001/*
002 * Copyright (C) 2007 The Guava Authors
003 *
004 * Licensed under the Apache License, Version 2.0 (the "License");
005 * you may not use this file except in compliance with the License.
006 * You may obtain a copy of the License at
007 *
008 * http://www.apache.org/licenses/LICENSE-2.0
009 *
010 * Unless required by applicable law or agreed to in writing, software
011 * distributed under the License is distributed on an "AS IS" BASIS,
012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
013 * See the License for the specific language governing permissions and
014 * limitations under the License.
015 */
016
017package com.google.common.collect;
018
019import static com.google.common.base.Preconditions.checkArgument;
020import static com.google.common.base.Preconditions.checkNotNull;
021import static com.google.common.collect.CollectPreconditions.checkNonnegative;
022import static java.lang.Math.min;
023import static java.util.Arrays.asList;
024
025import com.google.common.annotations.GwtCompatible;
026import com.google.common.annotations.GwtIncompatible;
027import com.google.common.annotations.J2ktIncompatible;
028import com.google.common.base.Predicate;
029import com.google.common.base.Predicates;
030import com.google.common.collect.Collections2.FilteredCollection;
031import com.google.common.math.IntMath;
032import com.google.errorprone.annotations.CanIgnoreReturnValue;
033import com.google.errorprone.annotations.DoNotCall;
034import com.google.errorprone.annotations.concurrent.LazyInit;
035import java.io.Serializable;
036import java.util.AbstractSet;
037import java.util.Arrays;
038import java.util.BitSet;
039import java.util.Collection;
040import java.util.Collections;
041import java.util.Comparator;
042import java.util.EnumSet;
043import java.util.HashSet;
044import java.util.Iterator;
045import java.util.LinkedHashSet;
046import java.util.List;
047import java.util.Map;
048import java.util.NavigableSet;
049import java.util.NoSuchElementException;
050import java.util.Set;
051import java.util.SortedSet;
052import java.util.TreeSet;
053import java.util.concurrent.ConcurrentHashMap;
054import java.util.concurrent.CopyOnWriteArraySet;
055import java.util.function.Consumer;
056import java.util.stream.Collector;
057import java.util.stream.Stream;
058import javax.annotation.CheckForNull;
059import org.checkerframework.checker.nullness.qual.NonNull;
060import org.checkerframework.checker.nullness.qual.Nullable;
061
062/**
063 * Static utility methods pertaining to {@link Set} instances. Also see this class's counterparts
064 * {@link Lists}, {@link Maps} and {@link Queues}.
065 *
066 * <p>See the Guava User Guide article on <a href=
067 * "https://github.com/google/guava/wiki/CollectionUtilitiesExplained#sets">{@code Sets}</a>.
068 *
069 * @author Kevin Bourrillion
070 * @author Jared Levy
071 * @author Chris Povirk
072 * @since 2.0
073 */
074@GwtCompatible(emulated = true)
075@ElementTypesAreNonnullByDefault
076public final class Sets {
077  private Sets() {}
078
079  /**
080   * {@link AbstractSet} substitute without the potentially-quadratic {@code removeAll}
081   * implementation.
082   */
083  abstract static class ImprovedAbstractSet<E extends @Nullable Object> extends AbstractSet<E> {
084    @Override
085    public boolean removeAll(Collection<?> c) {
086      return removeAllImpl(this, c);
087    }
088
089    @Override
090    public boolean retainAll(Collection<?> c) {
091      return super.retainAll(checkNotNull(c)); // GWT compatibility
092    }
093  }
094
095  /**
096   * Returns an immutable set instance containing the given enum elements. Internally, the returned
097   * set will be backed by an {@link EnumSet}.
098   *
099   * <p>The iteration order of the returned set follows the enum's iteration order, not the order in
100   * which the elements are provided to the method.
101   *
102   * @param anElement one of the elements the set should contain
103   * @param otherElements the rest of the elements the set should contain
104   * @return an immutable set containing those elements, minus duplicates
105   */
106  @GwtCompatible(serializable = true)
107  public static <E extends Enum<E>> ImmutableSet<E> immutableEnumSet(
108      E anElement, E... otherElements) {
109    return ImmutableEnumSet.asImmutable(EnumSet.of(anElement, otherElements));
110  }
111
112  /**
113   * Returns an immutable set instance containing the given enum elements. Internally, the returned
114   * set will be backed by an {@link EnumSet}.
115   *
116   * <p>The iteration order of the returned set follows the enum's iteration order, not the order in
117   * which the elements appear in the given collection.
118   *
119   * @param elements the elements, all of the same {@code enum} type, that the set should contain
120   * @return an immutable set containing those elements, minus duplicates
121   */
122  @GwtCompatible(serializable = true)
123  public static <E extends Enum<E>> ImmutableSet<E> immutableEnumSet(Iterable<E> elements) {
124    if (elements instanceof ImmutableEnumSet) {
125      return (ImmutableEnumSet<E>) elements;
126    } else if (elements instanceof Collection) {
127      Collection<E> collection = (Collection<E>) elements;
128      if (collection.isEmpty()) {
129        return ImmutableSet.of();
130      } else {
131        return ImmutableEnumSet.asImmutable(EnumSet.copyOf(collection));
132      }
133    } else {
134      Iterator<E> itr = elements.iterator();
135      if (itr.hasNext()) {
136        EnumSet<E> enumSet = EnumSet.of(itr.next());
137        Iterators.addAll(enumSet, itr);
138        return ImmutableEnumSet.asImmutable(enumSet);
139      } else {
140        return ImmutableSet.of();
141      }
142    }
143  }
144
145  /**
146   * Returns a {@code Collector} that accumulates the input elements into a new {@code ImmutableSet}
147   * with an implementation specialized for enums. Unlike {@link ImmutableSet#toImmutableSet}, the
148   * resulting set will iterate over elements in their enum definition order, not encounter order.
149   *
150   * @since 21.0
151   */
152  public static <E extends Enum<E>> Collector<E, ?, ImmutableSet<E>> toImmutableEnumSet() {
153    return CollectCollectors.toImmutableEnumSet();
154  }
155
156  /**
157   * Returns a new, <i>mutable</i> {@code EnumSet} instance containing the given elements in their
158   * natural order. This method behaves identically to {@link EnumSet#copyOf(Collection)}, but also
159   * accepts non-{@code Collection} iterables and empty iterables.
160   */
161  public static <E extends Enum<E>> EnumSet<E> newEnumSet(
162      Iterable<E> iterable, Class<E> elementType) {
163    EnumSet<E> set = EnumSet.noneOf(elementType);
164    Iterables.addAll(set, iterable);
165    return set;
166  }
167
168  // HashSet
169
170  /**
171   * Creates a <i>mutable</i>, initially empty {@code HashSet} instance.
172   *
173   * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSet#of()} instead. If {@code
174   * E} is an {@link Enum} type, use {@link EnumSet#noneOf} instead. Otherwise, strongly consider
175   * using a {@code LinkedHashSet} instead, at the cost of increased memory footprint, to get
176   * deterministic iteration behavior.
177   *
178   * <p><b>Note:</b> this method is now unnecessary and should be treated as deprecated. Instead,
179   * use the {@code HashSet} constructor directly, taking advantage of <a
180   * href="https://docs.oracle.com/javase/tutorial/java/generics/genTypeInference.html#type-inference-instantiation">"diamond"
181   * syntax</a>.
182   */
183  @SuppressWarnings("NonApiType") // acts as a direct substitute for a constructor call
184  public static <E extends @Nullable Object> HashSet<E> newHashSet() {
185    return new HashSet<>();
186  }
187
188  /**
189   * Creates a <i>mutable</i> {@code HashSet} instance initially containing the given elements.
190   *
191   * <p><b>Note:</b> if elements are non-null and won't be added or removed after this point, use
192   * {@link ImmutableSet#of()} or {@link ImmutableSet#copyOf(Object[])} instead. If {@code E} is an
193   * {@link Enum} type, use {@link EnumSet#of(Enum, Enum[])} instead. Otherwise, strongly consider
194   * using a {@code LinkedHashSet} instead, at the cost of increased memory footprint, to get
195   * deterministic iteration behavior.
196   *
197   * <p>This method is just a small convenience, either for {@code newHashSet(}{@link Arrays#asList
198   * asList}{@code (...))}, or for creating an empty set then calling {@link Collections#addAll}.
199   * This method is not actually very useful and will likely be deprecated in the future.
200   */
201  @SuppressWarnings("NonApiType") // acts as a direct substitute for a constructor call
202  public static <E extends @Nullable Object> HashSet<E> newHashSet(E... elements) {
203    HashSet<E> set = newHashSetWithExpectedSize(elements.length);
204    Collections.addAll(set, elements);
205    return set;
206  }
207
208  /**
209   * Creates a <i>mutable</i> {@code HashSet} instance containing the given elements. A very thin
210   * convenience for creating an empty set then calling {@link Collection#addAll} or {@link
211   * Iterables#addAll}.
212   *
213   * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link
214   * ImmutableSet#copyOf(Iterable)} instead. (Or, change {@code elements} to be a {@link
215   * FluentIterable} and call {@code elements.toSet()}.)
216   *
217   * <p><b>Note:</b> if {@code E} is an {@link Enum} type, use {@link #newEnumSet(Iterable, Class)}
218   * instead.
219   *
220   * <p><b>Note:</b> if {@code elements} is a {@link Collection}, you don't need this method.
221   * Instead, use the {@code HashSet} constructor directly, taking advantage of <a
222   * href="https://docs.oracle.com/javase/tutorial/java/generics/genTypeInference.html#type-inference-instantiation">"diamond"
223   * syntax</a>.
224   *
225   * <p>Overall, this method is not very useful and will likely be deprecated in the future.
226   */
227  @SuppressWarnings("NonApiType") // acts as a direct substitute for a constructor call
228  public static <E extends @Nullable Object> HashSet<E> newHashSet(Iterable<? extends E> elements) {
229    return (elements instanceof Collection)
230        ? new HashSet<E>((Collection<? extends E>) elements)
231        : newHashSet(elements.iterator());
232  }
233
234  /**
235   * Creates a <i>mutable</i> {@code HashSet} instance containing the given elements. A very thin
236   * convenience for creating an empty set and then calling {@link Iterators#addAll}.
237   *
238   * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link
239   * ImmutableSet#copyOf(Iterator)} instead.
240   *
241   * <p><b>Note:</b> if {@code E} is an {@link Enum} type, you should create an {@link EnumSet}
242   * instead.
243   *
244   * <p>Overall, this method is not very useful and will likely be deprecated in the future.
245   */
246  @SuppressWarnings("NonApiType") // acts as a direct substitute for a constructor call
247  public static <E extends @Nullable Object> HashSet<E> newHashSet(Iterator<? extends E> elements) {
248    HashSet<E> set = newHashSet();
249    Iterators.addAll(set, elements);
250    return set;
251  }
252
253  /**
254   * Returns a new hash set using the smallest initial table size that can hold {@code expectedSize}
255   * elements without resizing. Note that this is not what {@link HashSet#HashSet(int)} does, but it
256   * is what most users want and expect it to do.
