E e) { 1919 return delegate.ceiling(e); 1920 } 1921 1922 @Override 1923 public @Nullable E higher(@ParametricNullness E e) { 1924 return delegate.higher(e); 1925 } 1926 1927 @Override 1928 public @Nullable E pollFirst() { 1929 throw new UnsupportedOperationException(); 1930 } 1931 1932 @Override 1933 public @Nullable E pollLast() { 1934 throw new UnsupportedOperationException(); 1935 } 1936 1937 @LazyInit private transient @Nullable UnmodifiableNavigableSet<E> descendingSet; 1938 1939 @Override 1940 public NavigableSet<E> descendingSet() { 1941 UnmodifiableNavigableSet<E> result = descendingSet; 1942 if (result == null) { 1943 result = descendingSet = new UnmodifiableNavigableSet<>(delegate.descendingSet()); 1944 result.descendingSet = this; 1945 } 1946 return result; 1947 } 1948 1949 @Override 1950 public Iterator<E> descendingIterator() { 1951 return Iterators.unmodifiableIterator(delegate.descendingIterator()); 1952 } 1953 1954 @Override 1955 public NavigableSet<E> subSet( 1956 @ParametricNullness E fromElement, 1957 boolean fromInclusive, 1958 @ParametricNullness E toElement, 1959 boolean toInclusive) { 1960 return unmodifiableNavigableSet( 1961 delegate.subSet(fromElement, fromInclusive, toElement, toInclusive)); 1962 } 1963 1964 @Override 1965 public NavigableSet<E> headSet(@ParametricNullness E toElement, boolean inclusive) { 1966 return unmodifiableNavigableSet(delegate.headSet(toElement, inclusive)); 1967 } 1968 1969 @Override 1970 public NavigableSet<E> tailSet(@ParametricNullness E fromElement, boolean inclusive) { 1971 return unmodifiableNavigableSet(delegate.tailSet(fromElement, inclusive)); 1972 } 1973 1974 private static final long serialVersionUID = 0; 1975 } 1976 1977 /** 1978 * Returns a synchronized (thread-safe) navigable set backed by the specified navigable set. In 1979 * order to guarantee serial access, it is critical that <b>all</b> access to the backing 1980 * navigable set is accomplished through the returned navigable set (or its views). 1981 * 1982 * <p>It is imperative that the user manually synchronize on the returned sorted set when 1983 * iterating over it or any of its {@code descendingSet}, {@code subSet}, {@code headSet}, or 1984 * {@code tailSet} views. 1985 * 1986 * <pre>{@code 1987 * NavigableSet<E> set = synchronizedNavigableSet(new TreeSet<E>()); 1988 * ... 1989 * synchronized (set) { 1990 * // Must be in the synchronized block 1991 * Iterator<E> it = set.iterator(); 1992 * while (it.hasNext()) { 1993 * foo(it.next()); 1994 * } 1995 * } 1996 * }</pre> 1997 * 1998 * <p>or: 1999 * 2000 * <pre>{@code 2001 * NavigableSet<E> set = synchronizedNavigableSet(new TreeSet<E>()); 2002 * NavigableSet<E> set2 = set.descendingSet().headSet(foo); 2003 * ... 2004 * synchronized (set) { // Note: set, not set2!!! 2005 * // Must be in the synchronized block 2006 * Iterator<E> it = set2.descendingIterator(); 2007 * while (it.hasNext()) 2008 * foo(it.next()); 2009 * } 2010 * } 2011 * }</pre> 2012 * 2013 * <p>Failure to follow this advice may result in non-deterministic behavior. 2014 * 2015 * <p>The returned navigable set will be serializable if the specified navigable set is 2016 * serializable. 2017 * 2018 * <p><b>Java 8+ users and later:</b> Prefer {@link Collections#synchronizedNavigableSet}. 