001/*
002 * Copyright (C) 2007 The Guava Authors
003 *
004 * Licensed under the Apache License, Version 2.0 (the "License");
005 * you may not use this file except in compliance with the License.
006 * You may obtain a copy of the License at
007 *
008 * http://www.apache.org/licenses/LICENSE-2.0
009 *
010 * Unless required by applicable law or agreed to in writing, software
011 * distributed under the License is distributed on an "AS IS" BASIS,
012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
013 * See the License for the specific language governing permissions and
014 * limitations under the License.
015 */
016
017package com.google.common.collect;
018
019import static com.google.common.base.Preconditions.checkArgument;
020import static com.google.common.base.Preconditions.checkNotNull;
021import static com.google.common.collect.CollectPreconditions.checkNonnegative;
022import static java.lang.Math.min;
023import static java.util.Arrays.asList;
024
025import com.google.common.annotations.GwtCompatible;
026import com.google.common.annotations.GwtIncompatible;
027import com.google.common.annotations.J2ktIncompatible;
028import com.google.common.base.Predicate;
029import com.google.common.base.Predicates;
030import com.google.common.collect.Collections2.FilteredCollection;
031import com.google.common.math.IntMath;
032import com.google.errorprone.annotations.CanIgnoreReturnValue;
033import com.google.errorprone.annotations.DoNotCall;
034import com.google.errorprone.annotations.InlineMe;
035import com.google.errorprone.annotations.concurrent.LazyInit;
036import java.io.Serializable;
037import java.util.AbstractSet;
038import java.util.Arrays;
039import java.util.BitSet;
040import java.util.Collection;
041import java.util.Collections;
042import java.util.Comparator;
043import java.util.EnumSet;
044import java.util.HashSet;
045import java.util.Iterator;
046import java.util.LinkedHashSet;
047import java.util.List;
048import java.util.Map;
049import java.util.NavigableSet;
050import java.util.NoSuchElementException;
051import java.util.Set;
052import java.util.SortedSet;
053import java.util.TreeSet;
054import java.util.concurrent.ConcurrentHashMap;
055import java.util.concurrent.CopyOnWriteArraySet;
056import java.util.function.Consumer;
057import java.util.stream.Collector;
058import java.util.stream.Stream;
059import org.jspecify.annotations.NonNull;
060import org.jspecify.annotations.Nullable;
061
062/**
063 * Static utility methods pertaining to {@link Set} instances. Also see this class's counterparts
064 * {@link Lists}, {@link Maps} and {@link Queues}.
065 *
066 * <p>See the Guava User Guide article on <a href=
067 * "https://github.com/google/guava/wiki/CollectionUtilitiesExplained#sets">{@code Sets}</a>.
068 *
069 * @author Kevin Bourrillion
070 * @author Jared Levy
071 * @author Chris Povirk
072 * @since 2.0
073 */
074@GwtCompatible(emulated = true)
075public final class Sets {
076  private Sets() {}
077
078  /**
079   * {@link AbstractSet} substitute without the potentially-quadratic {@code removeAll}
080   * implementation.
081   */
082  abstract static class ImprovedAbstractSet<E extends @Nullable Object> extends AbstractSet<E> {
083    @Override
084    public boolean removeAll(Collection<?> c) {
085      return removeAllImpl(this, c);
086    }
087
088    @Override
089    public boolean retainAll(Collection<?> c) {
090      return super.retainAll(checkNotNull(c)); // GWT compatibility
091    }
092  }
093
094  /**
095   * Returns an immutable set instance containing the given enum elements. Internally, the returned
096   * set will be backed by an {@link EnumSet}.
097   *
098   * <p>The iteration order of the returned set follows the enum's iteration order, not the order in
099   * which the elements are provided to the method.
100   *
101   * @param anElement one of the elements the set should contain
102   * @param otherElements the rest of the elements the set should contain
103   * @return an immutable set containing those elements, minus duplicates
104   */
105  @GwtCompatible(serializable = true)
106  public static <E extends Enum<E>> ImmutableSet<E> immutableEnumSet(
107      E anElement, E... otherElements) {
108    return ImmutableEnumSet.asImmutable(EnumSet.of(anElement, otherElements));
109  }
110
111  /**
112   * Returns an immutable set instance containing the given enum elements. Internally, the returned
113   * set will be backed by an {@link EnumSet}.
114   *
115   * <p>The iteration order of the returned set follows the enum's iteration order, not the order in
116   * which the elements appear in the given collection.
117   *
118   * @param elements the elements, all of the same {@code enum} type, that the set should contain
119   * @return an immutable set containing those elements, minus duplicates
120   */
121  @GwtCompatible(serializable = true)
122  public static <E extends Enum<E>> ImmutableSet<E> immutableEnumSet(Iterable<E> elements) {
123    if (elements instanceof ImmutableEnumSet) {
124      return (ImmutableEnumSet<E>) elements;
125    } else if (elements instanceof Collection) {
126      Collection<E> collection = (Collection<E>) elements;
127      if (collection.isEmpty()) {
128        return ImmutableSet.of();
129      } else {
130        return ImmutableEnumSet.asImmutable(EnumSet.copyOf(collection));
131      }
132    } else {
133      Iterator<E> itr = elements.iterator();
134      if (itr.hasNext()) {
135        EnumSet<E> enumSet = EnumSet.of(itr.next());
136        Iterators.addAll(enumSet, itr);
137        return ImmutableEnumSet.asImmutable(enumSet);
138      } else {
139        return ImmutableSet.of();
140      }
141    }
142  }
143
144  /**
145   * Returns a {@code Collector} that accumulates the input elements into a new {@code ImmutableSet}
146   * with an implementation specialized for enums. Unlike {@link ImmutableSet#toImmutableSet}, the
147   * resulting set will iterate over elements in their enum definition order, not encounter order.
148   *
149   * @since 21.0
150   */
151  public static <E extends Enum<E>> Collector<E, ?, ImmutableSet<E>> toImmutableEnumSet() {
152    return CollectCollectors.toImmutableEnumSet();
153  }
154
155  /**
156   * Returns a new, <i>mutable</i> {@code EnumSet} instance containing the given elements in their
157   * natural order. This method behaves identically to {@link EnumSet#copyOf(Collection)}, but also
158   * accepts non-{@code Collection} iterables and empty iterables.
159   */
160  public static <E extends Enum<E>> EnumSet<E> newEnumSet(
161      Iterable<E> iterable, Class<E> elementType) {
162    EnumSet<E> set = EnumSet.noneOf(elementType);
163    Iterables.addAll(set, iterable);
164    return set;
165  }
166
167  // HashSet
168
169  /**
170   * Creates a <i>mutable</i>, initially empty {@code HashSet} instance.
171   *
172   * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSet#of()} instead. If {@code
173   * E} is an {@link Enum} type, use {@link EnumSet#noneOf} instead. Otherwise, strongly consider
174   * using a {@code LinkedHashSet} instead, at the cost of increased memory footprint, to get
175   * deterministic iteration behavior.
176   *
177   * <p><b>Note:</b> this method is now unnecessary and should be treated as deprecated. Instead,
178   * use the {@code HashSet} constructor directly, taking advantage of <a
179   * href="https://docs.oracle.com/javase/tutorial/java/generics/genTypeInference.html#type-inference-instantiation">"diamond"
180   * syntax</a>.
181   */
182  @SuppressWarnings("NonApiType") // acts as a direct substitute for a constructor call
183  public static <E extends @Nullable Object> HashSet<E> newHashSet() {
184    return new HashSet<>();
185  }
186
187  /**
188   * Creates a <i>mutable</i> {@code HashSet} instance initially containing the given elements.
189   *
190   * <p><b>Note:</b> if elements are non-null and won't be added or removed after this point, use
191   * {@link ImmutableSet#of()} or {@link ImmutableSet#copyOf(Object[])} instead. If {@code E} is an
192   * {@link Enum} type, use {@link EnumSet#of(Enum, Enum[])} instead. Otherwise, strongly consider
193   * using a {@code LinkedHashSet} instead, at the cost of increased memory footprint, to get
194   * deterministic iteration behavior.
195   *
196   * <p>This method is just a small convenience, either for {@code newHashSet(}{@link Arrays#asList
197   * asList}{@code (...))}, or for creating an empty set then calling {@link Collections#addAll}.
198   * This method is not actually very useful and will likely be deprecated in the future.
199   */
200  @SuppressWarnings("NonApiType") // acts as a direct substitute for a constructor call
201  public static <E extends @Nullable Object> HashSet<E> newHashSet(E... elements) {
202    HashSet<E> set = newHashSetWithExpectedSize(elements.length);
203    Collections.addAll(set, elements);
204    return set;
205  }
206
207  /**
208   * Creates a <i>mutable</i> {@code HashSet} instance containing the given elements. A very thin
209   * convenience for creating an empty set then calling {@link Collection#addAll} or {@link
210   * Iterables#addAll}.
211   *
212   * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link
213   * ImmutableSet#copyOf(Iterable)} instead. (Or, change {@code elements} to be a {@link
214   * FluentIterable} and call {@code elements.toSet()}.)
215   *
216   * <p><b>Note:</b> if {@code E} is an {@link Enum} type, use {@link #newEnumSet(Iterable, Class)}
217   * instead.
218   *
219   * <p><b>Note:</b> if {@code elements} is a {@link Collection}, you don't need this method.
220   * Instead, use the {@code HashSet} constructor directly, taking advantage of <a
221   * href="https://docs.oracle.com/javase/tutorial/java/generics/genTypeInference.html#type-inference-instantiation">"diamond"
222   * syntax</a>.
223   *
224   * <p>Overall, this method is not very useful and will likely be deprecated in the future.
225   */
226  @SuppressWarnings("NonApiType") // acts as a direct substitute for a constructor call
227  public static <E extends @Nullable Object> HashSet<E> newHashSet(Iterable<? extends E> elements) {
228    return (elements instanceof Collection)
229        ? new HashSet<E>((Collection<? extends E>) elements)
230        : newHashSet(elements.iterator());
231  }
232
233  /**
234   * Creates a <i>mutable</i> {@code HashSet} instance containing the given elements. A very thin
235   * convenience for creating an empty set and then calling {@link Iterators#addAll}.
236   *
237   * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link
238   * ImmutableSet#copyOf(Iterator)} instead.
239   *
240   * <p><b>Note:</b> if {@code E} is an {@link Enum} type, you should create an {@link EnumSet}
241   * instead.
242   *
243   * <p>Overall, this method is not very useful and will likely be deprecated in the future.
244   */
245  @SuppressWarnings("NonApiType") // acts as a direct substitute for a constructor call
246  public static <E extends @Nullable Object> HashSet<E> newHashSet(Iterator<? extends E> elements) {
247    HashSet<E> set = newHashSet();
248    Iterators.addAll(set, elements);
249    return set;
250  }
251
252  /**
253   * Returns a new hash set using the smallest initial table size that can hold {@code expectedSize}
254   * elements without resizing. Note that this is not what {@link HashSet#HashSet(int)} does, but it
255   * is what most users want and expect it to do.