257   *
258   * <p>This behavior can't be broadly guaranteed, but has been tested with OpenJDK 1.7 and 1.8.
259   *
260   * @param expectedSize the number of elements you expect to add to the returned set
261   * @return a new, empty hash set with enough capacity to hold {@code expectedSize} elements
262   *     without resizing
263   * @throws IllegalArgumentException if {@code expectedSize} is negative
264   */
265  @SuppressWarnings("NonApiType") // acts as a direct substitute for a constructor call
266  public static <E extends @Nullable Object> HashSet<E> newHashSetWithExpectedSize(
267      int expectedSize) {
268    return new HashSet<>(Maps.capacity(expectedSize));
269  }
270
271  /**
272   * Creates a thread-safe set backed by a hash map. The set is backed by a {@link
273   * ConcurrentHashMap} instance, and thus carries the same concurrency guarantees.
274   *
275   * <p>Unlike {@code HashSet}, this class does NOT allow {@code null} to be used as an element. The
276   * set is serializable.
277   *
278   * @return a new, empty thread-safe {@code Set}
279   * @since 15.0
280   */
281  public static <E> Set<E> newConcurrentHashSet() {
282    return Platform.newConcurrentHashSet();
283  }
284
285  /**
286   * Creates a thread-safe set backed by a hash map and containing the given elements. The set is
287   * backed by a {@link ConcurrentHashMap} instance, and thus carries the same concurrency
288   * guarantees.
289   *
290   * <p>Unlike {@code HashSet}, this class does NOT allow {@code null} to be used as an element. The
291   * set is serializable.
292   *
293   * @param elements the elements that the set should contain
294   * @return a new thread-safe set containing those elements (minus duplicates)
295   * @throws NullPointerException if {@code elements} or any of its contents is null
296   * @since 15.0
297   */
298  public static <E> Set<E> newConcurrentHashSet(Iterable<? extends E> elements) {
299    Set<E> set = newConcurrentHashSet();
300    Iterables.addAll(set, elements);
301    return set;
302  }
303
304  // LinkedHashSet
305
306  /**
307   * Creates a <i>mutable</i>, empty {@code LinkedHashSet} instance.
308   *
309   * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSet#of()} instead.
310   *
311   * <p><b>Note:</b> this method is now unnecessary and should be treated as deprecated. Instead,
312   * use the {@code LinkedHashSet} constructor directly, taking advantage of <a
313   * href="https://docs.oracle.com/javase/tutorial/java/generics/genTypeInference.html#type-inference-instantiation">"diamond"
314   * syntax</a>.
315   *
316   * @return a new, empty {@code LinkedHashSet}
317   */
318  @SuppressWarnings("NonApiType") // acts as a direct substitute for a constructor call
319  public static <E extends @Nullable Object> LinkedHashSet<E> newLinkedHashSet() {
320    return new LinkedHashSet<>();
321  }
322
323  /**
324   * Creates a <i>mutable</i> {@code LinkedHashSet} instance containing the given elements in order.
325   *
326   * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link
327   * ImmutableSet#copyOf(Iterable)} instead.
328   *
329   * <p><b>Note:</b> if {@code elements} is a {@link Collection}, you don't need this method.
330   * Instead, use the {@code LinkedHashSet} constructor directly, taking advantage of <a
331   * href="https://docs.oracle.com/javase/tutorial/java/generics/genTypeInference.html#type-inference-instantiation">"diamond"
332   * syntax</a>.
333   *
334   * <p>Overall, this method is not very useful and will likely be deprecated in the future.
335   *
336   * @param elements the elements that the set should contain, in order
337   * @return a new {@code LinkedHashSet} containing those elements (minus duplicates)
338   */
339  @SuppressWarnings("NonApiType") // acts as a direct substitute for a constructor call
340  public static <E extends @Nullable Object> LinkedHashSet<E> newLinkedHashSet(
341      Iterable<? extends E> elements) {
342    if (elements instanceof Collection) {
343      return new LinkedHashSet<>((Collection<? extends E>) elements);
344    }
345    LinkedHashSet<E> set = newLinkedHashSet();
346    Iterables.addAll(set, elements);
347    return set;
348  }
349
350  /**
351   * Creates a {@code LinkedHashSet} instance, with a high enough "initial capacity" that it
352   * <i>should</i> hold {@code expectedSize} elements without growth. This behavior cannot be
353   * broadly guaranteed, but it is observed to be true for OpenJDK 1.7. It also can't be guaranteed
354   * that the method isn't inadvertently <i>oversizing</i> the returned set.
355   *
356   * @param expectedSize the number of elements you expect to add to the returned set
357   * @return a new, empty {@code LinkedHashSet} with enough capacity to hold {@code expectedSize}
358   *     elements without resizing
359   * @throws IllegalArgumentException if {@code expectedSize} is negative
360   * @since 11.0
361   */
362  @SuppressWarnings("NonApiType") // acts as a direct substitute for a constructor call
363  public static <E extends @Nullable Object> LinkedHashSet<E> newLinkedHashSetWithExpectedSize(
364      int expectedSize) {
365    return new LinkedHashSet<>(Maps.capacity(expectedSize));
366  }
367
368  // TreeSet
369
370  /**
371   * Creates a <i>mutable</i>, empty {@code TreeSet} instance sorted by the natural sort ordering of
372   * its elements.
373   *
374   * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSortedSet#of()} instead.
375   *
376   * <p><b>Note:</b> this method is now unnecessary and should be treated as deprecated. Instead,
377   * use the {@code TreeSet} constructor directly, taking advantage of <a
378   * href="https://docs.oracle.com/javase/tutorial/java/generics/genTypeInference.html#type-inference-instantiation">"diamond"
379   * syntax</a>.
380   *
381   * @return a new, empty {@code TreeSet}
382   */
383  @SuppressWarnings({
384    "rawtypes", // https://github.com/google/guava/issues/989
385    "NonApiType", // acts as a direct substitute for a constructor call
386  })
387  public static <E extends Comparable> TreeSet<E> newTreeSet() {
388    return new TreeSet<>();
389  }
390
391  /**
392   * Creates a <i>mutable</i> {@code TreeSet} instance containing the given elements sorted by their
393   * natural ordering.
394   *
395   * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSortedSet#copyOf(Iterable)}
396   * instead.
397   *
398   * <p><b>Note:</b> If {@code elements} is a {@code SortedSet} with an explicit comparator, this
399   * method has different behavior than {@link TreeSet#TreeSet(SortedSet)}, which returns a {@code
400   * TreeSet} with that comparator.
401   *
402   * <p><b>Note:</b> this method is now unnecessary and should be treated as deprecated. Instead,
403   * use the {@code TreeSet} constructor directly, taking advantage of <a
404   * href="https://docs.oracle.com/javase/tutorial/java/generics/genTypeInference.html#type-inference-instantiation">"diamond"
405   * syntax</a>.
406   *
407   * <p>This method is just a small convenience for creating an empty set and then calling {@link
408   * Iterables#addAll}. This method is not very useful and will likely be deprecated in the future.
409   *
410   * @param elements the elements that the set should contain
411   * @return a new {@code TreeSet} containing those elements (minus duplicates)
412   */
413  @SuppressWarnings({
414    "rawtypes", // https://github.com/google/guava/issues/989
415    "NonApiType", // acts as a direct substitute for a constructor call
416  })
417  public static <E extends Comparable> TreeSet<E> newTreeSet(Iterable<? extends E> elements) {
418    TreeSet<E> set = newTreeSet();
419    Iterables.addAll(set, elements);
420    return set;
421  }
422
423  /**
424   * Creates a <i>mutable</i>, empty {@code TreeSet} instance with the given comparator.
425   *
426   * <p><b>Note:</b> if mutability is not required, use {@code
427   * ImmutableSortedSet.orderedBy(comparator).build()} instead.
428   *
429   * <p><b>Note:</b> this method is now unnecessary and should be treated as deprecated. Instead,
430   * use the {@code TreeSet} constructor directly, taking advantage of <a
431   * href="https://docs.oracle.com/javase/tutorial/java/generics/genTypeInference.html#type-inference-instantiation">"diamond"
432   * syntax</a>. One caveat to this is that the {@code TreeSet} constructor uses a null {@code
433   * Comparator} to mean "natural ordering," whereas this factory rejects null. Clean your code
434   * accordingly.
435   *
436   * @param comparator the comparator to use to sort the set
437   * @return a new, empty {@code TreeSet}
438   * @throws NullPointerException if {@code comparator} is null
439   */
440  @SuppressWarnings("NonApiType") // acts as a direct substitute for a constructor call
441  public static <E extends @Nullable Object> TreeSet<E> newTreeSet(
442      Comparator<? super E> comparator) {
443    return new TreeSet<>(checkNotNull(comparator));
444  }
445
446  /**
447   * Creates an empty {@code Set} that uses identity to determine equality. It compares object
448   * references, instead of calling {@code equals}, to determine whether a provided object matches
449   * an element in the set. For example, {@code contains} returns {@code false} when passed an
450   * object that equals a set member, but isn't the same instance. This behavior is similar to the
451   * way {@code IdentityHashMap} handles key lookups.
452   *
453   * @since 8.0
454   */
455  public static <E extends @Nullable Object> Set<E> newIdentityHashSet() {
456    return Collections.newSetFromMap(Maps.<E, Boolean>newIdentityHashMap());
457  }
458
459  /**
460   * Creates an empty {@code CopyOnWriteArraySet} instance.
461   *
462   * <p><b>Note:</b> if you need an immutable empty {@link Set}, use {@link Collections#emptySet}
463   * instead.
464   *
465   * @return a new, empty {@code CopyOnWriteArraySet}
466   * @since 12.0
467   */
468  @J2ktIncompatible
469  @GwtIncompatible // CopyOnWriteArraySet
470  public static <E extends @Nullable Object> CopyOnWriteArraySet<E> newCopyOnWriteArraySet() {
471    return new CopyOnWriteArraySet<>();
472  }
473
474  /**
475   * Creates a {@code CopyOnWriteArraySet} instance containing the given elements.
476   *
477   * @param elements the elements that the set should contain, in order
478   * @return a new {@code CopyOnWriteArraySet} containing those elements
479   * @since 12.0
480   */
481  @J2ktIncompatible
482  @GwtIncompatible // CopyOnWriteArraySet
483  public static <E extends @Nullable Object> CopyOnWriteArraySet<E> newCopyOnWriteArraySet(
484      Iterable<? extends E> elements) {
485    // We copy elements to an ArrayList first, rather than incurring the
486    // quadratic cost of adding them to the COWAS directly.