2019 * 2020 * @param navigableSet the navigable set to be "wrapped" in a synchronized navigable set. 2021 * @return a synchronized view of the specified navigable set. 2022 * @since 13.0 2023 */ 2024 @GwtIncompatible // NavigableSet 2025 @J2ktIncompatible // Synchronized 2026 public static <E extends @Nullable Object> NavigableSet<E> synchronizedNavigableSet( 2027 NavigableSet<E> navigableSet) { 2028 return Synchronized.navigableSet(navigableSet); 2029 } 2030 2031 /** Remove each element in an iterable from a set. */ 2032 static boolean removeAllImpl(Set<?> set, Iterator<?> iterator) { 2033 boolean changed = false; 2034 while (iterator.hasNext()) { 2035 changed |= set.remove(iterator.next()); 2036 } 2037 return changed; 2038 } 2039 2040 static boolean removeAllImpl(Set<?> set, Collection<?> collection) { 2041 checkNotNull(collection); // for GWT 2042 if (collection instanceof Multiset) { 2043 collection = ((Multiset<?>) collection).elementSet(); 2044 } 2045 /* 2046 * AbstractSet.removeAll(List) has quadratic behavior if the list size 2047 * is just more than the set's size. We augment the test by 2048 * assuming that sets have fast contains() performance, and other 2049 * collections don't. See 2050 * https://github.com/google/guava/issues/1013 2051 */ 2052 if (collection instanceof Set && collection.size() > set.size()) { 2053 return Iterators.removeAll(set.iterator(), collection); 2054 } else { 2055 return removeAllImpl(set, collection.iterator()); 2056 } 2057 } 2058 2059 @GwtIncompatible // NavigableSet 2060 static class DescendingSet<E extends @Nullable Object> extends ForwardingNavigableSet<E> { 2061 private final NavigableSet<E> forward; 2062 2063 DescendingSet(NavigableSet<E> forward) { 2064 this.forward = forward; 2065 } 2066 2067 @Override 2068 protected NavigableSet<E> delegate() { 2069 return forward; 2070 } 2071 2072 @Override 2073 public @Nullable E lower(@ParametricNullness E e) { 2074 return forward.higher(e); 2075 } 2076 2077 @Override 2078 public @Nullable E floor(@ParametricNullness E e) { 2079 return forward.ceiling(e); 2080 } 2081 2082 @Override 2083 public @Nullable E ceiling(@ParametricNullness E e) { 2084 return forward.floor(e); 2085 } 2086 2087 @Override 2088 public @Nullable E higher(@ParametricNullness E e) { 2089 return forward.lower(e); 2090 } 2091 2092 @Override 2093 public @Nullable E pollFirst() { 2094 return forward.pollLast(); 2095 } 2096 2097 @Override 2098 public @Nullable E pollLast() { 2099 return forward.pollFirst(); 2100 } 2101 2102 @Override 2103 public NavigableSet<E> descendingSet() { 2104 return forward; 2105 } 2106 2107 @Override 2108 public Iterator<E> descendingIterator() { 2109 return forward.iterator(); 2110 } 2111 2112 @Override 2113 public NavigableSet<E> subSet( 2114 @ParametricNullness E fromElement, 2115 boolean fromInclusive, 2116 @ParametricNullness E toElement, 2117 boolean toInclusive) { 2118 return forward.subSet(toElement, toInclusive, fromElement, fromInclusive).descendingSet(); 2119 } 2120 2121 @Override 2122 public SortedSet<E> subSet(@ParametricNullness E fromElement, @ParametricNullness E toElement) { 2123 return standardSubSet(fromElement, toElement); 2124 } 2125 2126 @Override 2127 public NavigableSet<E> headSet(@ParametricNullness E toElement, boolean inclusive) { 2128 return forward.tailSet(toElement, inclusive).descendingSet(); 2129 } 2130 2131 @Override 2132 public SortedSet<E> headSet(@ParametricNullness E toElement) { 2133 return standardHeadSet(toElement); 2134 } 2135 2136 @Override 2137 public NavigableSet<E> tailSet(@ParametricNullness E fromElement, boolean inclusive) { 2138 return forward.headSet(fromElement, inclusive).descendingSet(); 