256   *
257   * <p>This behavior can't be broadly guaranteed, but has been tested with OpenJDK 1.7 and 1.8.
258   *
259   * @param expectedSize the number of elements you expect to add to the returned set
260   * @return a new, empty hash set with enough capacity to hold {@code expectedSize} elements
261   *     without resizing
262   * @throws IllegalArgumentException if {@code expectedSize} is negative
263   */
264  @SuppressWarnings("NonApiType") // acts as a direct substitute for a constructor call
265  public static <E extends @Nullable Object> HashSet<E> newHashSetWithExpectedSize(
266      int expectedSize) {
267    return new HashSet<>(Maps.capacity(expectedSize));
268  }
269
270  /**
271   * Creates a thread-safe set backed by a hash map. The set is backed by a {@link
272   * ConcurrentHashMap} instance, and thus carries the same concurrency guarantees.
273   *
274   * <p>Unlike {@code HashSet}, this class does NOT allow {@code null} to be used as an element. The
275   * set is serializable.
276   *
277   * @return a new, empty thread-safe {@code Set}
278   * @since 15.0
279   */
280  public static <E> Set<E> newConcurrentHashSet() {
281    return Platform.newConcurrentHashSet();
282  }
283
284  /**
285   * Creates a thread-safe set backed by a hash map and containing the given elements. The set is
286   * backed by a {@link ConcurrentHashMap} instance, and thus carries the same concurrency
287   * guarantees.
288   *
289   * <p>Unlike {@code HashSet}, this class does NOT allow {@code null} to be used as an element. The
290   * set is serializable.
291   *
292   * @param elements the elements that the set should contain
293   * @return a new thread-safe set containing those elements (minus duplicates)
294   * @throws NullPointerException if {@code elements} or any of its contents is null
295   * @since 15.0
296   */
297  public static <E> Set<E> newConcurrentHashSet(Iterable<? extends E> elements) {
298    Set<E> set = newConcurrentHashSet();
299    Iterables.addAll(set, elements);
300    return set;
301  }
302
303  // LinkedHashSet
304
305  /**
306   * Creates a <i>mutable</i>, empty {@code LinkedHashSet} instance.
307   *
308   * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSet#of()} instead.
309   *
310   * <p><b>Note:</b> this method is now unnecessary and should be treated as deprecated. Instead,
311   * use the {@code LinkedHashSet} constructor directly, taking advantage of <a
312   * href="https://docs.oracle.com/javase/tutorial/java/generics/genTypeInference.html#type-inference-instantiation">"diamond"
313   * syntax</a>.
314   *
315   * @return a new, empty {@code LinkedHashSet}
316   */
317  @SuppressWarnings("NonApiType") // acts as a direct substitute for a constructor call
318  public static <E extends @Nullable Object> LinkedHashSet<E> newLinkedHashSet() {
319    return new LinkedHashSet<>();
320  }
321
322  /**
323   * Creates a <i>mutable</i> {@code LinkedHashSet} instance containing the given elements in order.
324   *
325   * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link
326   * ImmutableSet#copyOf(Iterable)} instead.
327   *
328   * <p><b>Note:</b> if {@code elements} is a {@link Collection}, you don't need this method.
329   * Instead, use the {@code LinkedHashSet} constructor directly, taking advantage of <a
330   * href="https://docs.oracle.com/javase/tutorial/java/generics/genTypeInference.html#type-inference-instantiation">"diamond"
331   * syntax</a>.
332   *
333   * <p>Overall, this method is not very useful and will likely be deprecated in the future.
334   *
335   * @param elements the elements that the set should contain, in order
336   * @return a new {@code LinkedHashSet} containing those elements (minus duplicates)
337   */
338  @SuppressWarnings("NonApiType") // acts as a direct substitute for a constructor call
339  public static <E extends @Nullable Object> LinkedHashSet<E> newLinkedHashSet(
340      Iterable<? extends E> elements) {
341    if (elements instanceof Collection) {
342      return new LinkedHashSet<>((Collection<? extends E>) elements);
343    }
344    LinkedHashSet<E> set = newLinkedHashSet();
345    Iterables.addAll(set, elements);
346    return set;
347  }
348
349  /**
350   * Creates a {@code LinkedHashSet} instance, with a high enough "initial capacity" that it
351   * <i>should</i> hold {@code expectedSize} elements without growth. This behavior cannot be
352   * broadly guaranteed, but it is observed to be true for OpenJDK 1.7. It also can't be guaranteed
353   * that the method isn't inadvertently <i>oversizing</i> the returned set.
354   *
355   * @param expectedSize the number of elements you expect to add to the returned set
356   * @return a new, empty {@code LinkedHashSet} with enough capacity to hold {@code expectedSize}
357   *     elements without resizing
358   * @throws IllegalArgumentException if {@code expectedSize} is negative
359   * @since 11.0
360   */
361  @SuppressWarnings("NonApiType") // acts as a direct substitute for a constructor call
362  public static <E extends @Nullable Object> LinkedHashSet<E> newLinkedHashSetWithExpectedSize(
363      int expectedSize) {
364    return new LinkedHashSet<>(Maps.capacity(expectedSize));
365  }
366
367  // TreeSet
368
369  /**
370   * Creates a <i>mutable</i>, empty {@code TreeSet} instance sorted by the natural sort ordering of
371   * its elements.
372   *
373   * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSortedSet#of()} instead.
374   *
375   * <p><b>Note:</b> this method is now unnecessary and should be treated as deprecated. Instead,
376   * use the {@code TreeSet} constructor directly, taking advantage of <a
377   * href="https://docs.oracle.com/javase/tutorial/java/generics/genTypeInference.html#type-inference-instantiation">"diamond"
378   * syntax</a>.
379   *
380   * @return a new, empty {@code TreeSet}
381   */
382  @SuppressWarnings({
383    "rawtypes", // https://github.com/google/guava/issues/989
384    "NonApiType", // acts as a direct substitute for a constructor call
385  })
386  public static <E extends Comparable> TreeSet<E> newTreeSet() {
387    return new TreeSet<>();
388  }
389
390  /**
391   * Creates a <i>mutable</i> {@code TreeSet} instance containing the given elements sorted by their
392   * natural ordering.
393   *
394   * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSortedSet#copyOf(Iterable)}
395   * instead.
396   *
397   * <p><b>Note:</b> If {@code elements} is a {@code SortedSet} with an explicit comparator, this
398   * method has different behavior than {@link TreeSet#TreeSet(SortedSet)}, which returns a {@code
399   * TreeSet} with that comparator.
400   *
401   * <p><b>Note:</b> this method is now unnecessary and should be treated as deprecated. Instead,
402   * use the {@code TreeSet} constructor directly, taking advantage of <a
403   * href="https://docs.oracle.com/javase/tutorial/java/generics/genTypeInference.html#type-inference-instantiation">"diamond"
404   * syntax</a>.
405   *
406   * <p>This method is just a small convenience for creating an empty set and then calling {@link
407   * Iterables#addAll}. This method is not very useful and will likely be deprecated in the future.
408   *
409   * @param elements the elements that the set should contain
410   * @return a new {@code TreeSet} containing those elements (minus duplicates)
411   */
412  @SuppressWarnings({
413    "rawtypes", // https://github.com/google/guava/issues/989
414    "NonApiType", // acts as a direct substitute for a constructor call
415  })
416  public static <E extends Comparable> TreeSet<E> newTreeSet(Iterable<? extends E> elements) {
417    TreeSet<E> set = newTreeSet();
418    Iterables.addAll(set, elements);
419    return set;
420  }
421
422  /**
423   * Creates a <i>mutable</i>, empty {@code TreeSet} instance with the given comparator.
424   *
425   * <p><b>Note:</b> if mutability is not required, use {@code
426   * ImmutableSortedSet.orderedBy(comparator).build()} instead.
427   *
428   * <p><b>Note:</b> this method is now unnecessary and should be treated as deprecated. Instead,
429   * use the {@code TreeSet} constructor directly, taking advantage of <a
430   * href="https://docs.oracle.com/javase/tutorial/java/generics/genTypeInference.html#type-inference-instantiation">"diamond"
431   * syntax</a>. One caveat to this is that the {@code TreeSet} constructor uses a null {@code
432   * Comparator} to mean "natural ordering," whereas this factory rejects null. Clean your code
433   * accordingly.
434   *
435   * @param comparator the comparator to use to sort the set
436   * @return a new, empty {@code TreeSet}
437   * @throws NullPointerException if {@code comparator} is null
438   */
439  @SuppressWarnings("NonApiType") // acts as a direct substitute for a constructor call
440  public static <E extends @Nullable Object> TreeSet<E> newTreeSet(
441      Comparator<? super E> comparator) {
442    return new TreeSet<>(checkNotNull(comparator));
443  }
444
445  /**
446   * Creates an empty {@code Set} that uses identity to determine equality. It compares object
447   * references, instead of calling {@code equals}, to determine whether a provided object matches
448   * an element in the set. For example, {@code contains} returns {@code false} when passed an
449   * object that equals a set member, but isn't the same instance. This behavior is similar to the
450   * way {@code IdentityHashMap} handles key lookups.
451   *
452   * @since 8.0
453   */
454  public static <E extends @Nullable Object> Set<E> newIdentityHashSet() {
455    return Collections.newSetFromMap(Maps.<E, Boolean>newIdentityHashMap());
456  }
457
458  /**
459   * Creates an empty {@code CopyOnWriteArraySet} instance.
460   *
461   * <p><b>Note:</b> if you need an immutable empty {@link Set}, use {@link Collections#emptySet}
462   * instead.
463   *
464   * @return a new, empty {@code CopyOnWriteArraySet}
465   * @since 12.0
466   */
467  @J2ktIncompatible
468  @GwtIncompatible // CopyOnWriteArraySet
469  public static <E extends @Nullable Object> CopyOnWriteArraySet<E> newCopyOnWriteArraySet() {
470    return new CopyOnWriteArraySet<>();
471  }
472
473  /**
474   * Creates a {@code CopyOnWriteArraySet} instance containing the given elements.
475   *
476   * @param elements the elements that the set should contain, in order
477   * @return a new {@code CopyOnWriteArraySet} containing those elements
478   * @since 12.0
479   */
480  @J2ktIncompatible
481  @GwtIncompatible // CopyOnWriteArraySet
482  public static <E extends @Nullable Object> CopyOnWriteArraySet<E> newCopyOnWriteArraySet(
483      Iterable<? extends E> elements) {
484    // We copy elements to an ArrayList first, rather than incurring the
485    // quadratic cost of adding them to the COWAS directly.