487    Collection<? extends E> elementsCollection =
488        (elements instanceof Collection)
489            ? (Collection<? extends E>) elements
490            : Lists.newArrayList(elements);
491    return new CopyOnWriteArraySet<>(elementsCollection);
492  }
493
494  /**
495   * Creates an {@code EnumSet} consisting of all enum values that are not in the specified
496   * collection. If the collection is an {@link EnumSet}, this method has the same behavior as
497   * {@link EnumSet#complementOf}. Otherwise, the specified collection must contain at least one
498   * element, in order to determine the element type. If the collection could be empty, use {@link
499   * #complementOf(Collection, Class)} instead of this method.
500   *
501   * @param collection the collection whose complement should be stored in the enum set
502   * @return a new, modifiable {@code EnumSet} containing all values of the enum that aren't present
503   *     in the given collection
504   * @throws IllegalArgumentException if {@code collection} is not an {@code EnumSet} instance and
505   *     contains no elements
506   */
507  @J2ktIncompatible
508  @GwtIncompatible // EnumSet.complementOf
509  public static <E extends Enum<E>> EnumSet<E> complementOf(Collection<E> collection) {
510    if (collection instanceof EnumSet) {
511      return EnumSet.complementOf((EnumSet<E>) collection);
512    }
513    checkArgument(
514        !collection.isEmpty(), "collection is empty; use the other version of this method");
515    Class<E> type = collection.iterator().next().getDeclaringClass();
516    return makeComplementByHand(collection, type);
517  }
518
519  /**
520   * Creates an {@code EnumSet} consisting of all enum values that are not in the specified
521   * collection. This is equivalent to {@link EnumSet#complementOf}, but can act on any input
522   * collection, as long as the elements are of enum type.
523   *
524   * @param collection the collection whose complement should be stored in the {@code EnumSet}
525   * @param type the type of the elements in the set
526   * @return a new, modifiable {@code EnumSet} initially containing all the values of the enum not
527   *     present in the given collection
528   */
529  @J2ktIncompatible
530  @GwtIncompatible // EnumSet.complementOf
531  public static <E extends Enum<E>> EnumSet<E> complementOf(
532      Collection<E> collection, Class<E> type) {
533    checkNotNull(collection);
534    return (collection instanceof EnumSet)
535        ? EnumSet.complementOf((EnumSet<E>) collection)
536        : makeComplementByHand(collection, type);
537  }
538
539  @J2ktIncompatible
540  @GwtIncompatible
541  private static <E extends Enum<E>> EnumSet<E> makeComplementByHand(
542      Collection<E> collection, Class<E> type) {
543    EnumSet<E> result = EnumSet.allOf(type);
544    result.removeAll(collection);
545    return result;
546  }
547
548  /**
549   * Returns a set backed by the specified map. The resulting set displays the same ordering,
550   * concurrency, and performance characteristics as the backing map. In essence, this factory
551   * method provides a {@link Set} implementation corresponding to any {@link Map} implementation.
552   * There is no need to use this method on a {@link Map} implementation that already has a
553   * corresponding {@link Set} implementation (such as {@link java.util.HashMap} or {@link
554   * java.util.TreeMap}).
555   *
556   * <p>Each method invocation on the set returned by this method results in exactly one method
557   * invocation on the backing map or its {@code keySet} view, with one exception. The {@code
558   * addAll} method is implemented as a sequence of {@code put} invocations on the backing map.
559   *
560   * <p>The specified map must be empty at the time this method is invoked, and should not be
561   * accessed directly after this method returns. These conditions are ensured if the map is created
562   * empty, passed directly to this method, and no reference to the map is retained, as illustrated
563   * in the following code fragment:
564   *
565   * <pre>{@code
566   * Set<Object> identityHashSet = Sets.newSetFromMap(
567   *     new IdentityHashMap<Object, Boolean>());
568   * }</pre>
569   *
570   * <p>The returned set is serializable if the backing map is.
571   *
572   * @param map the backing map
573   * @return the set backed by the map
574   * @throws IllegalArgumentException if {@code map} is not empty
575   * @deprecated Use {@link Collections#newSetFromMap} instead.
576   */
577  @Deprecated
578  public static <E extends @Nullable Object> Set<E> newSetFromMap(
579      Map<E, Boolean> map) {
580    return Collections.newSetFromMap(map);
581  }
582
583  /**
584   * An unmodifiable view of a set which may be backed by other sets; this view will change as the
585   * backing sets do. Contains methods to copy the data into a new set which will then remain
586   * stable. There is usually no reason to retain a reference of type {@code SetView}; typically,
587   * you either use it as a plain {@link Set}, or immediately invoke {@link #immutableCopy} or
588   * {@link #copyInto} and forget the {@code SetView} itself.
589   *
590   * @since 2.0
591   */
592  public abstract static class SetView<E extends @Nullable Object> extends AbstractSet<E> {
593    private SetView() {} // no subclasses but our own
594
595    /**
596     * Returns an immutable copy of the current contents of this set view. Does not support null
597     * elements.
598     *
599     * <p><b>Warning:</b> this may have unexpected results if a backing set of this view uses a
600     * nonstandard notion of equivalence, for example if it is a {@link TreeSet} using a comparator
601     * that is inconsistent with {@link Object#equals(Object)}.
602     */
603    public ImmutableSet<@NonNull E> immutableCopy() {
604      // Not using ImmutableSet.copyOf() to avoid iterating thrice (isEmpty, size, iterator).
605      int upperBoundSize = upperBoundSize();
606      if (upperBoundSize == 0) {
607        return ImmutableSet.of();
608      }
609      ImmutableSet.Builder<@NonNull E> builder =
610          ImmutableSet.builderWithExpectedSize(upperBoundSize);
611      for (E element : this) {
612        builder.add(checkNotNull(element));
613      }
614      return builder.build();
615    }
616
617    /**
618     * Copies the current contents of this set view into an existing set. This method has equivalent
619     * behavior to {@code set.addAll(this)}, assuming that all the sets involved are based on the
620     * same notion of equivalence.
621     *
622     * @return a reference to {@code set}, for convenience
623     */
624    // Note: S should logically extend Set<? super E> but can't due to either
625    // some javac bug or some weirdness in the spec, not sure which.
626    @CanIgnoreReturnValue
627    public <S extends Set<E>> S copyInto(S set) {
628      set.addAll(this);
629      return set;
630    }
631
632    /**
633     * Guaranteed to throw an exception and leave the collection unmodified.
634     *
635     * @throws UnsupportedOperationException always
636     * @deprecated Unsupported operation.
637     */
638    @CanIgnoreReturnValue
639    @Deprecated
640    @Override
641    @DoNotCall("Always throws UnsupportedOperationException")
642    public final boolean add(@ParametricNullness E e) {
643      throw new UnsupportedOperationException();
644    }
645
646    /**
647     * Guaranteed to throw an exception and leave the collection unmodified.
648     *
649     * @throws UnsupportedOperationException always
650     * @deprecated Unsupported operation.
651     */
652    @CanIgnoreReturnValue
653    @Deprecated
654    @Override
655    @DoNotCall("Always throws UnsupportedOperationException")
656    public final boolean remove(@CheckForNull Object object) {
657      throw new UnsupportedOperationException();
658    }
659
660    /**
661     * Guaranteed to throw an exception and leave the collection unmodified.
662     *
663     * @throws UnsupportedOperationException always
664     * @deprecated Unsupported operation.
665     */
666    @CanIgnoreReturnValue
667    @Deprecated
668    @Override
669    @DoNotCall("Always throws UnsupportedOperationException")
670    public final boolean addAll(Collection<? extends E> newElements) {
671      throw new UnsupportedOperationException();
672    }
673
674    /**
675     * Guaranteed to throw an exception and leave the collection unmodified.
676     *
677     * @throws UnsupportedOperationException always
678     * @deprecated Unsupported operation.
679     */
680    @CanIgnoreReturnValue
681    @Deprecated
682    @Override
683    @DoNotCall("Always throws UnsupportedOperationException")
684    public final boolean removeAll(Collection<?> oldElements) {
685      throw new UnsupportedOperationException();
686    }
687
688    /**
689     * Guaranteed to throw an exception and leave the collection unmodified.
690     *
691     * @throws UnsupportedOperationException always
692     * @deprecated Unsupported operation.
693     */
694    @CanIgnoreReturnValue
695    @Deprecated
696    @Override
697    @DoNotCall("Always throws UnsupportedOperationException")
698    public final boolean removeIf(java.util.function.Predicate<? super E> filter) {
699      throw new UnsupportedOperationException();
700    }
701
702    /**
703     * Guaranteed to throw an exception and leave the collection unmodified.
704     *
705     * @throws UnsupportedOperationException always
706     * @deprecated Unsupported operation.
707     */
708    @CanIgnoreReturnValue
709    @Deprecated
710    @Override
711    @DoNotCall("Always throws UnsupportedOperationException")
712    public final boolean retainAll(Collection<?> elementsToKeep) {
713      throw new UnsupportedOperationException();
714    }
715
716    /**
717     * Guaranteed to throw an exception and leave the collection unmodified.
718     *
719     * @throws UnsupportedOperationException always
720     * @deprecated Unsupported operation.
721     */
722    @Deprecated
723    @Override
724    @DoNotCall("Always throws UnsupportedOperationException")
725    public final void clear() {
726      throw new UnsupportedOperationException();
727    }
728
729    /**
730     * Scope the return type to {@link UnmodifiableIterator} to ensure this is an unmodifiable view.
731     *
732     * @since 20.0 (present with return type {@link Iterator} since 2.0)
733     */
734    @Override
735    public abstract UnmodifiableIterator<E> iterator();
736
737    /**
738     * Returns the upper bound on the size of this set view.
739     *
740     * <p>This method is used to presize the underlying collection when converting to an {@link
741     * ImmutableSet}.
742     */
743    abstract int upperBoundSize();
744
745    static int upperBoundSize(Set<?> set) {
746      return set instanceof SetView ? ((SetView) set).upperBoundSize() : set.size();
747    }
748  }
749
750  /**
751   * Returns an unmodifiable <b>view</b> of the union of two sets. The returned set contains all
752   * elements that are contained in either backing set. Iterating over the returned set iterates
753   * first over all the elements of {@code set1}, then over each element of {@code set2}, in order,
754   * that is not contained in {@code set1}.
755   *
756   * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different
757   * equivalence relations, for example if {@code set1} is a {@link HashSet} and {@code set2} is a
758   * {@link TreeSet} or the {@link Map#keySet} of an {@code IdentityHashMap}.