2139 } 2140 2141 @Override 2142 public SortedSet<E> tailSet(@ParametricNullness E fromElement) { 2143 return standardTailSet(fromElement); 2144 } 2145 2146 @SuppressWarnings("unchecked") 2147 @Override 2148 public Comparator<? super E> comparator() { 2149 Comparator<? super E> forwardComparator = forward.comparator(); 2150 if (forwardComparator == null) { 2151 return (Comparator) Ordering.natural().reverse(); 2152 } else { 2153 return reverse(forwardComparator); 2154 } 2155 } 2156 2157 // If we inline this, we get a javac error. 2158 private static <T extends @Nullable Object> Ordering<T> reverse(Comparator<T> forward) { 2159 return Ordering.from(forward).reverse(); 2160 } 2161 2162 @Override 2163 @ParametricNullness 2164 public E first() { 2165 return forward.last(); 2166 } 2167 2168 @Override 2169 @ParametricNullness 2170 public E last() { 2171 return forward.first(); 2172 } 2173 2174 @Override 2175 public Iterator<E> iterator() { 2176 return forward.descendingIterator(); 2177 } 2178 2179 @Override 2180 public @Nullable Object[] toArray() { 2181 return standardToArray(); 2182 } 2183 2184 @Override 2185 @SuppressWarnings("nullness") // b/192354773 in our checker affects toArray declarations 2186 public <T extends @Nullable Object> T[] toArray(T[] array) { 2187 return standardToArray(array); 2188 } 2189 2190 @Override 2191 public String toString() { 2192 return standardToString(); 2193 } 2194 } 2195 2196 /** 2197 * Returns a view of the portion of {@code set} whose elements are contained by {@code range}. 2198 * 2199 * <p>This method delegates to the appropriate methods of {@link NavigableSet} (namely {@link 2200 * NavigableSet#subSet(Object, boolean, Object, boolean) subSet()}, {@link 2201 * NavigableSet#tailSet(Object, boolean) tailSet()}, and {@link NavigableSet#headSet(Object, 2202 * boolean) headSet()}) to actually construct the view. Consult these methods for a full 2203 * description of the returned view's behavior. 2204 * 2205 * <p><b>Warning:</b> {@code Range}s always represent a range of values using the values' natural 2206 * ordering. {@code NavigableSet} on the other hand can specify a custom ordering via a {@link 2207 * Comparator}, which can violate the natural ordering. Using this method (or in general using 2208 * {@code Range}) with unnaturally-ordered sets can lead to unexpected and undefined behavior. 2209 * 2210 * @since 20.0 2211 */ 2212 @GwtIncompatible // NavigableSet 2213 public static <K extends Comparable<? super K>> NavigableSet<K> subSet( 2214 NavigableSet<K> set, Range<K> range) { 2215 if (set.comparator() != null 2216 && set.comparator() != Ordering.natural() 2217 && range.hasLowerBound() 2218 && range.hasUpperBound()) { 2219 checkArgument( 2220 set.comparator().compare(range.lowerEndpoint(), range.upperEndpoint()) <= 0, 2221 "set is using a custom comparator which is inconsistent with the natural ordering."); 2222 } 2223 if (range.hasLowerBound() && range.hasUpperBound()) { 2224 return set.subSet( 2225 range.lowerEndpoint(), 2226 range.lowerBoundType() == BoundType.CLOSED, 2227 range.upperEndpoint(), 2228 range.upperBoundType() == BoundType.CLOSED); 2229 } else if (range.hasLowerBound()) { 2230 return set.tailSet(range.lowerEndpoint(), range.lowerBoundType() == BoundType.CLOSED); 2231 } else if (range.hasUpperBound()) { 2232 return set.headSet(range.upperEndpoint(), range.upperBoundType() == BoundType.CLOSED); 2233 } 2234 return checkNotNull(set); 2235 } 2236}