486    Collection<? extends E> elementsCollection =
487        (elements instanceof Collection)
488            ? (Collection<? extends E>) elements
489            : Lists.newArrayList(elements);
490    return new CopyOnWriteArraySet<>(elementsCollection);
491  }
492
493  /**
494   * Creates an {@code EnumSet} consisting of all enum values that are not in the specified
495   * collection. If the collection is an {@link EnumSet}, this method has the same behavior as
496   * {@link EnumSet#complementOf}. Otherwise, the specified collection must contain at least one
497   * element, in order to determine the element type. If the collection could be empty, use {@link
498   * #complementOf(Collection, Class)} instead of this method.
499   *
500   * @param collection the collection whose complement should be stored in the enum set
501   * @return a new, modifiable {@code EnumSet} containing all values of the enum that aren't present
502   *     in the given collection
503   * @throws IllegalArgumentException if {@code collection} is not an {@code EnumSet} instance and
504   *     contains no elements
505   */
506  @J2ktIncompatible
507  @GwtIncompatible // EnumSet.complementOf
508  public static <E extends Enum<E>> EnumSet<E> complementOf(Collection<E> collection) {
509    if (collection instanceof EnumSet) {
510      return EnumSet.complementOf((EnumSet<E>) collection);
511    }
512    checkArgument(
513        !collection.isEmpty(), "collection is empty; use the other version of this method");
514    Class<E> type = collection.iterator().next().getDeclaringClass();
515    return makeComplementByHand(collection, type);
516  }
517
518  /**
519   * Creates an {@code EnumSet} consisting of all enum values that are not in the specified
520   * collection. This is equivalent to {@link EnumSet#complementOf}, but can act on any input
521   * collection, as long as the elements are of enum type.
522   *
523   * @param collection the collection whose complement should be stored in the {@code EnumSet}
524   * @param type the type of the elements in the set
525   * @return a new, modifiable {@code EnumSet} initially containing all the values of the enum not
526   *     present in the given collection
527   */
528  @J2ktIncompatible
529  @GwtIncompatible // EnumSet.complementOf
530  public static <E extends Enum<E>> EnumSet<E> complementOf(
531      Collection<E> collection, Class<E> type) {
532    checkNotNull(collection);
533    return (collection instanceof EnumSet)
534        ? EnumSet.complementOf((EnumSet<E>) collection)
535        : makeComplementByHand(collection, type);
536  }
537
538  @J2ktIncompatible
539  @GwtIncompatible
540  private static <E extends Enum<E>> EnumSet<E> makeComplementByHand(
541      Collection<E> collection, Class<E> type) {
542    EnumSet<E> result = EnumSet.allOf(type);
543    result.removeAll(collection);
544    return result;
545  }
546
547  /**
548   * Returns a set backed by the specified map. The resulting set displays the same ordering,
549   * concurrency, and performance characteristics as the backing map. In essence, this factory
550   * method provides a {@link Set} implementation corresponding to any {@link Map} implementation.
551   * There is no need to use this method on a {@link Map} implementation that already has a
552   * corresponding {@link Set} implementation (such as {@link java.util.HashMap} or {@link
553   * java.util.TreeMap}).
554   *
555   * <p>Each method invocation on the set returned by this method results in exactly one method
556   * invocation on the backing map or its {@code keySet} view, with one exception. The {@code
557   * addAll} method is implemented as a sequence of {@code put} invocations on the backing map.
558   *
559   * <p>The specified map must be empty at the time this method is invoked, and should not be
560   * accessed directly after this method returns. These conditions are ensured if the map is created
561   * empty, passed directly to this method, and no reference to the map is retained, as illustrated
562   * in the following code fragment:
563   *
564   * <pre>{@code
565   * Set<Object> identityHashSet = Sets.newSetFromMap(
566   *     new IdentityHashMap<Object, Boolean>());
567   * }</pre>
568   *
569   * <p>The returned set is serializable if the backing map is.
570   *
571   * @param map the backing map
572   * @return the set backed by the map
573   * @throws IllegalArgumentException if {@code map} is not empty
574   * @deprecated Use {@link Collections#newSetFromMap} instead.
575   */
576  @InlineMe(replacement = "Collections.newSetFromMap(map)", imports = "java.util.Collections")
577  @Deprecated
578  public static <E extends @Nullable Object> Set<E> newSetFromMap(
579      Map<E, Boolean> map) {
580    return Collections.newSetFromMap(map);
581  }
582
583  /**
584   * An unmodifiable view of a set which may be backed by other sets; this view will change as the
585   * backing sets do. Contains methods to copy the data into a new set which will then remain
586   * stable. There is usually no reason to retain a reference of type {@code SetView}; typically,
587   * you either use it as a plain {@link Set}, or immediately invoke {@link #immutableCopy} or
588   * {@link #copyInto} and forget the {@code SetView} itself.
589   *
590   * @since 2.0
591   */
592  public abstract static class SetView<E extends @Nullable Object> extends AbstractSet<E> {
593    private SetView() {} // no subclasses but our own
594
595    /**
596     * Returns an immutable copy of the current contents of this set view. Does not support null
597     * elements.
598     *
599     * <p><b>Warning:</b> this may have unexpected results if a backing set of this view uses a
600     * nonstandard notion of equivalence, for example if it is a {@link TreeSet} using a comparator
601     * that is inconsistent with {@link Object#equals(Object)}.
602     */
603    public ImmutableSet<@NonNull E> immutableCopy() {
604      // Not using ImmutableSet.copyOf() to avoid iterating thrice (isEmpty, size, iterator).
605      int upperBoundSize = upperBoundSize();
606      if (upperBoundSize == 0) {
607        return ImmutableSet.of();
608      }
609      ImmutableSet.Builder<@NonNull E> builder =
610          ImmutableSet.builderWithExpectedSize(upperBoundSize);
611      for (E element : this) {
612        builder.add(checkNotNull(element));
613      }
614      return builder.build();
615    }
616
617    /**
618     * Copies the current contents of this set view into an existing set. This method has equivalent
619     * behavior to {@code set.addAll(this)}, assuming that all the sets involved are based on the
620     * same notion of equivalence.
621     *
622     * @return a reference to {@code set}, for convenience
623     */
624    // Note: S should logically extend Set<? super E> but can't due to either
625    // some javac bug or some weirdness in the spec, not sure which.
626    @CanIgnoreReturnValue
627    public <S extends Set<E>> S copyInto(S set) {
628      set.addAll(this);
629      return set;
630    }
631
632    /**
633     * Guaranteed to throw an exception and leave the collection unmodified.
634     *
635     * @throws UnsupportedOperationException always
636     * @deprecated Unsupported operation.
637     */
638    @CanIgnoreReturnValue
639    @Deprecated
640    @Override
641    @DoNotCall("Always throws UnsupportedOperationException")
642    public final boolean add(@ParametricNullness E e) {
643      throw new UnsupportedOperationException();
644    }
645
646    /**
647     * Guaranteed to throw an exception and leave the collection unmodified.
648     *
649     * @throws UnsupportedOperationException always
650     * @deprecated Unsupported operation.
651     */
652    @CanIgnoreReturnValue
653    @Deprecated
654    @Override
655    @DoNotCall("Always throws UnsupportedOperationException")
656    public final boolean remove(@Nullable Object object) {
657      throw new UnsupportedOperationException();
658    }
659
660    /**
661     * Guaranteed to throw an exception and leave the collection unmodified.
662     *
663     * @throws UnsupportedOperationException always
664     * @deprecated Unsupported operation.
665     */
666    @CanIgnoreReturnValue
667    @Deprecated
668    @Override
669    @DoNotCall("Always throws UnsupportedOperationException")
670    public final boolean addAll(Collection<? extends E> newElements) {
671      throw new UnsupportedOperationException();
672    }
673
674    /**
675     * Guaranteed to throw an exception and leave the collection unmodified.
676     *
677     * @throws UnsupportedOperationException always
678     * @deprecated Unsupported operation.
679     */
680    @CanIgnoreReturnValue
681    @Deprecated
682    @Override
683    @DoNotCall("Always throws UnsupportedOperationException")
684    public final boolean removeAll(Collection<?> oldElements) {
685      throw new UnsupportedOperationException();
686    }
687
688    /**
689     * Guaranteed to throw an exception and leave the collection unmodified.
690     *
691     * @throws UnsupportedOperationException always
692     * @deprecated Unsupported operation.
693     */
694    @CanIgnoreReturnValue
695    @Deprecated
696    @Override
697    @DoNotCall("Always throws UnsupportedOperationException")
698    public final boolean removeIf(java.util.function.Predicate<? super E> filter) {
699      throw new UnsupportedOperationException();
700    }
701
702    /**
703     * Guaranteed to throw an exception and leave the collection unmodified.
704     *
705     * @throws UnsupportedOperationException always
706     * @deprecated Unsupported operation.
707     */
708    @CanIgnoreReturnValue
709    @Deprecated
710    @Override
711    @DoNotCall("Always throws UnsupportedOperationException")
712    public final boolean retainAll(Collection<?> elementsToKeep) {
713      throw new UnsupportedOperationException();
714    }
715
716    /**
717     * Guaranteed to throw an exception and leave the collection unmodified.
718     *
719     * @throws UnsupportedOperationException always
720     * @deprecated Unsupported operation.
721     */
722    @Deprecated
723    @Override
724    @DoNotCall("Always throws UnsupportedOperationException")
725    public final void clear() {
726      throw new UnsupportedOperationException();
727    }
728
729    /**
730     * Scope the return type to {@link UnmodifiableIterator} to ensure this is an unmodifiable view.
731     *
732     * @since 20.0 (present with return type {@link Iterator} since 2.0)
733     */
734    @Override
735    public abstract UnmodifiableIterator<E> iterator();
736
737    /**
738     * Returns the upper bound on the size of this set view.
739     *
740     * <p>This method is used to presize the underlying collection when converting to an {@link
741     * ImmutableSet}.
742     */
743    abstract int upperBoundSize();
744
745    static int upperBoundSize(Set<?> set) {
746      return set instanceof SetView ? ((SetView) set).upperBoundSize() : set.size();
747    }
748  }
749
750  /**
751   * Returns an unmodifiable <b>view</b> of the union of two sets. The returned set contains all
752   * elements that are contained in either backing set. Iterating over the returned set iterates
753   * first over all the elements of {@code set1}, then over each element of {@code set2}, in order,
754   * that is not contained in {@code set1}.
755   *
756   * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different
757   * equivalence relations, for example if {@code set1} is a {@link HashSet} and {@code set2} is a
758   * {@link TreeSet} or the {@link Map#keySet} of an {@code IdentityHashMap}.