759   */
760  public static <E extends @Nullable Object> SetView<E> union(
761      final Set<? extends E> set1, final Set<? extends E> set2) {
762    checkNotNull(set1, "set1");
763    checkNotNull(set2, "set2");
764
765    return new SetView<E>() {
766      @Override
767      public int size() {
768        int size = set1.size();
769        for (E e : set2) {
770          if (!set1.contains(e)) {
771            size++;
772          }
773        }
774        return size;
775      }
776
777      @Override
778      public boolean isEmpty() {
779        return set1.isEmpty() && set2.isEmpty();
780      }
781
782      @Override
783      public UnmodifiableIterator<E> iterator() {
784        return new AbstractIterator<E>() {
785          final Iterator<? extends E> itr1 = set1.iterator();
786          final Iterator<? extends E> itr2 = set2.iterator();
787
788          @Override
789          @CheckForNull
790          protected E computeNext() {
791            if (itr1.hasNext()) {
792              return itr1.next();
793            }
794            while (itr2.hasNext()) {
795              E e = itr2.next();
796              if (!set1.contains(e)) {
797                return e;
798              }
799            }
800            return endOfData();
801          }
802        };
803      }
804
805      @Override
806      public Stream<E> stream() {
807        return Stream.concat(set1.stream(), set2.stream().filter((E e) -> !set1.contains(e)));
808      }
809
810      @Override
811      public Stream<E> parallelStream() {
812        return stream().parallel();
813      }
814
815      @Override
816      public boolean contains(@CheckForNull Object object) {
817        return set1.contains(object) || set2.contains(object);
818      }
819
820      @Override
821      public <S extends Set<E>> S copyInto(S set) {
822        set.addAll(set1);
823        set.addAll(set2);
824        return set;
825      }
826
827      @Override
828      int upperBoundSize() {
829        return upperBoundSize(set1) + upperBoundSize(set2);
830      }
831    };
832  }
833
834  /**
835   * Returns an unmodifiable <b>view</b> of the intersection of two sets. The returned set contains
836   * all elements that are contained by both backing sets. The iteration order of the returned set
837   * matches that of {@code set1}.
838   *
839   * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different
840   * equivalence relations, for example if {@code set1} is a {@link HashSet} and {@code set2} is a
841   * {@link TreeSet} or the {@link Map#keySet} of an {@code IdentityHashMap}.
842   *
843   * <p><b>Note:</b> The returned view performs slightly better when {@code set1} is the smaller of
844   * the two sets. If you have reason to believe one of your sets will generally be smaller than the
845   * other, pass it first. Unfortunately, since this method sets the generic type of the returned
846   * set based on the type of the first set passed, this could in rare cases force you to make a
847   * cast, for example:
848   *
849   * <pre>{@code
850   * Set<Object> aFewBadObjects = ...
851   * Set<String> manyBadStrings = ...
852   *
853   * // impossible for a non-String to be in the intersection
854   * SuppressWarnings("unchecked")
855   * Set<String> badStrings = (Set) Sets.intersection(
856   *     aFewBadObjects, manyBadStrings);
857   * }</pre>
858   *
859   * <p>This is unfortunate, but should come up only very rarely.
860   */
861  public static <E extends @Nullable Object> SetView<E> intersection(
862      final Set<E> set1, final Set<?> set2) {
863    checkNotNull(set1, "set1");
864    checkNotNull(set2, "set2");
865
866    return new SetView<E>() {
867      @Override
868      public UnmodifiableIterator<E> iterator() {
869        return new AbstractIterator<E>() {
870          final Iterator<E> itr = set1.iterator();
871
872          @Override
873          @CheckForNull
874          protected E computeNext() {
875            while (itr.hasNext()) {
876              E e = itr.next();
877              if (set2.contains(e)) {
878                return e;
879              }
880            }
881            return endOfData();
882          }
883        };
884      }
885
886      @Override
887      public Stream<E> stream() {
888        return set1.stream().filter(set2::contains);
889      }
890
891      @Override
892      public Stream<E> parallelStream() {
893        return set1.parallelStream().filter(set2::contains);
894      }
895
896      @Override
897      public int size() {
898        int size = 0;
899        for (E e : set1) {
900          if (set2.contains(e)) {
901            size++;
902          }
903        }
904        return size;
905      }
906
907      @Override
908      public boolean isEmpty() {
909        return Collections.disjoint(set2, set1);
910      }
911
912      @Override
913      public boolean contains(@CheckForNull Object object) {
914        return set1.contains(object) && set2.contains(object);
915      }
916
917      @Override
918      public boolean containsAll(Collection<?> collection) {
919        return set1.containsAll(collection) && set2.containsAll(collection);
920      }
921
922      @Override
923      int upperBoundSize() {
924        return min(upperBoundSize(set1), upperBoundSize(set2));
925      }
926    };
927  }
928
929  /**
930   * Returns an unmodifiable <b>view</b> of the difference of two sets. The returned set contains
931   * all elements that are contained by {@code set1} and not contained by {@code set2}. {@code set2}
932   * may also contain elements not present in {@code set1}; these are simply ignored. The iteration
933   * order of the returned set matches that of {@code set1}.
934   *
935   * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different
936   * equivalence relations, for example if {@code set1} is a {@link HashSet} and {@code set2} is a
937   * {@link TreeSet} or the {@link Map#keySet} of an {@code IdentityHashMap}.
938   */
939  public static <E extends @Nullable Object> SetView<E> difference(
940      final Set<E> set1, final Set<?> set2) {
941    checkNotNull(set1, "set1");
942    checkNotNull(set2, "set2");
943
944    return new SetView<E>() {
945      @Override
946      public UnmodifiableIterator<E> iterator() {
947        return new AbstractIterator<E>() {
948          final Iterator<E> itr = set1.iterator();
949
950          @Override
951          @CheckForNull
952          protected E computeNext() {
953            while (itr.hasNext()) {
954              E e = itr.next();
955              if (!set2.contains(e)) {
956                return e;
957              }
958            }
959            return endOfData();
960          }
961        };
962      }
963
964      @Override
965      public Stream<E> stream() {
966        return set1.stream().filter(e -> !set2.contains(e));
967      }
968
969      @Override
970      public Stream<E> parallelStream() {
971        return set1.parallelStream().filter(e -> !set2.contains(e));
972      }
973
974      @Override
975      public int size() {
976        int size = 0;
977        for (E e : set1) {
978          if (!set2.contains(e)) {
979            size++;
980          }
981        }
982        return size;
983      }
984
985      @Override
986      public boolean isEmpty() {
987        return set2.containsAll(set1);
988      }
989
990      @Override
991      public boolean contains(@CheckForNull Object element) {
992        return set1.contains(element) && !set2.contains(element);
993      }
994
995      @Override
996      int upperBoundSize() {
997        return upperBoundSize(set1);
998      }
999    };
1000  }
1001
1002  /**
1003   * Returns an unmodifiable <b>view</b> of the symmetric difference of two sets. The returned set
1004   * contains all elements that are contained in either {@code set1} or {@code set2} but not in
1005   * both. The iteration order of the returned set is undefined.
1006   *
1007   * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different
1008   * equivalence relations, for example if {@code set1} is a {@link HashSet} and {@code set2} is a
1009   * {@link TreeSet} or the {@link Map#keySet} of an {@code IdentityHashMap}.
1010   *
1011   * @since 3.0
1012   */
1013  public static <E extends @Nullable Object> SetView<E> symmetricDifference(
1014      final Set<? extends E> set1, final Set<? extends E> set2) {
1015    checkNotNull(set1, "set1");
1016    checkNotNull(set2, "set2");
1017
1018    return new SetView<E>() {
1019      @Override
1020      public UnmodifiableIterator<E> iterator() {
1021        final Iterator<? extends E> itr1 = set1.iterator();
1022        final Iterator<? extends E> itr2 = set2.iterator();
1023        return new AbstractIterator<E>() {
1024          @Override
1025          @CheckForNull
1026          public E computeNext() {
1027            while (itr1.hasNext()) {
1028              E elem1 = itr1.next();
1029              if (!set2.contains(elem1)) {
1030                return elem1;
1031              }
1032            }
1033            while (itr2.hasNext()) {
1034              E elem2 = itr2.next();
1035              if (!set1.contains(elem2)) {
1036                return elem2;
1037              }
1038            }
1039            return endOfData();
1040          }
1041        };
1042      }
1043
1044      @Override
1045      public int size() {
1046        int size = 0;
1047        for (E e : set1) {
1048          if (!set2.contains(e)) {
1049            size++;
1050          }
1051        }
1052        for (E e : set2) {
1053          if (!set1.contains(e)) {
1054            size++;
1055          }
1056        }
1057        return size;
1058      }
1059
1060      @Override
1061      public boolean isEmpty() {
1062        return set1.equals(set2);
1063      }
1064
1065      @Override
1066      public boolean contains(@CheckForNull Object element) {
1067        return set1.contains(element) ^ set2.contains(element);
1068      }
1069
1070      @Override
1071      int upperBoundSize() {
1072        return upperBoundSize(set1) + upperBoundSize(set2);
1073      }
1074    };
1075  }
1076
1077  /**
1078   * Returns the elements of {@code unfiltered} that satisfy a predicate. The returned set is a live
1079   * view of {@code unfiltered}; changes to one affect the other.
1080   *
1081   * <p>The resulting set's iterator does not support {@code remove()}, but all other set methods
1082   * are supported. When given an element that doesn't satisfy the predicate, the set's {@code
1083   * add()} and {@code addAll()} methods throw an {@link IllegalArgumentException}. When methods
1084   * such as {@code removeAll()} and {@code clear()} are called on the filtered set, only elements
1085   * that satisfy the filter will be removed from the underlying set.
1086   *
1087   * <p>The returned set isn't threadsafe or serializable, even if {@code unfiltered} is.
1088   *
1089   * <p>Many of the filtered set's methods, such as {@code size()}, iterate across every element in
1090   * the underlying set and determine which elements satisfy the filter. When a live view is
1091   * <i>not</i> needed, it may be faster to copy {@code Iterables.filter(unfiltered, predicate)} and
1092   * use the copy.
1093   *
1094   * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as documented at
1095   * {@link Predicate#apply}. Do not provide a predicate such as {@code
1096   * Predicates.instanceOf(ArrayList.class)}, which is inconsistent with equals. (See {@link
1097   * Iterables#filter(Iterable, Class)} for related functionality.)
1098   *
1099   * <p><b>Java 8+ users:</b> many use cases for this method are better addressed by {@link
1100   * java.util.stream.Stream#filter}. This method is not being deprecated, but we gently encourage
1101   * you to migrate to streams.
1102   */
1103  // TODO(kevinb): how to omit that last sentence when building GWT javadoc?
1104  public static <E extends @Nullable Object> Set<E> filter(
1105      Set<E> unfiltered, Predicate<? super E> predicate) {
1106    if (unfiltered instanceof SortedSet) {
1107      return filter((SortedSet<E>) unfiltered, predicate);
1108    }
1109    if (unfiltered instanceof FilteredSet) {
1110      // Support clear(), removeAll(), and retainAll() when filtering a filtered
1111      // collection.