759   */
760  public static <E extends @Nullable Object> SetView<E> union(
761      final Set<? extends E> set1, final Set<? extends E> set2) {
762    checkNotNull(set1, "set1");
763    checkNotNull(set2, "set2");
764
765    return new SetView<E>() {
766      @Override
767      public int size() {
768        int size = set1.size();
769        for (E e : set2) {
770          if (!set1.contains(e)) {
771            size++;
772          }
773        }
774        return size;
775      }
776
777      @Override
778      public boolean isEmpty() {
779        return set1.isEmpty() && set2.isEmpty();
780      }
781
782      @Override
783      public UnmodifiableIterator<E> iterator() {
784        return new AbstractIterator<E>() {
785          final Iterator<? extends E> itr1 = set1.iterator();
786          final Iterator<? extends E> itr2 = set2.iterator();
787
788          @Override
789          protected @Nullable E computeNext() {
790            if (itr1.hasNext()) {
791              return itr1.next();
792            }
793            while (itr2.hasNext()) {
794              E e = itr2.next();
795              if (!set1.contains(e)) {
796                return e;
797              }
798            }
799            return endOfData();
800          }
801        };
802      }
803
804      @Override
805      public Stream<E> stream() {
806        return Stream.concat(set1.stream(), set2.stream().filter((E e) -> !set1.contains(e)));
807      }
808
809      @Override
810      public Stream<E> parallelStream() {
811        return stream().parallel();
812      }
813
814      @Override
815      public boolean contains(@Nullable Object object) {
816        return set1.contains(object) || set2.contains(object);
817      }
818
819      @Override
820      public <S extends Set<E>> S copyInto(S set) {
821        set.addAll(set1);
822        set.addAll(set2);
823        return set;
824      }
825
826      @Override
827      int upperBoundSize() {
828        return upperBoundSize(set1) + upperBoundSize(set2);
829      }
830    };
831  }
832
833  /**
834   * Returns an unmodifiable <b>view</b> of the intersection of two sets. The returned set contains
835   * all elements that are contained by both backing sets. The iteration order of the returned set
836   * matches that of {@code set1}.
837   *
838   * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different
839   * equivalence relations, for example if {@code set1} is a {@link HashSet} and {@code set2} is a
840   * {@link TreeSet} or the {@link Map#keySet} of an {@code IdentityHashMap}.
841   *
842   * <p><b>Note:</b> The returned view performs slightly better when {@code set1} is the smaller of
843   * the two sets. If you have reason to believe one of your sets will generally be smaller than the
844   * other, pass it first. Unfortunately, since this method sets the generic type of the returned
845   * set based on the type of the first set passed, this could in rare cases force you to make a
846   * cast, for example:
847   *
848   * <pre>{@code
849   * Set<Object> aFewBadObjects = ...
850   * Set<String> manyBadStrings = ...
851   *
852   * // impossible for a non-String to be in the intersection
853   * SuppressWarnings("unchecked")
854   * Set<String> badStrings = (Set) Sets.intersection(
855   *     aFewBadObjects, manyBadStrings);
856   * }</pre>
857   *
858   * <p>This is unfortunate, but should come up only very rarely.
859   */
860  public static <E extends @Nullable Object> SetView<E> intersection(
861      final Set<E> set1, final Set<?> set2) {
862    checkNotNull(set1, "set1");
863    checkNotNull(set2, "set2");
864
865    return new SetView<E>() {
866      @Override
867      public UnmodifiableIterator<E> iterator() {
868        return new AbstractIterator<E>() {
869          final Iterator<E> itr = set1.iterator();
870
871          @Override
872          protected @Nullable E computeNext() {
873            while (itr.hasNext()) {
874              E e = itr.next();
875              if (set2.contains(e)) {
876                return e;
877              }
878            }
879            return endOfData();
880          }
881        };
882      }
883
884      @Override
885      public Stream<E> stream() {
886        return set1.stream().filter(set2::contains);
887      }
888
889      @Override
890      public Stream<E> parallelStream() {
891        return set1.parallelStream().filter(set2::contains);
892      }
893
894      @Override
895      public int size() {
896        int size = 0;
897        for (E e : set1) {
898          if (set2.contains(e)) {
899            size++;
900          }
901        }
902        return size;
903      }
904
905      @Override
906      public boolean isEmpty() {
907        return Collections.disjoint(set2, set1);
908      }
909
910      @Override
911      public boolean contains(@Nullable Object object) {
912        return set1.contains(object) && set2.contains(object);
913      }
914
915      @Override
916      public boolean containsAll(Collection<?> collection) {
917        return set1.containsAll(collection) && set2.containsAll(collection);
918      }
919
920      @Override
921      int upperBoundSize() {
922        return min(upperBoundSize(set1), upperBoundSize(set2));
923      }
924    };
925  }
926
927  /**
928   * Returns an unmodifiable <b>view</b> of the difference of two sets. The returned set contains
929   * all elements that are contained by {@code set1} and not contained by {@code set2}. {@code set2}
930   * may also contain elements not present in {@code set1}; these are simply ignored. The iteration
931   * order of the returned set matches that of {@code set1}.
932   *
933   * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different
934   * equivalence relations, for example if {@code set1} is a {@link HashSet} and {@code set2} is a
935   * {@link TreeSet} or the {@link Map#keySet} of an {@code IdentityHashMap}.
936   */
937  public static <E extends @Nullable Object> SetView<E> difference(
938      final Set<E> set1, final Set<?> set2) {
939    checkNotNull(set1, "set1");
940    checkNotNull(set2, "set2");
941
942    return new SetView<E>() {
943      @Override
944      public UnmodifiableIterator<E> iterator() {
945        return new AbstractIterator<E>() {
946          final Iterator<E> itr = set1.iterator();
947
948          @Override
949          protected @Nullable E computeNext() {
950            while (itr.hasNext()) {
951              E e = itr.next();
952              if (!set2.contains(e)) {
953                return e;
954              }
955            }
956            return endOfData();
957          }
958        };
959      }
960
961      @Override
962      public Stream<E> stream() {
963        return set1.stream().filter(e -> !set2.contains(e));
964      }
965
966      @Override
967      public Stream<E> parallelStream() {
968        return set1.parallelStream().filter(e -> !set2.contains(e));
969      }
970
971      @Override
972      public int size() {
973        int size = 0;
974        for (E e : set1) {
975          if (!set2.contains(e)) {
976            size++;
977          }
978        }
979        return size;
980      }
981
982      @Override
983      public boolean isEmpty() {
984        return set2.containsAll(set1);
985      }
986
987      @Override
988      public boolean contains(@Nullable Object element) {
989        return set1.contains(element) && !set2.contains(element);
990      }
991
992      @Override
993      int upperBoundSize() {
994        return upperBoundSize(set1);
995      }
996    };
997  }
998
999  /**
1000   * Returns an unmodifiable <b>view</b> of the symmetric difference of two sets. The returned set
1001   * contains all elements that are contained in either {@code set1} or {@code set2} but not in
1002   * both. The iteration order of the returned set is undefined.
1003   *
1004   * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different
1005   * equivalence relations, for example if {@code set1} is a {@link HashSet} and {@code set2} is a
1006   * {@link TreeSet} or the {@link Map#keySet} of an {@code IdentityHashMap}.
1007   *
1008   * @since 3.0
1009   */
1010  public static <E extends @Nullable Object> SetView<E> symmetricDifference(
1011      final Set<? extends E> set1, final Set<? extends E> set2) {
1012    checkNotNull(set1, "set1");
1013    checkNotNull(set2, "set2");
1014
1015    return new SetView<E>() {
1016      @Override
1017      public UnmodifiableIterator<E> iterator() {
1018        final Iterator<? extends E> itr1 = set1.iterator();
1019        final Iterator<? extends E> itr2 = set2.iterator();
1020        return new AbstractIterator<E>() {
1021          @Override
1022          public @Nullable E computeNext() {
1023            while (itr1.hasNext()) {
1024              E elem1 = itr1.next();
1025              if (!set2.contains(elem1)) {
1026                return elem1;
1027              }
1028            }
1029            while (itr2.hasNext()) {
1030              E elem2 = itr2.next();
1031              if (!set1.contains(elem2)) {
1032                return elem2;
1033              }
1034            }
1035            return endOfData();
1036          }
1037        };
1038      }
1039
1040      @Override
1041      public int size() {
1042        int size = 0;
1043        for (E e : set1) {
1044          if (!set2.contains(e)) {
1045            size++;
1046          }
1047        }
1048        for (E e : set2) {
1049          if (!set1.contains(e)) {
1050            size++;
1051          }
1052        }
1053        return size;
1054      }
1055
1056      @Override
1057      public boolean isEmpty() {
1058        return set1.equals(set2);
1059      }
1060
1061      @Override
1062      public boolean contains(@Nullable Object element) {
1063        return set1.contains(element) ^ set2.contains(element);
1064      }
1065
1066      @Override
1067      int upperBoundSize() {
1068        return upperBoundSize(set1) + upperBoundSize(set2);
1069      }
1070    };
1071  }
1072
1073  /**
1074   * Returns the elements of {@code unfiltered} that satisfy a predicate. The returned set is a live
1075   * view of {@code unfiltered}; changes to one affect the other.
1076   *
1077   * <p>The resulting set's iterator does not support {@code remove()}, but all other set methods
1078   * are supported. When given an element that doesn't satisfy the predicate, the set's {@code
1079   * add()} and {@code addAll()} methods throw an {@link IllegalArgumentException}. When methods
1080   * such as {@code removeAll()} and {@code clear()} are called on the filtered set, only elements
1081   * that satisfy the filter will be removed from the underlying set.
1082   *
1083   * <p>The returned set isn't threadsafe or serializable, even if {@code unfiltered} is.
1084   *
1085   * <p>Many of the filtered set's methods, such as {@code size()}, iterate across every element in
1086   * the underlying set and determine which elements satisfy the filter. When a live view is
1087   * <i>not</i> needed, it may be faster to copy {@code Iterables.filter(unfiltered, predicate)} and
1088   * use the copy.
1089   *
1090   * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as documented at
1091   * {@link Predicate#apply}. Do not provide a predicate such as {@code
1092   * Predicates.instanceOf(ArrayList.class)}, which is inconsistent with equals. (See {@link
1093   * Iterables#filter(Iterable, Class)} for related functionality.)
1094   *
1095   * <p><b>Java 8+ users:</b> many use cases for this method are better addressed by {@link
1096   * java.util.stream.Stream#filter}. This method is not being deprecated, but we gently encourage
1097   * you to migrate to streams.
1098   */
1099  // TODO(kevinb): how to omit that last sentence when building GWT javadoc?
1100  public static <E extends @Nullable Object> Set<E> filter(
1101      Set<E> unfiltered, Predicate<? super E> predicate) {
1102    if (unfiltered instanceof SortedSet) {
1103      return filter((SortedSet<E>) unfiltered, predicate);
1104    }
1105    if (unfiltered instanceof FilteredSet) {
1106      // Support clear(), removeAll(), and retainAll() when filtering a filtered
1107      // collection.