1112      FilteredSet<E> filtered = (FilteredSet<E>) unfiltered;
1113      Predicate<E> combinedPredicate = Predicates.and(filtered.predicate, predicate);
1114      return new FilteredSet<>((Set<E>) filtered.unfiltered, combinedPredicate);
1115    }
1116
1117    return new FilteredSet<>(checkNotNull(unfiltered), checkNotNull(predicate));
1118  }
1119
1120  /**
1121   * Returns the elements of a {@code SortedSet}, {@code unfiltered}, that satisfy a predicate. The
1122   * returned set is a live view of {@code unfiltered}; changes to one affect the other.
1123   *
1124   * <p>The resulting set's iterator does not support {@code remove()}, but all other set methods
1125   * are supported. When given an element that doesn't satisfy the predicate, the set's {@code
1126   * add()} and {@code addAll()} methods throw an {@link IllegalArgumentException}. When methods
1127   * such as {@code removeAll()} and {@code clear()} are called on the filtered set, only elements
1128   * that satisfy the filter will be removed from the underlying set.
1129   *
1130   * <p>The returned set isn't threadsafe or serializable, even if {@code unfiltered} is.
1131   *
1132   * <p>Many of the filtered set's methods, such as {@code size()}, iterate across every element in
1133   * the underlying set and determine which elements satisfy the filter. When a live view is
1134   * <i>not</i> needed, it may be faster to copy {@code Iterables.filter(unfiltered, predicate)} and
1135   * use the copy.
1136   *
1137   * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as documented at
1138   * {@link Predicate#apply}. Do not provide a predicate such as {@code
1139   * Predicates.instanceOf(ArrayList.class)}, which is inconsistent with equals. (See {@link
1140   * Iterables#filter(Iterable, Class)} for related functionality.)
1141   *
1142   * @since 11.0
1143   */
1144  public static <E extends @Nullable Object> SortedSet<E> filter(
1145      SortedSet<E> unfiltered, Predicate<? super E> predicate) {
1146    if (unfiltered instanceof FilteredSet) {
1147      // Support clear(), removeAll(), and retainAll() when filtering a filtered
1148      // collection.
1149      FilteredSet<E> filtered = (FilteredSet<E>) unfiltered;
1150      Predicate<E> combinedPredicate = Predicates.and(filtered.predicate, predicate);
1151      return new FilteredSortedSet<>((SortedSet<E>) filtered.unfiltered, combinedPredicate);
1152    }
1153
1154    return new FilteredSortedSet<>(checkNotNull(unfiltered), checkNotNull(predicate));
1155  }
1156
1157  /**
1158   * Returns the elements of a {@code NavigableSet}, {@code unfiltered}, that satisfy a predicate.
1159   * The returned set is a live view of {@code unfiltered}; changes to one affect the other.
1160   *
1161   * <p>The resulting set's iterator does not support {@code remove()}, but all other set methods
1162   * are supported. When given an element that doesn't satisfy the predicate, the set's {@code
1163   * add()} and {@code addAll()} methods throw an {@link IllegalArgumentException}. When methods
1164   * such as {@code removeAll()} and {@code clear()} are called on the filtered set, only elements
1165   * that satisfy the filter will be removed from the underlying set.
1166   *
1167   * <p>The returned set isn't threadsafe or serializable, even if {@code unfiltered} is.
1168   *
1169   * <p>Many of the filtered set's methods, such as {@code size()}, iterate across every element in
1170   * the underlying set and determine which elements satisfy the filter. When a live view is
1171   * <i>not</i> needed, it may be faster to copy {@code Iterables.filter(unfiltered, predicate)} and
1172   * use the copy.
1173   *
1174   * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as documented at
1175   * {@link Predicate#apply}. Do not provide a predicate such as {@code
1176   * Predicates.instanceOf(ArrayList.class)}, which is inconsistent with equals. (See {@link
1177   * Iterables#filter(Iterable, Class)} for related functionality.)
1178   *
1179   * @since 14.0
1180   */
1181  @GwtIncompatible // NavigableSet
1182  public static <E extends @Nullable Object> NavigableSet<E> filter(
1183      NavigableSet<E> unfiltered, Predicate<? super E> predicate) {
1184    if (unfiltered instanceof FilteredSet) {
1185      // Support clear(), removeAll(), and retainAll() when filtering a filtered
1186      // collection.
1187      FilteredSet<E> filtered = (FilteredSet<E>) unfiltered;
1188      Predicate<E> combinedPredicate = Predicates.and(filtered.predicate, predicate);
1189      return new FilteredNavigableSet<>((NavigableSet<E>) filtered.unfiltered, combinedPredicate);
1190    }
1191
1192    return new FilteredNavigableSet<>(checkNotNull(unfiltered), checkNotNull(predicate));
1193  }
1194
1195  private static class FilteredSet<E extends @Nullable Object> extends FilteredCollection<E>
1196      implements Set<E> {
1197    FilteredSet(Set<E> unfiltered, Predicate<? super E> predicate) {
1198      super(unfiltered, predicate);
1199    }
1200
1201    @Override
1202    public boolean equals(@CheckForNull Object object) {
1203      return equalsImpl(this, object);
1204    }
1205
1206    @Override
1207    public int hashCode() {
1208      return hashCodeImpl(this);
1209    }
1210  }
1211
1212  private static class FilteredSortedSet<E extends @Nullable Object> extends FilteredSet<E>
1213      implements SortedSet<E> {
1214
1215    FilteredSortedSet(SortedSet<E> unfiltered, Predicate<? super E> predicate) {
1216      super(unfiltered, predicate);
1217    }
1218
1219    @Override
1220    @CheckForNull
1221    public Comparator<? super E> comparator() {
1222      return ((SortedSet<E>) unfiltered).comparator();
1223    }
1224
1225    @Override
1226    public SortedSet<E> subSet(@ParametricNullness E fromElement, @ParametricNullness E toElement) {
1227      return new FilteredSortedSet<>(
1228          ((SortedSet<E>) unfiltered).subSet(fromElement, toElement), predicate);
1229    }
1230
1231    @Override
1232    public SortedSet<E> headSet(@ParametricNullness E toElement) {
1233      return new FilteredSortedSet<>(((SortedSet<E>) unfiltered).headSet(toElement), predicate);
1234    }
1235
1236    @Override
1237    public SortedSet<E> tailSet(@ParametricNullness E fromElement) {
1238      return new FilteredSortedSet<>(((SortedSet<E>) unfiltered).tailSet(fromElement), predicate);
1239    }
1240
1241    @Override
1242    @ParametricNullness
1243    public E first() {
1244      return Iterators.find(unfiltered.iterator(), predicate);
1245    }
1246
1247    @Override
1248    @ParametricNullness
1249    public E last() {
1250      SortedSet<E> sortedUnfiltered = (SortedSet<E>) unfiltered;
1251      while (true) {
1252        E element = sortedUnfiltered.last();
1253        if (predicate.apply(element)) {
1254          return element;
1255        }
1256        sortedUnfiltered = sortedUnfiltered.headSet(element);
1257      }
1258    }
1259  }
1260
1261  @GwtIncompatible // NavigableSet
1262  private static class FilteredNavigableSet<E extends @Nullable Object> extends FilteredSortedSet<E>
1263      implements NavigableSet<E> {
1264    FilteredNavigableSet(NavigableSet<E> unfiltered, Predicate<? super E> predicate) {
1265      super(unfiltered, predicate);
1266    }
1267
1268    NavigableSet<E> unfiltered() {
1269      return (NavigableSet<E>) unfiltered;
1270    }
1271
1272    @Override
1273    @CheckForNull
1274    public E lower(@ParametricNullness E e) {
1275      return Iterators.find(unfiltered().headSet(e, false).descendingIterator(), predicate, null);
1276    }
1277
1278    @Override
1279    @CheckForNull
1280    public E floor(@ParametricNullness E e) {
1281      return Iterators.find(unfiltered().headSet(e, true).descendingIterator(), predicate, null);
1282    }
1283
1284    @Override
1285    @CheckForNull
1286    public E ceiling(@ParametricNullness E e) {
1287      return Iterables.find(unfiltered().tailSet(e, true), predicate, null);
1288    }
1289
1290    @Override
1291    @CheckForNull
1292    public E higher(@ParametricNullness E e) {
1293      return Iterables.find(unfiltered().tailSet(e, false), predicate, null);
1294    }
1295
1296    @Override
1297    @CheckForNull
1298    public E pollFirst() {
1299      return Iterables.removeFirstMatching(unfiltered(), predicate);
1300    }
1301
1302    @Override
1303    @CheckForNull
1304    public E pollLast() {
1305      return Iterables.removeFirstMatching(unfiltered().descendingSet(), predicate);
1306    }
1307
1308    @Override
1309    public NavigableSet<E> descendingSet() {
1310      return Sets.filter(unfiltered().descendingSet(), predicate);
1311    }
1312
1313    @Override
1314    public Iterator<E> descendingIterator() {
1315      return Iterators.filter(unfiltered().descendingIterator(), predicate);
1316    }
1317
1318    @Override
1319    @ParametricNullness
1320    public E last() {
1321      return Iterators.find(unfiltered().descendingIterator(), predicate);
1322    }
1323
1324    @Override
1325    public NavigableSet<E> subSet(
1326        @ParametricNullness E fromElement,
1327        boolean fromInclusive,
1328        @ParametricNullness E toElement,
1329        boolean toInclusive) {
1330      return filter(
1331          unfiltered().subSet(fromElement, fromInclusive, toElement, toInclusive), predicate);
1332    }
1333
1334    @Override
1335    public NavigableSet<E> headSet(@ParametricNullness E toElement, boolean inclusive) {
1336      return filter(unfiltered().headSet(toElement, inclusive), predicate);
1337    }
1338
1339    @Override
1340    public NavigableSet<E> tailSet(@ParametricNullness E fromElement, boolean inclusive) {
1341      return filter(unfiltered().tailSet(fromElement, inclusive), predicate);
1342    }
1343  }
1344
1345  /**
1346   * Returns every possible list that can be formed by choosing one element from each of the given
1347   * sets in order; the "n-ary <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian
1348   * product</a>" of the sets. For example:
1349   *
1350   * <pre>{@code
1351   * Sets.cartesianProduct(ImmutableList.of(
1352   *     ImmutableSet.of(1, 2),
1353   *     ImmutableSet.of("A", "B", "C")))
1354   * }</pre>
1355   *
1356   * <p>returns a set containing six lists:
1357   *
1358   * <ul>
1359   *   <li>{@code ImmutableList.of(1, "A")}
1360   *   <li>{@code ImmutableList.of(1, "B")}
1361   *   <li>{@code ImmutableList.of(1, "C")}
1362   *   <li>{@code ImmutableList.of(2, "A")}
1363   *   <li>{@code ImmutableList.of(2, "B")}
1364   *   <li>{@code ImmutableList.of(2, "C")}
1365   * </ul>
1366   *
1367   * <p>The result is guaranteed to be in the "traditional", lexicographical order for Cartesian
1368   * products that you would get from nesting for loops:
1369   *
1370   * <pre>{@code
1371   * for (B b0 : sets.get(0)) {
1372   *   for (B b1 : sets.get(1)) {
1373   *     ...