1108      FilteredSet<E> filtered = (FilteredSet<E>) unfiltered;
1109      Predicate<E> combinedPredicate = Predicates.and(filtered.predicate, predicate);
1110      return new FilteredSet<>((Set<E>) filtered.unfiltered, combinedPredicate);
1111    }
1112
1113    return new FilteredSet<>(checkNotNull(unfiltered), checkNotNull(predicate));
1114  }
1115
1116  /**
1117   * Returns the elements of a {@code SortedSet}, {@code unfiltered}, that satisfy a predicate. The
1118   * returned set is a live view of {@code unfiltered}; changes to one affect the other.
1119   *
1120   * <p>The resulting set's iterator does not support {@code remove()}, but all other set methods
1121   * are supported. When given an element that doesn't satisfy the predicate, the set's {@code
1122   * add()} and {@code addAll()} methods throw an {@link IllegalArgumentException}. When methods
1123   * such as {@code removeAll()} and {@code clear()} are called on the filtered set, only elements
1124   * that satisfy the filter will be removed from the underlying set.
1125   *
1126   * <p>The returned set isn't threadsafe or serializable, even if {@code unfiltered} is.
1127   *
1128   * <p>Many of the filtered set's methods, such as {@code size()}, iterate across every element in
1129   * the underlying set and determine which elements satisfy the filter. When a live view is
1130   * <i>not</i> needed, it may be faster to copy {@code Iterables.filter(unfiltered, predicate)} and
1131   * use the copy.
1132   *
1133   * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as documented at
1134   * {@link Predicate#apply}. Do not provide a predicate such as {@code
1135   * Predicates.instanceOf(ArrayList.class)}, which is inconsistent with equals. (See {@link
1136   * Iterables#filter(Iterable, Class)} for related functionality.)
1137   *
1138   * @since 11.0
1139   */
1140  public static <E extends @Nullable Object> SortedSet<E> filter(
1141      SortedSet<E> unfiltered, Predicate<? super E> predicate) {
1142    if (unfiltered instanceof FilteredSet) {
1143      // Support clear(), removeAll(), and retainAll() when filtering a filtered
1144      // collection.
1145      FilteredSet<E> filtered = (FilteredSet<E>) unfiltered;
1146      Predicate<E> combinedPredicate = Predicates.and(filtered.predicate, predicate);
1147      return new FilteredSortedSet<>((SortedSet<E>) filtered.unfiltered, combinedPredicate);
1148    }
1149
1150    return new FilteredSortedSet<>(checkNotNull(unfiltered), checkNotNull(predicate));
1151  }
1152
1153  /**
1154   * Returns the elements of a {@code NavigableSet}, {@code unfiltered}, that satisfy a predicate.
1155   * The returned set is a live view of {@code unfiltered}; changes to one affect the other.
1156   *
1157   * <p>The resulting set's iterator does not support {@code remove()}, but all other set methods
1158   * are supported. When given an element that doesn't satisfy the predicate, the set's {@code
1159   * add()} and {@code addAll()} methods throw an {@link IllegalArgumentException}. When methods
1160   * such as {@code removeAll()} and {@code clear()} are called on the filtered set, only elements
1161   * that satisfy the filter will be removed from the underlying set.
1162   *
1163   * <p>The returned set isn't threadsafe or serializable, even if {@code unfiltered} is.
1164   *
1165   * <p>Many of the filtered set's methods, such as {@code size()}, iterate across every element in
1166   * the underlying set and determine which elements satisfy the filter. When a live view is
1167   * <i>not</i> needed, it may be faster to copy {@code Iterables.filter(unfiltered, predicate)} and
1168   * use the copy.
1169   *
1170   * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as documented at
1171   * {@link Predicate#apply}. Do not provide a predicate such as {@code
1172   * Predicates.instanceOf(ArrayList.class)}, which is inconsistent with equals. (See {@link
1173   * Iterables#filter(Iterable, Class)} for related functionality.)
1174   *
1175   * @since 14.0
1176   */
1177  @GwtIncompatible // NavigableSet
1178  public static <E extends @Nullable Object> NavigableSet<E> filter(
1179      NavigableSet<E> unfiltered, Predicate<? super E> predicate) {
1180    if (unfiltered instanceof FilteredSet) {
1181      // Support clear(), removeAll(), and retainAll() when filtering a filtered
1182      // collection.
1183      FilteredSet<E> filtered = (FilteredSet<E>) unfiltered;
1184      Predicate<E> combinedPredicate = Predicates.and(filtered.predicate, predicate);
1185      return new FilteredNavigableSet<>((NavigableSet<E>) filtered.unfiltered, combinedPredicate);
1186    }
1187
1188    return new FilteredNavigableSet<>(checkNotNull(unfiltered), checkNotNull(predicate));
1189  }
1190
1191  private static class FilteredSet<E extends @Nullable Object> extends FilteredCollection<E>
1192      implements Set<E> {
1193    FilteredSet(Set<E> unfiltered, Predicate<? super E> predicate) {
1194      super(unfiltered, predicate);
1195    }
1196
1197    @Override
1198    public boolean equals(@Nullable Object object) {
1199      return equalsImpl(this, object);
1200    }
1201
1202    @Override
1203    public int hashCode() {
1204      return hashCodeImpl(this);
1205    }
1206  }
1207
1208  private static class FilteredSortedSet<E extends @Nullable Object> extends FilteredSet<E>
1209      implements SortedSet<E> {
1210
1211    FilteredSortedSet(SortedSet<E> unfiltered, Predicate<? super E> predicate) {
1212      super(unfiltered, predicate);
1213    }
1214
1215    @Override
1216    public @Nullable Comparator<? super E> comparator() {
1217      return ((SortedSet<E>) unfiltered).comparator();
1218    }
1219
1220    @Override
1221    public SortedSet<E> subSet(@ParametricNullness E fromElement, @ParametricNullness E toElement) {
1222      return new FilteredSortedSet<>(
1223          ((SortedSet<E>) unfiltered).subSet(fromElement, toElement), predicate);
1224    }
1225
1226    @Override
1227    public SortedSet<E> headSet(@ParametricNullness E toElement) {
1228      return new FilteredSortedSet<>(((SortedSet<E>) unfiltered).headSet(toElement), predicate);
1229    }
1230
1231    @Override
1232    public SortedSet<E> tailSet(@ParametricNullness E fromElement) {
1233      return new FilteredSortedSet<>(((SortedSet<E>) unfiltered).tailSet(fromElement), predicate);
1234    }
1235
1236    @Override
1237    @ParametricNullness
1238    public E first() {
1239      return Iterators.find(unfiltered.iterator(), predicate);
1240    }
1241
1242    @Override
1243    @ParametricNullness
1244    public E last() {
1245      SortedSet<E> sortedUnfiltered = (SortedSet<E>) unfiltered;
1246      while (true) {
1247        E element = sortedUnfiltered.last();
1248        if (predicate.apply(element)) {
1249          return element;
1250        }
1251        sortedUnfiltered = sortedUnfiltered.headSet(element);
1252      }
1253    }
1254  }
1255
1256  @GwtIncompatible // NavigableSet
1257  private static class FilteredNavigableSet<E extends @Nullable Object> extends FilteredSortedSet<E>
1258      implements NavigableSet<E> {
1259    FilteredNavigableSet(NavigableSet<E> unfiltered, Predicate<? super E> predicate) {
1260      super(unfiltered, predicate);
1261    }
1262
1263    NavigableSet<E> unfiltered() {
1264      return (NavigableSet<E>) unfiltered;
1265    }
1266
1267    @Override
1268    public @Nullable E lower(@ParametricNullness E e) {
1269      return Iterators.find(unfiltered().headSet(e, false).descendingIterator(), predicate, null);
1270    }
1271
1272    @Override
1273    public @Nullable E floor(@ParametricNullness E e) {
1274      return Iterators.find(unfiltered().headSet(e, true).descendingIterator(), predicate, null);
1275    }
1276
1277    @Override
1278    public @Nullable E ceiling(@ParametricNullness E e) {
1279      return Iterables.find(unfiltered().tailSet(e, true), predicate, null);
1280    }
1281
1282    @Override
1283    public @Nullable E higher(@ParametricNullness E e) {
1284      return Iterables.find(unfiltered().tailSet(e, false), predicate, null);
1285    }
1286
1287    @Override
1288    public @Nullable E pollFirst() {
1289      return Iterables.removeFirstMatching(unfiltered(), predicate);
1290    }
1291
1292    @Override
1293    public @Nullable E pollLast() {
1294      return Iterables.removeFirstMatching(unfiltered().descendingSet(), predicate);
1295    }
1296
1297    @Override
1298    public NavigableSet<E> descendingSet() {
1299      return Sets.filter(unfiltered().descendingSet(), predicate);
1300    }
1301
1302    @Override
1303    public Iterator<E> descendingIterator() {
1304      return Iterators.filter(unfiltered().descendingIterator(), predicate);
1305    }
1306
1307    @Override
1308    @ParametricNullness
1309    public E last() {
1310      return Iterators.find(unfiltered().descendingIterator(), predicate);
1311    }
1312
1313    @Override
1314    public NavigableSet<E> subSet(
1315        @ParametricNullness E fromElement,
1316        boolean fromInclusive,
1317        @ParametricNullness E toElement,
1318        boolean toInclusive) {
1319      return filter(
1320          unfiltered().subSet(fromElement, fromInclusive, toElement, toInclusive), predicate);
1321    }
1322
1323    @Override
1324    public NavigableSet<E> headSet(@ParametricNullness E toElement, boolean inclusive) {
1325      return filter(unfiltered().headSet(toElement, inclusive), predicate);
1326    }
1327
1328    @Override
1329    public NavigableSet<E> tailSet(@ParametricNullness E fromElement, boolean inclusive) {
1330      return filter(unfiltered().tailSet(fromElement, inclusive), predicate);
1331    }
1332  }
1333
1334  /**
1335   * Returns every possible list that can be formed by choosing one element from each of the given
1336   * sets in order; the "n-ary <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian
1337   * product</a>" of the sets. For example:
1338   *
1339   * <pre>{@code
1340   * Sets.cartesianProduct(ImmutableList.of(
1341   *     ImmutableSet.of(1, 2),
1342   *     ImmutableSet.of("A", "B", "C")))
1343   * }</pre>
1344   *
1345   * <p>returns a set containing six lists:
1346   *
1347   * <ul>
1348   *   <li>{@code ImmutableList.of(1, "A")}
1349   *   <li>{@code ImmutableList.of(1, "B")}
1350   *   <li>{@code ImmutableList.of(1, "C")}
1351   *   <li>{@code ImmutableList.of(2, "A")}
1352   *   <li>{@code ImmutableList.of(2, "B")}
1353   *   <li>{@code ImmutableList.of(2, "C")}
1354   * </ul>
1355   *
1356   * <p>The result is guaranteed to be in the "traditional", lexicographical order for Cartesian
1357   * products that you would get from nesting for loops:
1358   *
1359   * <pre>{@code
1360   * for (B b0 : sets.get(0)) {
1361   *   for (B b1 : sets.get(1)) {
1362   *     ...
1363   *     ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...);
1364   *     // operate on tuple
1365   *   }
1366   * }
1367   * }</pre>
1368   *
1369   * <p>Note that if any input set is empty, the Cartesian product will also be empty. If no sets at
1370   * all are provided (an empty list), the resulting Cartesian product has one element, an empty
1371   * list (counter-intuitive, but mathematically consistent).
1372   *
1373   * <p><i>Performance notes:</i> while the cartesian product of sets of size {@code m, n, p} is a
1374   * set of size {@code m x n x p}, its actual memory consumption is much smaller. When the
1375   * cartesian set is constructed, the input sets are merely copied. Only as the resulting set is
1376   * iterated are the individual lists created, and these are not retained after iteration.
1377   *
1378   * @param sets the sets to choose elements from, in the order that the elements chosen from those
1379   *     sets should appear in the resulting lists
1380   * @param <B> any common base class shared by all axes (often just {@link Object})
1381   * @return the Cartesian product, as an immutable set containing immutable lists
1382   * @throws NullPointerException if {@code sets}, any one of the {@code sets}, or any element of a
1383   *     provided set is null
1384   * @throws IllegalArgumentException if the cartesian product size exceeds the {@code int} range
1385   * @since 2.0
1386   */
1387  public static <B> Set<List<B>> cartesianProduct(List<? extends Set<? extends B>> sets) {
1388    return CartesianSet.create(sets);
1389  }
1390
1391  /**
1392   * Returns every possible list that can be formed by choosing one element from each of the given
1393   * sets in order; the "n-ary <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian
1394   * product</a>" of the sets. For example:
1395   *
1396   * <pre>{@code
1397   * Sets.cartesianProduct(
1398   *     ImmutableSet.of(1, 2),
1399   *     ImmutableSet.of("A", "B", "C"))
1400   * }</pre>
1401   *
1402   * <p>returns a set containing six lists:
1403   *
1404   * <ul>
1405   *   <li>{@code ImmutableList.of(1, "A")}
1406   *   <li>{@code ImmutableList.of(1, "B")}
1407   *   <li>{@code ImmutableList.of(1, "C")}
1408   *   <li>{@code ImmutableList.of(2, "A")}
1409   *   <li>{@code ImmutableList.of(2, "B")}
1410   *   <li>{@code ImmutableList.of(2, "C")}
1411   * </ul>
1412   *
1413   * <p>The result is guaranteed to be in the "traditional", lexicographical order for Cartesian
1414   * products that you would get from nesting for loops:
1415   *
1416   * <pre>{@code
1417   * for (B b0 : sets.get(0)) {
1418   *   for (B b1 : sets.get(1)) {
1419   *     ...
1420   *     ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...);
1421   *     // operate on tuple
1422   *   }
1423   * }
1424   * }</pre>
1425   *
1426   * <p>Note that if any input set is empty, the Cartesian product will also be empty. If no sets at
1427   * all are provided (an empty list), the resulting Cartesian product has one element, an empty
1428   * list (counter-intuitive, but mathematically consistent).
1429   *
1430   * <p><i>Performance notes:</i> while the cartesian product of sets of size {@code m, n, p} is a
1431   * set of size {@code m x n x p}, its actual memory consumption is much smaller. When the
1432   * cartesian set is constructed, the input sets are merely copied. Only as the resulting set is
1433   * iterated are the individual lists created, and these are not retained after iteration.
1434   *
1435   * @param sets the sets to choose elements from, in the order that the elements chosen from those
1436   *     sets should appear in the resulting lists
1437   * @param <B> any common base class shared by all axes (often just {@link Object})
1438   * @return the Cartesian product, as an immutable set containing immutable lists
1439   * @throws NullPointerException if {@code sets}, any one of the {@code sets}, or any element of a
1440   *     provided set is null
1441   * @throws IllegalArgumentException if the cartesian product size exceeds the {@code int} range
1442   * @since 2.0
1443   */
1444  @SafeVarargs
1445  public static <B> Set<List<B>> cartesianProduct(Set<? extends B>... sets) {
1446    return cartesianProduct(asList(sets));
1447  }
1448
1449  private static final class CartesianSet<E> extends ForwardingCollection<List<E>>
1450      implements Set<List<E>> {
1451    private final transient ImmutableList<ImmutableSet<E>> axes;
1452    private final transient CartesianList<E> delegate;
1453
1454    static <E> Set<List<E>> create(List<? extends Set<? extends E>> sets) {
1455      ImmutableList.Builder<ImmutableSet<E>> axesBuilder = new ImmutableList.Builder<>(sets.size());
1456      for (Set<? extends E> set : sets) {
1457        ImmutableSet<E> copy = ImmutableSet.copyOf(set);
1458        if (copy.isEmpty()) {
1459          return ImmutableSet.of();
1460        }
1461        axesBuilder.add(copy);
1462      }
1463      final ImmutableList<ImmutableSet<E>> axes = axesBuilder.build();
1464      ImmutableList<List<E>> listAxes =
1465          new ImmutableList<List<E>>() {
1466            @Override
1467            public int size() {
1468              return axes.size();
1469            }
1470
1471            @Override
1472            public List<E> get(int index) {
1473              return axes.get(index).asList();
1474            }
1475
1476            @Override
1477            boolean isPartialView() {
1478              return true;
1479            }
1480
1481            // redeclare to help optimizers with b/310253115
1482            @SuppressWarnings("RedundantOverride")
1483            @Override
1484            @J2ktIncompatible // serialization
1485            @GwtIncompatible // serialization
1486            Object writeReplace() {
1487              return super.writeReplace();
1488            }
1489          };
1490      return new CartesianSet<E>(axes, new CartesianList<E>(listAxes));
1491    }
1492
1493    private CartesianSet(ImmutableList<ImmutableSet<E>> axes, CartesianList<E> delegate) {
1494      this.axes = axes;
1495      this.delegate = delegate;
1496    }
1497
1498    @Override
1499    protected Collection<List<E>> delegate() {
1500      return delegate;
1501    }
1502
1503    @Override
1504    public boolean contains(@Nullable Object object) {
1505      if (!(object instanceof List)) {
1506        return false;
1507      }
1508      List<?> list = (List<?>) object;
1509      if (list.size() != axes.size()) {
1510        return false;
1511      }
1512      int i = 0;
1513      for (Object o : list) {
1514        if (!axes.get(i).contains(o)) {
1515          return false;
1516        }
1517        i++;
1518      }
1519      return true;
1520    }
1521
1522    @Override
1523    public boolean equals(@Nullable Object object) {
1524      // Warning: this is broken if size() == 0, so it is critical that we
1525      // substitute an empty ImmutableSet to the user in place of this
1526      if (object instanceof CartesianSet) {
1527        CartesianSet<?> that = (CartesianSet<?>) object;
1528        return this.axes.equals(that.axes);
1529      }
1530      if (object instanceof Set) {
1531        Set<?> that = (Set<?>) object;
1532        return this.size() == that.size() && this.containsAll(that);
1533      }
1534      return false;
1535    }
1536
1537    @Override
1538    public int hashCode() {
1539      // Warning: this is broken if size() == 0, so it is critical that we
1540      // substitute an empty ImmutableSet to the user in place of this
1541
1542      // It's a weird formula, but tests prove it works.
1543      int adjust = size() - 1;
1544      for (int i = 0; i < axes.size(); i++) {
1545        adjust *= 31;
1546        adjust = ~~adjust;
1547        // in GWT, we have to deal with integer overflow carefully
1548      }
1549      int hash = 1;
1550      for (Set<E> axis : axes) {
1551        hash = 31 * hash + (size() / axis.size() * axis.hashCode());
1552
1553        hash = ~~hash;
1554      }
1555      hash += adjust;
1556      return ~~hash;
1557    }
1558  }
1559
1560  /**
1561   * Returns the set of all possible subsets of {@code set}. For example, {@code
1562   * powerSet(ImmutableSet.of(1, 2))} returns the set {@code {{}, {1}, {2}, {1, 2}}}.
1563   *
1564   * <p>Elements appear in these subsets in the same iteration order as they appeared in the input
1565   * set. The order in which these subsets appear in the outer set is undefined. Note that the power
1566   * set of the empty set is not the empty set, but a one-element set containing the empty set.
1567   *
1568   * <p>The returned set and its constituent sets use {@code equals} to decide whether two elements
1569   * are identical, even if the input set uses a different concept of equivalence.
1570   *
1571   * <p><i>Performance notes:</i> while the power set of a set with size {@code n} is of size {@code
1572   * 2^n}, its memory usage is only {@code O(n)}. When the power set is constructed, the input set
1573   * is merely copied. Only as the power set is iterated are the individual subsets created, and
1574   * these subsets themselves occupy only a small constant amount of memory.