1374   *     ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...);
1375   *     // operate on tuple
1376   *   }
1377   * }
1378   * }</pre>
1379   *
1380   * <p>Note that if any input set is empty, the Cartesian product will also be empty. If no sets at
1381   * all are provided (an empty list), the resulting Cartesian product has one element, an empty
1382   * list (counter-intuitive, but mathematically consistent).
1383   *
1384   * <p><i>Performance notes:</i> while the cartesian product of sets of size {@code m, n, p} is a
1385   * set of size {@code m x n x p}, its actual memory consumption is much smaller. When the
1386   * cartesian set is constructed, the input sets are merely copied. Only as the resulting set is
1387   * iterated are the individual lists created, and these are not retained after iteration.
1388   *
1389   * @param sets the sets to choose elements from, in the order that the elements chosen from those
1390   *     sets should appear in the resulting lists
1391   * @param <B> any common base class shared by all axes (often just {@link Object})
1392   * @return the Cartesian product, as an immutable set containing immutable lists
1393   * @throws NullPointerException if {@code sets}, any one of the {@code sets}, or any element of a
1394   *     provided set is null
1395   * @throws IllegalArgumentException if the cartesian product size exceeds the {@code int} range
1396   * @since 2.0
1397   */
1398  public static <B> Set<List<B>> cartesianProduct(List<? extends Set<? extends B>> sets) {
1399    return CartesianSet.create(sets);
1400  }
1401
1402  /**
1403   * Returns every possible list that can be formed by choosing one element from each of the given
1404   * sets in order; the "n-ary <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian
1405   * product</a>" of the sets. For example:
1406   *
1407   * <pre>{@code
1408   * Sets.cartesianProduct(
1409   *     ImmutableSet.of(1, 2),
1410   *     ImmutableSet.of("A", "B", "C"))
1411   * }</pre>
1412   *
1413   * <p>returns a set containing six lists:
1414   *
1415   * <ul>
1416   *   <li>{@code ImmutableList.of(1, "A")}
1417   *   <li>{@code ImmutableList.of(1, "B")}
1418   *   <li>{@code ImmutableList.of(1, "C")}
1419   *   <li>{@code ImmutableList.of(2, "A")}
1420   *   <li>{@code ImmutableList.of(2, "B")}
1421   *   <li>{@code ImmutableList.of(2, "C")}
1422   * </ul>
1423   *
1424   * <p>The result is guaranteed to be in the "traditional", lexicographical order for Cartesian
1425   * products that you would get from nesting for loops:
1426   *
1427   * <pre>{@code
1428   * for (B b0 : sets.get(0)) {
1429   *   for (B b1 : sets.get(1)) {
1430   *     ...
1431   *     ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...);
1432   *     // operate on tuple
1433   *   }
1434   * }
1435   * }</pre>
1436   *
1437   * <p>Note that if any input set is empty, the Cartesian product will also be empty. If no sets at
1438   * all are provided (an empty list), the resulting Cartesian product has one element, an empty
1439   * list (counter-intuitive, but mathematically consistent).
1440   *
1441   * <p><i>Performance notes:</i> while the cartesian product of sets of size {@code m, n, p} is a
1442   * set of size {@code m x n x p}, its actual memory consumption is much smaller. When the
1443   * cartesian set is constructed, the input sets are merely copied. Only as the resulting set is
1444   * iterated are the individual lists created, and these are not retained after iteration.
1445   *
1446   * @param sets the sets to choose elements from, in the order that the elements chosen from those
1447   *     sets should appear in the resulting lists
1448   * @param <B> any common base class shared by all axes (often just {@link Object})
1449   * @return the Cartesian product, as an immutable set containing immutable lists
1450   * @throws NullPointerException if {@code sets}, any one of the {@code sets}, or any element of a
1451   *     provided set is null
1452   * @throws IllegalArgumentException if the cartesian product size exceeds the {@code int} range
1453   * @since 2.0
1454   */
1455  @SafeVarargs
1456  public static <B> Set<List<B>> cartesianProduct(Set<? extends B>... sets) {
1457    return cartesianProduct(asList(sets));
1458  }
1459
1460  private static final class CartesianSet<E> extends ForwardingCollection<List<E>>
1461      implements Set<List<E>> {
1462    private final transient ImmutableList<ImmutableSet<E>> axes;
1463    private final transient CartesianList<E> delegate;
1464
1465    static <E> Set<List<E>> create(List<? extends Set<? extends E>> sets) {
1466      ImmutableList.Builder<ImmutableSet<E>> axesBuilder = new ImmutableList.Builder<>(sets.size());
1467      for (Set<? extends E> set : sets) {
1468        ImmutableSet<E> copy = ImmutableSet.copyOf(set);
1469        if (copy.isEmpty()) {
1470          return ImmutableSet.of();
1471        }
1472        axesBuilder.add(copy);
1473      }
1474      final ImmutableList<ImmutableSet<E>> axes = axesBuilder.build();
1475      ImmutableList<List<E>> listAxes =
1476          new ImmutableList<List<E>>() {
1477            @Override
1478            public int size() {
1479              return axes.size();
1480            }
1481
1482            @Override
1483            public List<E> get(int index) {
1484              return axes.get(index).asList();
1485            }
1486
1487            @Override
1488            boolean isPartialView() {
1489              return true;
1490            }
1491
1492            // redeclare to help optimizers with b/310253115
1493            @SuppressWarnings("RedundantOverride")
1494            @Override
1495            @J2ktIncompatible // serialization
1496            @GwtIncompatible // serialization
1497            Object writeReplace() {
1498              return super.writeReplace();
1499            }
1500          };
1501      return new CartesianSet<E>(axes, new CartesianList<E>(listAxes));
1502    }
1503
1504    private CartesianSet(ImmutableList<ImmutableSet<E>> axes, CartesianList<E> delegate) {
1505      this.axes = axes;
1506      this.delegate = delegate;
1507    }
1508
1509    @Override
1510    protected Collection<List<E>> delegate() {
1511      return delegate;
1512    }
1513
1514    @Override
1515    public boolean contains(@CheckForNull Object object) {
1516      if (!(object instanceof List)) {
1517        return false;
1518      }
1519      List<?> list = (List<?>) object;
1520      if (list.size() != axes.size()) {
1521        return false;
1522      }
1523      int i = 0;
1524      for (Object o : list) {
1525        if (!axes.get(i).contains(o)) {
1526          return false;
1527        }
1528        i++;
1529      }
1530      return true;
1531    }
1532
1533    @Override
1534    public boolean equals(@CheckForNull Object object) {
1535      // Warning: this is broken if size() == 0, so it is critical that we
1536      // substitute an empty ImmutableSet to the user in place of this
1537      if (object instanceof CartesianSet) {
1538        CartesianSet<?> that = (CartesianSet<?>) object;
1539        return this.axes.equals(that.axes);
1540      }
1541      if (object instanceof Set) {
1542        Set<?> that = (Set<?>) object;
1543        return this.size() == that.size() && this.containsAll(that);
1544      }
1545      return false;
1546    }
1547
1548    @Override
1549    public int hashCode() {
1550      // Warning: this is broken if size() == 0, so it is critical that we
1551      // substitute an empty ImmutableSet to the user in place of this
1552
1553      // It's a weird formula, but tests prove it works.
1554      int adjust = size() - 1;
1555      for (int i = 0; i < axes.size(); i++) {
1556        adjust *= 31;
1557        adjust = ~~adjust;
1558        // in GWT, we have to deal with integer overflow carefully
1559      }
1560      int hash = 1;
1561      for (Set<E> axis : axes) {
1562        hash = 31 * hash + (size() / axis.size() * axis.hashCode());
1563
1564        hash = ~~hash;
1565      }
1566      hash += adjust;
1567      return ~~hash;
1568    }
1569  }
1570
1571  /**
1572   * Returns the set of all possible subsets of {@code set}. For example, {@code
1573   * powerSet(ImmutableSet.of(1, 2))} returns the set {@code {{}, {1}, {2}, {1, 2}}}.
1574   *
1575   * <p>Elements appear in these subsets in the same iteration order as they appeared in the input
1576   * set. The order in which these subsets appear in the outer set is undefined. Note that the power
1577   * set of the empty set is not the empty set, but a one-element set containing the empty set.
1578   *
1579   * <p>The returned set and its constituent sets use {@code equals} to decide whether two elements
1580   * are identical, even if the input set uses a different concept of equivalence.
1581   *
1582   * <p><i>Performance notes:</i> while the power set of a set with size {@code n} is of size {@code
1583   * 2^n}, its memory usage is only {@code O(n)}. When the power set is constructed, the input set
1584   * is merely copied. Only as the power set is iterated are the individual subsets created, and
1585   * these subsets themselves occupy only a small constant amount of memory.
1586   *
1587   * @param set the set of elements to construct a power set from
1588   * @return the power set, as an immutable set of immutable sets
1589   * @throws IllegalArgumentException if {@code set} has more than 30 unique elements (causing the
1590   *     power set size to exceed the {@code int} range)
1591   * @throws NullPointerException if {@code set} is or contains {@code null}
1592   * @see <a href="http://en.wikipedia.org/wiki/Power_set">Power set article at Wikipedia</a>
1593   * @since 4.0
1594   */
1595  @GwtCompatible(serializable = false)
1596  public static <E> Set<Set<E>> powerSet(Set<E> set) {
1597    return new PowerSet<E>(set);
1598  }
1599
1600  private static final class SubSet<E> extends AbstractSet<E> {
1601    private final ImmutableMap<E, Integer> inputSet;
1602    private final int mask;
1603
1604    SubSet(ImmutableMap<E, Integer> inputSet, int mask) {
1605      this.inputSet = inputSet;
1606      this.mask = mask;
1607    }
1608
1609    @Override
1610    public Iterator<E> iterator() {
1611      return new UnmodifiableIterator<E>() {
1612        final ImmutableList<E> elements = inputSet.keySet().asList();
1613        int remainingSetBits = mask;
1614
1615        @Override
1616        public boolean hasNext() {
1617          return remainingSetBits != 0;
1618        }
1619
1620        @Override
1621        public E next() {
1622          int index = Integer.numberOfTrailingZeros(remainingSetBits);
1623          if (index == 32) {
1624            throw new NoSuchElementException();
1625          }
1626          remainingSetBits &= ~(1 << index);
1627          return elements.get(index);
1628        }
1629      };
1630    }
1631
1632    @Override
1633    public int size() {
1634      return Integer.bitCount(mask);
1635    }
1636
1637    @Override
1638    public boolean contains(@CheckForNull Object o) {
1639      Integer index = inputSet.get(o);
1640      return index != null && (mask & (1 << index)) != 0;
1641    }
1642  }
1643
1644  private static final class PowerSet<E> extends AbstractSet<Set<E>> {
1645    final ImmutableMap<E, Integer> inputSet;
1646
1647    PowerSet(Set<E> input) {
1648      checkArgument(
1649          input.size() <= 30, "Too many elements to create power set: %s > 30", input.size());
1650      this.inputSet = Maps.indexMap(input);
1651    }
1652
1653    @Override
1654    public int size() {
1655      return 1 << inputSet.size();
1656    }
1657
1658    @Override
1659    public boolean isEmpty() {
1660      return false;
1661    }
1662
1663    @Override
1664    public Iterator<Set<E>> iterator() {
1665      return new AbstractIndexedListIterator<Set<E>>(size()) {
1666        @Override
1667        protected Set<E> get(final int setBits) {
1668          return new SubSet<>(inputSet, setBits);
1669        }
1670      };
1671    }
1672
1673    @Override
1674    public boolean contains(@CheckForNull Object obj) {
1675      if (obj instanceof Set) {
1676        Set<?> set = (Set<?>) obj;
1677        return inputSet.keySet().containsAll(set);
1678      }
1679      return false;
1680    }
1681
1682    @Override
1683    public boolean equals(@CheckForNull Object obj) {
1684      if (obj instanceof PowerSet) {
1685        PowerSet<?> that = (PowerSet<?>) obj;
1686        return inputSet.keySet().equals(that.inputSet.keySet());
1687      }
1688      return super.equals(obj);
1689    }
1690
1691    @Override
1692    public int hashCode() {
1693      /*
1694       * The sum of the sums of the hash codes in each subset is just the sum of
1695       * each input element's hash code times the number of sets that element
1696       * appears in. Each element appears in exactly half of the 2^n sets, so:
1697       */
1698      return inputSet.keySet().hashCode() << (inputSet.size() - 1);
1699    }
1700
1701    @Override
1702    public String toString() {
1703      return "powerSet(" + inputSet + ")";
1704    }
1705  }
1706
1707  /**
1708   * Returns the set of all subsets of {@code set} of size {@code size}. For example, {@code
1709   * combinations(ImmutableSet.of(1, 2, 3), 2)} returns the set {@code {{1, 2}, {1, 3}, {2, 3}}}.
1710   *
1711   * <p>Elements appear in these subsets in the same iteration order as they appeared in the input
1712   * set. The order in which these subsets appear in the outer set is undefined.
1713   *
1714   * <p>The returned set and its constituent sets use {@code equals} to decide whether two elements
1715   * are identical, even if the input set uses a different concept of equivalence.
1716   *
1717   * <p><i>Performance notes:</i> the memory usage of the returned set is only {@code O(n)}. When
1718   * the result set is constructed, the input set is merely copied. Only as the result set is
1719   * iterated are the individual subsets created. Each of these subsets occupies an additional O(n)
1720   * memory but only for as long as the user retains a reference to it. That is, the set returned by
1721   * {@code combinations} does not retain the individual subsets.
1722   *
1723   * @param set the set of elements to take combinations of
1724   * @param size the number of elements per combination
1725   * @return the set of all combinations of {@code size} elements from {@code set}
1726   * @throws IllegalArgumentException if {@code size} is not between 0 and {@code set.size()}
1727   *     inclusive
1728   * @throws NullPointerException if {@code set} is or contains {@code null}
1729   * @since 23.0
1730   */
1731  public static <E> Set<Set<E>> combinations(Set<E> set, final int size) {
1732    final ImmutableMap<E, Integer> index = Maps.indexMap(set);
1733    checkNonnegative(size, "size");
1734    checkArgument(size <= index.size(), "size (%s) must be <= set.size() (%s)", size, index.size());
1735    if (size == 0) {
1736      return ImmutableSet.<Set<E>>of(ImmutableSet.<E>of());
1737    } else if (size == index.size()) {
1738      return ImmutableSet.<Set<E>>of(index.keySet());
1739    }
1740    return new AbstractSet<Set<E>>() {
1741      @Override
1742      public boolean contains(@CheckForNull Object o) {
1743        if (o instanceof Set) {
1744          Set<?> s = (Set<?>) o;
1745          return s.size() == size && index.keySet().containsAll(s);
1746        }
1747        return false;
1748      }
1749
1750      @Override
1751      public Iterator<Set<E>> iterator() {
1752        return new AbstractIterator<Set<E>>() {
1753          final BitSet bits = new BitSet(index.size());
1754
1755          @Override
1756          @CheckForNull
1757          protected Set<E> computeNext() {
1758            if (bits.isEmpty()) {
1759              bits.set(0, size);
1760            } else {
1761              int firstSetBit = bits.nextSetBit(0);
1762              int bitToFlip = bits.nextClearBit(firstSetBit);
1763
1764              if (bitToFlip == index.size()) {
1765                return endOfData();
1766              }
1767
1768              /*
1769               * The current set in sorted order looks like
1770               * {firstSetBit, firstSetBit + 1, ..., bitToFlip - 1, ...}
1771               * where it does *not* contain bitToFlip.
1772               *
1773               * The next combination is
1774               *
1775               * {0, 1, ..., bitToFlip - firstSetBit - 2, bitToFlip, ...}
1776               *
1777               * This is lexicographically next if you look at the combinations in descending order
1778               * e.g. {2, 1, 0}, {3, 1, 0}, {3, 2, 0}, {3, 2, 1}, {4, 1, 0}...
1779               */
1780
1781              bits.set(0, bitToFlip - firstSetBit - 1);
1782              bits.clear(bitToFlip - firstSetBit - 1, bitToFlip);
1783              bits.set(bitToFlip);
1784            }
1785            final BitSet copy = (BitSet) bits.clone();
1786            return new AbstractSet<E>() {
1787              @Override
1788              public boolean contains(@CheckForNull Object o) {
1789                Integer i = index.get(o);
1790                return i != null && copy.get(i);
1791              }
1792
1793              @Override
1794              public Iterator<E> iterator() {
1795                return new AbstractIterator<E>() {
1796                  int i = -1;
1797
1798                  @Override
1799                  @CheckForNull
1800                  protected E computeNext() {
1801                    i = copy.nextSetBit(i + 1);
1802                    if (i == -1) {
1803                      return endOfData();
1804                    }
1805                    return index.keySet().asList().get(i);
1806                  }
1807                };
1808              }
1809
1810              @Override
1811              public int size() {
1812                return size;
1813              }
1814            };
1815          }
1816        };
1817      }
1818
1819      @Override
1820      public int size() {
1821        return IntMath.binomial(index.size(), size);
1822      }
1823
1824      @Override
1825      public String toString() {
1826        return "Sets.combinations(" + index.keySet() + ", " + size + ")";
1827      }
1828    };
1829  }
1830
1831  /** An implementation for {@link Set#hashCode()}. */
1832  static int hashCodeImpl(Set<?> s) {
1833    int hashCode = 0;
1834    for (Object o : s) {
1835      hashCode += o != null ? o.hashCode() : 0;
1836
1837      hashCode = ~~hashCode;
1838      // Needed to deal with unusual integer overflow in GWT.
1839    }
1840    return hashCode;
1841  }
1842
1843  /** An implementation for {@link Set#equals(Object)}. */
1844  static boolean equalsImpl(Set<?> s, @CheckForNull Object object) {
1845    if (s == object) {
1846      return true;
1847    }
1848    if (object instanceof Set) {
1849      Set<?> o = (Set<?>) object;
1850
1851      try {
1852        return s.size() == o.size() && s.containsAll(o);
1853      } catch (NullPointerException | ClassCastException ignored) {
1854        return false;
1855      }
1856    }
1857    return false;
1858  }
1859
1860  /**
1861   * Returns an unmodifiable view of the specified navigable set. This method allows modules to
1862   * provide users with "read-only" access to internal navigable sets. Query operations on the
1863   * returned set "read through" to the specified set, and attempts to modify the returned set,
1864   * whether direct or via its collection views, result in an {@code UnsupportedOperationException}.
1865   *
1866   * <p>The returned navigable set will be serializable if the specified navigable set is
1867   * serializable.
1868   *
1869   * <p><b>Java 8+ users and later:</b> Prefer {@link Collections#unmodifiableNavigableSet}.
1870   *
1871   * @param set the navigable set for which an unmodifiable view is to be returned
1872   * @return an unmodifiable view of the specified navigable set
1873   * @since 12.0
1874   */
1875  public static <E extends @Nullable Object> NavigableSet<E> unmodifiableNavigableSet(
1876      NavigableSet<E> set) {
1877    if (set instanceof ImmutableCollection || set instanceof UnmodifiableNavigableSet) {
1878      return set;
1879    }
1880    return new UnmodifiableNavigableSet<>(set);
1881  }
1882
1883  static final class UnmodifiableNavigableSet<E extends @Nullable Object>
1884      extends ForwardingSortedSet<E> implements NavigableSet<E>, Serializable {
1885    private final NavigableSet<E> delegate;
1886    private final SortedSet<E> unmodifiableDelegate;
1887
1888    UnmodifiableNavigableSet(NavigableSet<E> delegate) {
1889      this.delegate = checkNotNull(delegate);
1890      this.unmodifiableDelegate = Collections.unmodifiableSortedSet(delegate);
1891    }
1892
1893    @Override
1894    protected SortedSet<E> delegate() {
1895      return unmodifiableDelegate;
1896    }
1897
1898    // default methods not forwarded by ForwardingSortedSet
1899
1900    @Override
1901    public boolean removeIf(java.util.function.Predicate<? super E> filter) {
1902      throw new UnsupportedOperationException();
1903    }
1904
1905    @Override
1906    public Stream<E> stream() {
1907      return delegate.stream();
1908    }
1909
1910    @Override
1911    public Stream<E> parallelStream() {
1912      return delegate.parallelStream();
1913    }
1914
1915    @Override
1916    public void forEach(Consumer<? super E> action) {
1917      delegate.forEach(action);
1918    }
1919
1920    @Override
1921    @CheckForNull
1922    public E lower(@ParametricNullness E e) {
1923      return delegate.lower(e);
1924    }
1925
1926    @Override
1927    @CheckForNull
1928    public E floor(@ParametricNullness E e) {
1929      return delegate.floor(e);
1930    }
1931
1932    @Override
1933    @CheckForNull
1934    public E ceiling(@ParametricNullness E e) {
1935      return delegate.ceiling(e);
1936    }
1937
1938    @Override
1939    @CheckForNull
1940    public E higher(@ParametricNullness E e) {
1941      return delegate.higher(e);
1942    }
1943
1944    @Override
1945    @CheckForNull
1946    public E pollFirst() {
1947      throw new UnsupportedOperationException();
1948    }
1949
1950    @Override
1951    @CheckForNull
1952    public E pollLast() {
1953      throw new UnsupportedOperationException();
1954    }
1955
1956    @LazyInit @CheckForNull private transient UnmodifiableNavigableSet<E> descendingSet;
1957
1958    @Override
1959    public NavigableSet<E> descendingSet() {
1960      UnmodifiableNavigableSet<E> result = descendingSet;
1961      if (result == null) {
1962        result = descendingSet = new UnmodifiableNavigableSet<>(delegate.descendingSet());
1963        result.descendingSet = this;
1964      }
1965      return result;
1966    }
1967
1968    @Override
1969    public Iterator<E> descendingIterator() {
1970      return Iterators.unmodifiableIterator(delegate.descendingIterator());
1971    }
1972
1973    @Override
1974    public NavigableSet<E> subSet(
1975        @ParametricNullness E fromElement,
1976        boolean fromInclusive,
1977        @ParametricNullness E toElement,
1978        boolean toInclusive) {
1979      return unmodifiableNavigableSet(
1980          delegate.subSet(fromElement, fromInclusive, toElement, toInclusive));
1981    }
1982
1983    @Override
1984    public NavigableSet<E> headSet(@ParametricNullness E toElement, boolean inclusive) {
1985      return unmodifiableNavigableSet(delegate.headSet(toElement, inclusive));
1986    }
1987
1988    @Override
1989    public NavigableSet<E> tailSet(@ParametricNullness E fromElement, boolean inclusive) {
1990      return unmodifiableNavigableSet(delegate.tailSet(fromElement, inclusive));
1991    }
1992
1993    private static final long serialVersionUID = 0;
1994  }
1995
1996  /**
1997   * Returns a synchronized (thread-safe) navigable set backed by the specified navigable set. In
1998   * order to guarantee serial access, it is critical that <b>all</b> access to the backing
1999   * navigable set is accomplished through the returned navigable set (or its views).