1575   *
1576   * @param set the set of elements to construct a power set from
1577   * @return the power set, as an immutable set of immutable sets
1578   * @throws IllegalArgumentException if {@code set} has more than 30 unique elements (causing the
1579   *     power set size to exceed the {@code int} range)
1580   * @throws NullPointerException if {@code set} is or contains {@code null}
1581   * @see <a href="http://en.wikipedia.org/wiki/Power_set">Power set article at Wikipedia</a>
1582   * @since 4.0
1583   */
1584  @GwtCompatible(serializable = false)
1585  public static <E> Set<Set<E>> powerSet(Set<E> set) {
1586    return new PowerSet<E>(set);
1587  }
1588
1589  private static final class SubSet<E> extends AbstractSet<E> {
1590    private final ImmutableMap<E, Integer> inputSet;
1591    private final int mask;
1592
1593    SubSet(ImmutableMap<E, Integer> inputSet, int mask) {
1594      this.inputSet = inputSet;
1595      this.mask = mask;
1596    }
1597
1598    @Override
1599    public Iterator<E> iterator() {
1600      return new UnmodifiableIterator<E>() {
1601        final ImmutableList<E> elements = inputSet.keySet().asList();
1602        int remainingSetBits = mask;
1603
1604        @Override
1605        public boolean hasNext() {
1606          return remainingSetBits != 0;
1607        }
1608
1609        @Override
1610        public E next() {
1611          int index = Integer.numberOfTrailingZeros(remainingSetBits);
1612          if (index == 32) {
1613            throw new NoSuchElementException();
1614          }
1615          remainingSetBits &= ~(1 << index);
1616          return elements.get(index);
1617        }
1618      };
1619    }
1620
1621    @Override
1622    public int size() {
1623      return Integer.bitCount(mask);
1624    }
1625
1626    @Override
1627    public boolean contains(@Nullable Object o) {
1628      Integer index = inputSet.get(o);
1629      return index != null && (mask & (1 << index)) != 0;
1630    }
1631  }
1632
1633  private static final class PowerSet<E> extends AbstractSet<Set<E>> {
1634    final ImmutableMap<E, Integer> inputSet;
1635
1636    PowerSet(Set<E> input) {
1637      checkArgument(
1638          input.size() <= 30, "Too many elements to create power set: %s > 30", input.size());
1639      this.inputSet = Maps.indexMap(input);
1640    }
1641
1642    @Override
1643    public int size() {
1644      return 1 << inputSet.size();
1645    }
1646
1647    @Override
1648    public boolean isEmpty() {
1649      return false;
1650    }
1651
1652    @Override
1653    public Iterator<Set<E>> iterator() {
1654      return new AbstractIndexedListIterator<Set<E>>(size()) {
1655        @Override
1656        protected Set<E> get(final int setBits) {
1657          return new SubSet<>(inputSet, setBits);
1658        }
1659      };
1660    }
1661
1662    @Override
1663    public boolean contains(@Nullable Object obj) {
1664      if (obj instanceof Set) {
1665        Set<?> set = (Set<?>) obj;
1666        return inputSet.keySet().containsAll(set);
1667      }
1668      return false;
1669    }
1670
1671    @Override
1672    public boolean equals(@Nullable Object obj) {
1673      if (obj instanceof PowerSet) {
1674        PowerSet<?> that = (PowerSet<?>) obj;
1675        return inputSet.keySet().equals(that.inputSet.keySet());
1676      }
1677      return super.equals(obj);
1678    }
1679
1680    @Override
1681    public int hashCode() {
1682      /*
1683       * The sum of the sums of the hash codes in each subset is just the sum of
1684       * each input element's hash code times the number of sets that element
1685       * appears in. Each element appears in exactly half of the 2^n sets, so:
1686       */
1687      return inputSet.keySet().hashCode() << (inputSet.size() - 1);
1688    }
1689
1690    @Override
1691    public String toString() {
1692      return "powerSet(" + inputSet + ")";
1693    }
1694  }
1695
1696  /**
1697   * Returns the set of all subsets of {@code set} of size {@code size}. For example, {@code
1698   * combinations(ImmutableSet.of(1, 2, 3), 2)} returns the set {@code {{1, 2}, {1, 3}, {2, 3}}}.
1699   *
1700   * <p>Elements appear in these subsets in the same iteration order as they appeared in the input
1701   * set. The order in which these subsets appear in the outer set is undefined.
1702   *
1703   * <p>The returned set and its constituent sets use {@code equals} to decide whether two elements
1704   * are identical, even if the input set uses a different concept of equivalence.
1705   *
1706   * <p><i>Performance notes:</i> the memory usage of the returned set is only {@code O(n)}. When
1707   * the result set is constructed, the input set is merely copied. Only as the result set is
1708   * iterated are the individual subsets created. Each of these subsets occupies an additional O(n)
1709   * memory but only for as long as the user retains a reference to it. That is, the set returned by
1710   * {@code combinations} does not retain the individual subsets.
1711   *
1712   * @param set the set of elements to take combinations of
1713   * @param size the number of elements per combination
1714   * @return the set of all combinations of {@code size} elements from {@code set}
1715   * @throws IllegalArgumentException if {@code size} is not between 0 and {@code set.size()}
1716   *     inclusive
1717   * @throws NullPointerException if {@code set} is or contains {@code null}
1718   * @since 23.0
1719   */
1720  public static <E> Set<Set<E>> combinations(Set<E> set, final int size) {
1721    final ImmutableMap<E, Integer> index = Maps.indexMap(set);
1722    checkNonnegative(size, "size");
1723    checkArgument(size <= index.size(), "size (%s) must be <= set.size() (%s)", size, index.size());
1724    if (size == 0) {
1725      return ImmutableSet.<Set<E>>of(ImmutableSet.<E>of());
1726    } else if (size == index.size()) {
1727      return ImmutableSet.<Set<E>>of(index.keySet());
1728    }
1729    return new AbstractSet<Set<E>>() {
1730      @Override
1731      public boolean contains(@Nullable Object o) {
1732        if (o instanceof Set) {
1733          Set<?> s = (Set<?>) o;
1734          return s.size() == size && index.keySet().containsAll(s);
1735        }
1736        return false;
1737      }
1738
1739      @Override
1740      public Iterator<Set<E>> iterator() {
1741        return new AbstractIterator<Set<E>>() {
1742          final BitSet bits = new BitSet(index.size());
1743
1744          @Override
1745          protected @Nullable Set<E> computeNext() {
1746            if (bits.isEmpty()) {
1747              bits.set(0, size);
1748            } else {
1749              int firstSetBit = bits.nextSetBit(0);
1750              int bitToFlip = bits.nextClearBit(firstSetBit);
1751
1752              if (bitToFlip == index.size()) {
1753                return endOfData();
1754              }
1755
1756              /*
1757               * The current set in sorted order looks like
1758               * {firstSetBit, firstSetBit + 1, ..., bitToFlip - 1, ...}
1759               * where it does *not* contain bitToFlip.
1760               *
1761               * The next combination is
1762               *
1763               * {0, 1, ..., bitToFlip - firstSetBit - 2, bitToFlip, ...}
1764               *
1765               * This is lexicographically next if you look at the combinations in descending order
1766               * e.g. {2, 1, 0}, {3, 1, 0}, {3, 2, 0}, {3, 2, 1}, {4, 1, 0}...
1767               */
1768
1769              bits.set(0, bitToFlip - firstSetBit - 1);
1770              bits.clear(bitToFlip - firstSetBit - 1, bitToFlip);
1771              bits.set(bitToFlip);
1772            }
1773            final BitSet copy = (BitSet) bits.clone();
1774            return new AbstractSet<E>() {
1775              @Override
1776              public boolean contains(@Nullable Object o) {
1777                Integer i = index.get(o);
1778                return i != null && copy.get(i);
1779              }
1780
1781              @Override
1782              public Iterator<E> iterator() {
1783                return new AbstractIterator<E>() {
1784                  int i = -1;
1785
1786                  @Override
1787                  protected @Nullable E computeNext() {
1788                    i = copy.nextSetBit(i + 1);
1789                    if (i == -1) {
1790                      return endOfData();
1791                    }
1792                    return index.keySet().asList().get(i);
1793                  }
1794                };
1795              }
1796
1797              @Override
1798              public int size() {
1799                return size;
1800              }
1801            };
1802          }
1803        };
1804      }
1805
1806      @Override
1807      public int size() {
1808        return IntMath.binomial(index.size(), size);
1809      }
1810
1811      @Override
1812      public String toString() {
1813        return "Sets.combinations(" + index.keySet() + ", " + size + ")";
1814      }
1815    };
1816  }
1817
1818  /** An implementation for {@link Set#hashCode()}. */
1819  static int hashCodeImpl(Set<?> s) {
1820    int hashCode = 0;
1821    for (Object o : s) {
1822      hashCode += o != null ? o.hashCode() : 0;
1823
1824      hashCode = ~~hashCode;
1825      // Needed to deal with unusual integer overflow in GWT.
1826    }
1827    return hashCode;
1828  }
1829
1830  /** An implementation for {@link Set#equals(Object)}. */
1831  static boolean equalsImpl(Set<?> s, @Nullable Object object) {
1832    if (s == object) {
1833      return true;
1834    }
1835    if (object instanceof Set) {
1836      Set<?> o = (Set<?>) object;
1837
1838      try {
1839        return s.size() == o.size() && s.containsAll(o);
1840      } catch (NullPointerException | ClassCastException ignored) {
1841        return false;
1842      }
1843    }
1844    return false;
1845  }
1846
1847  /**
1848   * Returns an unmodifiable view of the specified navigable set. This method allows modules to
1849   * provide users with "read-only" access to internal navigable sets. Query operations on the
1850   * returned set "read through" to the specified set, and attempts to modify the returned set,
1851   * whether direct or via its collection views, result in an {@code UnsupportedOperationException}.
1852   *
1853   * <p>The returned navigable set will be serializable if the specified navigable set is
1854   * serializable.
1855   *
1856   * <p><b>Java 8+ users and later:</b> Prefer {@link Collections#unmodifiableNavigableSet}.
1857   *
1858   * @param set the navigable set for which an unmodifiable view is to be returned
1859   * @return an unmodifiable view of the specified navigable set
1860   * @since 12.0
1861   */
1862  public static <E extends @Nullable Object> NavigableSet<E> unmodifiableNavigableSet(
1863      NavigableSet<E> set) {
1864    if (set instanceof ImmutableCollection || set instanceof UnmodifiableNavigableSet) {
1865      return set;
1866    }
1867    return new UnmodifiableNavigableSet<>(set);
1868  }
1869
1870  static final class UnmodifiableNavigableSet<E extends @Nullable Object>
1871      extends ForwardingSortedSet<E> implements NavigableSet<E>, Serializable {
1872    private final NavigableSet<E> delegate;
1873    private final SortedSet<E> unmodifiableDelegate;
1874
1875    UnmodifiableNavigableSet(NavigableSet<E> delegate) {
1876      this.delegate = checkNotNull(delegate);
1877      this.unmodifiableDelegate = Collections.unmodifiableSortedSet(delegate);
1878    }
1879
1880    @Override
1881    protected SortedSet<E> delegate() {
1882      return unmodifiableDelegate;
1883    }
1884
1885    // default methods not forwarded by ForwardingSortedSet
1886
1887    @Override
1888    public boolean removeIf(java.util.function.Predicate<? super E> filter) {
1889      throw new UnsupportedOperationException();
1890    }
1891
1892    @Override
1893    public Stream<E> stream() {
1894      return delegate.stream();
1895    }
1896
1897    @Override
1898    public Stream<E> parallelStream() {
1899      return delegate.parallelStream();
1900    }
1901
1902    @Override
1903    public void forEach(Consumer<? super E> action) {
1904      delegate.forEach(action);
1905    }
1906
1907    @Override
1908    public @Nullable E lower(@ParametricNullness E e) {
1909      return delegate.lower(e);
1910    }
1911
1912    @Override
1913    public @Nullable E floor(@ParametricNullness E e) {
1914      return delegate.floor(e);
1915    }
1916
1917    @Override
1918    public @Nullable E ceiling(@ParametricNullness E e) {
1919      return delegate.ceiling(e);
1920    }
1921
1922    @Override
1923    public @Nullable E higher(@ParametricNullness E e) {
1924      return delegate.higher(e);
1925    }
1926
1927    @Override
1928    public @Nullable E pollFirst() {
1929      throw new UnsupportedOperationException();
1930    }
1931
1932    @Override
1933    public @Nullable E pollLast() {
1934      throw new UnsupportedOperationException();
1935    }
1936
1937    @LazyInit private transient @Nullable UnmodifiableNavigableSet<E> descendingSet;
1938
1939    @Override
1940    public NavigableSet<E> descendingSet() {
1941      UnmodifiableNavigableSet<E> result = descendingSet;
1942      if (result == null) {
1943        result = descendingSet = new UnmodifiableNavigableSet<>(delegate.descendingSet());
1944        result.descendingSet = this;
1945      }
1946      return result;
1947    }
1948
1949    @Override
1950    public Iterator<E> descendingIterator() {
1951      return Iterators.unmodifiableIterator(delegate.descendingIterator());
1952    }
1953
1954    @Override
1955    public NavigableSet<E> subSet(
1956        @ParametricNullness E fromElement,
1957        boolean fromInclusive,
1958        @ParametricNullness E toElement,
1959        boolean toInclusive) {
1960      return unmodifiableNavigableSet(
1961          delegate.subSet(fromElement, fromInclusive, toElement, toInclusive));
1962    }
1963
1964    @Override
1965    public NavigableSet<E> headSet(@ParametricNullness E toElement, boolean inclusive) {
1966      return unmodifiableNavigableSet(delegate.headSet(toElement, inclusive));
1967    }
1968
1969    @Override
1970    public NavigableSet<E> tailSet(@ParametricNullness E fromElement, boolean inclusive) {
1971      return unmodifiableNavigableSet(delegate.tailSet(fromElement, inclusive));
1972    }
1973
1974    private static final long serialVersionUID = 0;
1975  }
1976
1977  /**
1978   * Returns a synchronized (thread-safe) navigable set backed by the specified navigable set. In
1979   * order to guarantee serial access, it is critical that <b>all</b> access to the backing
1980   * navigable set is accomplished through the returned navigable set (or its views).