2000   *
2001   * <p>It is imperative that the user manually synchronize on the returned sorted set when
2002   * iterating over it or any of its {@code descendingSet}, {@code subSet}, {@code headSet}, or
2003   * {@code tailSet} views.
2004   *
2005   * <pre>{@code
2006   * NavigableSet<E> set = synchronizedNavigableSet(new TreeSet<E>());
2007   *  ...
2008   * synchronized (set) {
2009   *   // Must be in the synchronized block
2010   *   Iterator<E> it = set.iterator();
2011   *   while (it.hasNext()) {
2012   *     foo(it.next());
2013   *   }
2014   * }
2015   * }</pre>
2016   *
2017   * <p>or:
2018   *
2019   * <pre>{@code
2020   * NavigableSet<E> set = synchronizedNavigableSet(new TreeSet<E>());
2021   * NavigableSet<E> set2 = set.descendingSet().headSet(foo);
2022   *  ...
2023   * synchronized (set) { // Note: set, not set2!!!
2024   *   // Must be in the synchronized block
2025   *   Iterator<E> it = set2.descendingIterator();
2026   *   while (it.hasNext())
2027   *     foo(it.next());
2028   *   }
2029   * }
2030   * }</pre>
2031   *
2032   * <p>Failure to follow this advice may result in non-deterministic behavior.
2033   *
2034   * <p>The returned navigable set will be serializable if the specified navigable set is
2035   * serializable.
2036   *
2037   * <p><b>Java 8+ users and later:</b> Prefer {@link Collections#synchronizedNavigableSet}.
2038   *
2039   * @param navigableSet the navigable set to be "wrapped" in a synchronized navigable set.
2040   * @return a synchronized view of the specified navigable set.
2041   * @since 13.0
2042   */
2043  @GwtIncompatible // NavigableSet
2044  @J2ktIncompatible // Synchronized
2045  public static <E extends @Nullable Object> NavigableSet<E> synchronizedNavigableSet(
2046      NavigableSet<E> navigableSet) {
2047    return Synchronized.navigableSet(navigableSet);
2048  }
2049
2050  /** Remove each element in an iterable from a set. */
2051  static boolean removeAllImpl(Set<?> set, Iterator<?> iterator) {
2052    boolean changed = false;
2053    while (iterator.hasNext()) {
2054      changed |= set.remove(iterator.next());
2055    }
2056    return changed;
2057  }
2058
2059  static boolean removeAllImpl(Set<?> set, Collection<?> collection) {
2060    checkNotNull(collection); // for GWT
2061    if (collection instanceof Multiset) {
2062      collection = ((Multiset<?>) collection).elementSet();
2063    }
2064    /*
2065     * AbstractSet.removeAll(List) has quadratic behavior if the list size
2066     * is just more than the set's size.  We augment the test by
2067     * assuming that sets have fast contains() performance, and other
2068     * collections don't.  See
2069     * https://github.com/google/guava/issues/1013
2070     */
2071    if (collection instanceof Set && collection.size() > set.size()) {
2072      return Iterators.removeAll(set.iterator(), collection);
2073    } else {
2074      return removeAllImpl(set, collection.iterator());
2075    }
2076  }
2077
2078  @GwtIncompatible // NavigableSet
2079  static class DescendingSet<E extends @Nullable Object> extends ForwardingNavigableSet<E> {
2080    private final NavigableSet<E> forward;
2081
2082    DescendingSet(NavigableSet<E> forward) {
2083      this.forward = forward;
2084    }
2085
2086    @Override
2087    protected NavigableSet<E> delegate() {
2088      return forward;
2089    }
2090
2091    @Override
2092    @CheckForNull
2093    public E lower(@ParametricNullness E e) {
2094      return forward.higher(e);
2095    }
2096
2097    @Override
2098    @CheckForNull
2099    public E floor(@ParametricNullness E e) {
2100      return forward.ceiling(e);
2101    }
2102
2103    @Override
2104    @CheckForNull
2105    public E ceiling(@ParametricNullness E e) {
2106      return forward.floor(e);
2107    }
2108
2109    @Override
2110    @CheckForNull
2111    public E higher(@ParametricNullness E e) {
2112      return forward.lower(e);
2113    }
2114
2115    @Override
2116    @CheckForNull
2117    public E pollFirst() {
2118      return forward.pollLast();
2119    }
2120
2121    @Override
2122    @CheckForNull
2123    public E pollLast() {
2124      return forward.pollFirst();
2125    }
2126
2127    @Override
2128    public NavigableSet<E> descendingSet() {
2129      return forward;
2130    }
2131
2132    @Override
2133    public Iterator<E> descendingIterator() {
2134      return forward.iterator();
2135    }
2136
2137    @Override
2138    public NavigableSet<E> subSet(
2139        @ParametricNullness E fromElement,
2140        boolean fromInclusive,
2141        @ParametricNullness E toElement,
2142        boolean toInclusive) {
2143      return forward.subSet(toElement, toInclusive, fromElement, fromInclusive).descendingSet();
2144    }
2145
2146    @Override
2147    public SortedSet<E> subSet(@ParametricNullness E fromElement, @ParametricNullness E toElement) {
2148      return standardSubSet(fromElement, toElement);
2149    }
2150
2151    @Override
2152    public NavigableSet<E> headSet(@ParametricNullness E toElement, boolean inclusive) {
2153      return forward.tailSet(toElement, inclusive).descendingSet();
2154    }
2155
2156    @Override
2157    public SortedSet<E> headSet(@ParametricNullness E toElement) {
2158      return standardHeadSet(toElement);
2159    }
2160
2161    @Override
2162    public NavigableSet<E> tailSet(@ParametricNullness E fromElement, boolean inclusive) {
2163      return forward.headSet(fromElement, inclusive).descendingSet();
2164    }
2165
2166    @Override
2167    public SortedSet<E> tailSet(@ParametricNullness E fromElement) {
2168      return standardTailSet(fromElement);
2169    }
2170
2171    @SuppressWarnings("unchecked")
2172    @Override
2173    public Comparator<? super E> comparator() {
2174      Comparator<? super E> forwardComparator = forward.comparator();
2175      if (forwardComparator == null) {
2176        return (Comparator) Ordering.natural().reverse();
2177      } else {
2178        return reverse(forwardComparator);
2179      }
2180    }
2181
2182    // If we inline this, we get a javac error.
2183    private static <T extends @Nullable Object> Ordering<T> reverse(Comparator<T> forward) {
2184      return Ordering.from(forward).reverse();
2185    }
2186
2187    @Override
2188    @ParametricNullness
2189    public E first() {
2190      return forward.last();
2191    }
2192
2193    @Override
2194    @ParametricNullness
2195    public E last() {
2196      return forward.first();
2197    }
2198
2199    @Override
2200    public Iterator<E> iterator() {
2201      return forward.descendingIterator();
2202    }
2203
2204    @Override
2205    public @Nullable Object[] toArray() {
2206      return standardToArray();
2207    }
2208
2209    @Override
2210    @SuppressWarnings("nullness") // b/192354773 in our checker affects toArray declarations
2211    public <T extends @Nullable Object> T[] toArray(T[] array) {
2212      return standardToArray(array);
2213    }
2214
2215    @Override
2216    public String toString() {
2217      return standardToString();
2218    }
2219  }
2220
2221  /**
2222   * Returns a view of the portion of {@code set} whose elements are contained by {@code range}.
2223   *
2224   * <p>This method delegates to the appropriate methods of {@link NavigableSet} (namely {@link
2225   * NavigableSet#subSet(Object, boolean, Object, boolean) subSet()}, {@link
2226   * NavigableSet#tailSet(Object, boolean) tailSet()}, and {@link NavigableSet#headSet(Object,
2227   * boolean) headSet()}) to actually construct the view. Consult these methods for a full
2228   * description of the returned view's behavior.
2229   *
2230   * <p><b>Warning:</b> {@code Range}s always represent a range of values using the values' natural
2231   * ordering. {@code NavigableSet} on the other hand can specify a custom ordering via a {@link
2232   * Comparator}, which can violate the natural ordering. Using this method (or in general using
2233   * {@code Range}) with unnaturally-ordered sets can lead to unexpected and undefined behavior.
2234   *
2235   * @since 20.0
2236   */
2237  @GwtIncompatible // NavigableSet
2238  public static <K extends Comparable<? super K>> NavigableSet<K> subSet(
2239      NavigableSet<K> set, Range<K> range) {
2240    if (set.comparator() != null
2241        && set.comparator() != Ordering.natural()
2242        && range.hasLowerBound()
2243        && range.hasUpperBound()) {
2244      checkArgument(
2245          set.comparator().compare(range.lowerEndpoint(), range.upperEndpoint()) <= 0,
2246          "set is using a custom comparator which is inconsistent with the natural ordering.");
2247    }
2248    if (range.hasLowerBound() && range.hasUpperBound()) {
2249      return set.subSet(
2250          range.lowerEndpoint(),
2251          range.lowerBoundType() == BoundType.CLOSED,
2252          range.upperEndpoint(),
2253          range.upperBoundType() == BoundType.CLOSED);
2254    } else if (range.hasLowerBound()) {
2255      return set.tailSet(range.lowerEndpoint(), range.lowerBoundType() == BoundType.CLOSED);
2256    } else if (range.hasUpperBound()) {
2257      return set.headSet(range.upperEndpoint(), range.upperBoundType() == BoundType.CLOSED);
2258    }
2259    return checkNotNull(set);
2260  }
2261}