1981   *
1982   * <p>It is imperative that the user manually synchronize on the returned sorted set when
1983   * iterating over it or any of its {@code descendingSet}, {@code subSet}, {@code headSet}, or
1984   * {@code tailSet} views.
1985   *
1986   * <pre>{@code
1987   * NavigableSet<E> set = synchronizedNavigableSet(new TreeSet<E>());
1988   *  ...
1989   * synchronized (set) {
1990   *   // Must be in the synchronized block
1991   *   Iterator<E> it = set.iterator();
1992   *   while (it.hasNext()) {
1993   *     foo(it.next());
1994   *   }
1995   * }
1996   * }</pre>
1997   *
1998   * <p>or:
1999   *
2000   * <pre>{@code
2001   * NavigableSet<E> set = synchronizedNavigableSet(new TreeSet<E>());
2002   * NavigableSet<E> set2 = set.descendingSet().headSet(foo);
2003   *  ...
2004   * synchronized (set) { // Note: set, not set2!!!
2005   *   // Must be in the synchronized block
2006   *   Iterator<E> it = set2.descendingIterator();
2007   *   while (it.hasNext())
2008   *     foo(it.next());
2009   *   }
2010   * }
2011   * }</pre>
2012   *
2013   * <p>Failure to follow this advice may result in non-deterministic behavior.
2014   *
2015   * <p>The returned navigable set will be serializable if the specified navigable set is
2016   * serializable.
2017   *
2018   * <p><b>Java 8+ users and later:</b> Prefer {@link Collections#synchronizedNavigableSet}.
2019   *
2020   * @param navigableSet the navigable set to be "wrapped" in a synchronized navigable set.
2021   * @return a synchronized view of the specified navigable set.
2022   * @since 13.0
2023   */
2024  @GwtIncompatible // NavigableSet
2025  @J2ktIncompatible // Synchronized
2026  public static <E extends @Nullable Object> NavigableSet<E> synchronizedNavigableSet(
2027      NavigableSet<E> navigableSet) {
2028    return Synchronized.navigableSet(navigableSet);
2029  }
2030
2031  /** Remove each element in an iterable from a set. */
2032  static boolean removeAllImpl(Set<?> set, Iterator<?> iterator) {
2033    boolean changed = false;
2034    while (iterator.hasNext()) {
2035      changed |= set.remove(iterator.next());
2036    }
2037    return changed;
2038  }
2039
2040  static boolean removeAllImpl(Set<?> set, Collection<?> collection) {
2041    checkNotNull(collection); // for GWT
2042    if (collection instanceof Multiset) {
2043      collection = ((Multiset<?>) collection).elementSet();
2044    }
2045    /*
2046     * AbstractSet.removeAll(List) has quadratic behavior if the list size
2047     * is just more than the set's size.  We augment the test by
2048     * assuming that sets have fast contains() performance, and other
2049     * collections don't.  See
2050     * https://github.com/google/guava/issues/1013
2051     */
2052    if (collection instanceof Set && collection.size() > set.size()) {
2053      return Iterators.removeAll(set.iterator(), collection);
2054    } else {
2055      return removeAllImpl(set, collection.iterator());
2056    }
2057  }
2058
2059  @GwtIncompatible // NavigableSet
2060  static class DescendingSet<E extends @Nullable Object> extends ForwardingNavigableSet<E> {
2061    private final NavigableSet<E> forward;
2062
2063    DescendingSet(NavigableSet<E> forward) {
2064      this.forward = forward;
2065    }
2066
2067    @Override
2068    protected NavigableSet<E> delegate() {
2069      return forward;
2070    }
2071
2072    @Override
2073    public @Nullable E lower(@ParametricNullness E e) {
2074      return forward.higher(e);
2075    }
2076
2077    @Override
2078    public @Nullable E floor(@ParametricNullness E e) {
2079      return forward.ceiling(e);
2080    }
2081
2082    @Override
2083    public @Nullable E ceiling(@ParametricNullness E e) {
2084      return forward.floor(e);
2085    }
2086
2087    @Override
2088    public @Nullable E higher(@ParametricNullness E e) {
2089      return forward.lower(e);
2090    }
2091
2092    @Override
2093    public @Nullable E pollFirst() {
2094      return forward.pollLast();
2095    }
2096
2097    @Override
2098    public @Nullable E pollLast() {
2099      return forward.pollFirst();
2100    }
2101
2102    @Override
2103    public NavigableSet<E> descendingSet() {
2104      return forward;
2105    }
2106
2107    @Override
2108    public Iterator<E> descendingIterator() {
2109      return forward.iterator();
2110    }
2111
2112    @Override
2113    public NavigableSet<E> subSet(
2114        @ParametricNullness E fromElement,
2115        boolean fromInclusive,
2116        @ParametricNullness E toElement,
2117        boolean toInclusive) {
2118      return forward.subSet(toElement, toInclusive, fromElement, fromInclusive).descendingSet();
2119    }
2120
2121    @Override
2122    public SortedSet<E> subSet(@ParametricNullness E fromElement, @ParametricNullness E toElement) {
2123      return standardSubSet(fromElement, toElement);
2124    }
2125
2126    @Override
2127    public NavigableSet<E> headSet(@ParametricNullness E toElement, boolean inclusive) {
2128      return forward.tailSet(toElement, inclusive).descendingSet();
2129    }
2130
2131    @Override
2132    public SortedSet<E> headSet(@ParametricNullness E toElement) {
2133      return standardHeadSet(toElement);
2134    }
2135
2136    @Override
2137    public NavigableSet<E> tailSet(@ParametricNullness E fromElement, boolean inclusive) {
2138      return forward.headSet(fromElement, inclusive).descendingSet();
2139    }
2140
2141    @Override
2142    public SortedSet<E> tailSet(@ParametricNullness E fromElement) {
2143      return standardTailSet(fromElement);
2144    }
2145
2146    @SuppressWarnings("unchecked")
2147    @Override
2148    public Comparator<? super E> comparator() {
2149      Comparator<? super E> forwardComparator = forward.comparator();
2150      if (forwardComparator == null) {
2151        return (Comparator) Ordering.natural().reverse();
2152      } else {
2153        return reverse(forwardComparator);
2154      }
2155    }
2156
2157    // If we inline this, we get a javac error.
2158    private static <T extends @Nullable Object> Ordering<T> reverse(Comparator<T> forward) {
2159      return Ordering.from(forward).reverse();
2160    }
2161
2162    @Override
2163    @ParametricNullness
2164    public E first() {
2165      return forward.last();
2166    }
2167
2168    @Override
2169    @ParametricNullness
2170    public E last() {
2171      return forward.first();
2172    }
2173
2174    @Override
2175    public Iterator<E> iterator() {
2176      return forward.descendingIterator();
2177    }
2178
2179    @Override
2180    public @Nullable Object[] toArray() {
2181      return standardToArray();
2182    }
2183
2184    @Override
2185    @SuppressWarnings("nullness") // b/192354773 in our checker affects toArray declarations
2186    public <T extends @Nullable Object> T[] toArray(T[] array) {
2187      return standardToArray(array);
2188    }
2189
2190    @Override
2191    public String toString() {
2192      return standardToString();
2193    }
2194  }
2195
2196  /**
2197   * Returns a view of the portion of {@code set} whose elements are contained by {@code range}.
2198   *
2199   * <p>This method delegates to the appropriate methods of {@link NavigableSet} (namely {@link
2200   * NavigableSet#subSet(Object, boolean, Object, boolean) subSet()}, {@link
2201   * NavigableSet#tailSet(Object, boolean) tailSet()}, and {@link NavigableSet#headSet(Object,
2202   * boolean) headSet()}) to actually construct the view. Consult these methods for a full
2203   * description of the returned view's behavior.
2204   *
2205   * <p><b>Warning:</b> {@code Range}s always represent a range of values using the values' natural
2206   * ordering. {@code NavigableSet} on the other hand can specify a custom ordering via a {@link
2207   * Comparator}, which can violate the natural ordering. Using this method (or in general using
2208   * {@code Range}) with unnaturally-ordered sets can lead to unexpected and undefined behavior.
2209   *
2210   * @since 20.0
2211   */
2212  @GwtIncompatible // NavigableSet
2213  public static <K extends Comparable<? super K>> NavigableSet<K> subSet(
2214      NavigableSet<K> set, Range<K> range) {
2215    if (set.comparator() != null
2216        && set.comparator() != Ordering.natural()
2217        && range.hasLowerBound()
2218        && range.hasUpperBound()) {
2219      checkArgument(
2220          set.comparator().compare(range.lowerEndpoint(), range.upperEndpoint()) <= 0,
2221          "set is using a custom comparator which is inconsistent with the natural ordering.");
2222    }
2223    if (range.hasLowerBound() && range.hasUpperBound()) {
2224      return set.subSet(
2225          range.lowerEndpoint(),
2226          range.lowerBoundType() == BoundType.CLOSED,
2227          range.upperEndpoint(),
2228          range.upperBoundType() == BoundType.CLOSED);
2229    } else if (range.hasLowerBound()) {
2230      return set.tailSet(range.lowerEndpoint(), range.lowerBoundType() == BoundType.CLOSED);
2231    } else if (range.hasUpperBound()) {
2232      return set.headSet(range.upperEndpoint(), range.upperBoundType() == BoundType.CLOSED);
2233    }
2234    return checkNotNull(set);
2235  }
2236}