001/*
002 * Copyright (C) 2008 The Guava Authors
003 *
004 * Licensed under the Apache License, Version 2.0 (the "License");
005 * you may not use this file except in compliance with the License.
006 * You may obtain a copy of the License at
007 *
008 * http://www.apache.org/licenses/LICENSE-2.0
009 *
010 * Unless required by applicable law or agreed to in writing, software
011 * distributed under the License is distributed on an "AS IS" BASIS,
012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
013 * See the License for the specific language governing permissions and
014 * limitations under the License.
015 */
016
017package com.google.common.collect;
018
019import static com.google.common.base.Preconditions.checkArgument;
020import static com.google.common.base.Preconditions.checkNotNull;
021import static com.google.common.collect.CollectPreconditions.checkNonnegative;
022import static java.lang.Math.min;
023import static java.util.Objects.requireNonNull;
024
025import com.google.common.annotations.GwtCompatible;
026import com.google.common.base.Function;
027import com.google.common.base.Predicate;
028import com.google.common.base.Predicates;
029import com.google.common.math.IntMath;
030import com.google.common.primitives.Ints;
031import java.util.AbstractCollection;
032import java.util.ArrayList;
033import java.util.Arrays;
034import java.util.Collection;
035import java.util.Collections;
036import java.util.Comparator;
037import java.util.Iterator;
038import java.util.List;
039import java.util.Spliterator;
040import java.util.function.Consumer;
041import javax.annotation.CheckForNull;
042import org.checkerframework.checker.nullness.qual.Nullable;
043
044/**
045 * Provides static methods for working with {@code Collection} instances.
046 *
047 * <p><b>Java 8+ users:</b> several common uses for this class are now more comprehensively
048 * addressed by the new {@link java.util.stream.Stream} library. Read the method documentation below
049 * for comparisons. These methods are not being deprecated, but we gently encourage you to migrate
050 * to streams.
051 *
052 * @author Chris Povirk
053 * @author Mike Bostock
054 * @author Jared Levy
055 * @since 2.0
056 */
057@GwtCompatible
058@ElementTypesAreNonnullByDefault
059public final class Collections2 {
060  private Collections2() {}
061
062  /**
063   * Returns the elements of {@code unfiltered} that satisfy a predicate. The returned collection is
064   * a live view of {@code unfiltered}; changes to one affect the other.
065   *
066   * <p>The resulting collection's iterator does not support {@code remove()}, but all other
067   * collection methods are supported. When given an element that doesn't satisfy the predicate, the
068   * collection's {@code add()} and {@code addAll()} methods throw an {@link
069   * IllegalArgumentException}. When methods such as {@code removeAll()} and {@code clear()} are
070   * called on the filtered collection, only elements that satisfy the filter will be removed from
071   * the underlying collection.
072   *
073   * <p>The returned collection isn't threadsafe or serializable, even if {@code unfiltered} is.
074   *
075   * <p>Many of the filtered collection's methods, such as {@code size()}, iterate across every
076   * element in the underlying collection and determine which elements satisfy the filter. When a
077   * live view is <i>not</i> needed, it may be faster to copy {@code Iterables.filter(unfiltered,
078   * predicate)} and use the copy.
079   *
080   * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as documented at
081   * {@link Predicate#apply}. Do not provide a predicate such as {@code
082   * Predicates.instanceOf(ArrayList.class)}, which is inconsistent with equals. (See {@link
083   * Iterables#filter(Iterable, Class)} for related functionality.)
084   *
085   * <p><b>{@code Stream} equivalent:</b> {@link java.util.stream.Stream#filter Stream.filter}.
086   */
087  // TODO(kevinb): how can we omit that Iterables link when building gwt
088  // javadoc?
089  public static <E extends @Nullable Object> Collection<E> filter(
090      Collection<E> unfiltered, Predicate<? super E> predicate) {
091    if (unfiltered instanceof FilteredCollection) {
092      // Support clear(), removeAll(), and retainAll() when filtering a filtered
093      // collection.
094      return ((FilteredCollection<E>) unfiltered).createCombined(predicate);
095    }
096
097    return new FilteredCollection<>(checkNotNull(unfiltered), checkNotNull(predicate));
098  }
099
100  /**
101   * Delegates to {@link Collection#contains}. Returns {@code false} if the {@code contains} method
102   * throws a {@code ClassCastException} or {@code NullPointerException}.
103   */
104  static boolean safeContains(Collection<?> collection, @CheckForNull Object object) {
105    checkNotNull(collection);
106    try {
107      return collection.contains(object);
108    } catch (ClassCastException | NullPointerException e) {
109      return false;
110    }
111  }
112
113  /**
114   * Delegates to {@link Collection#remove}. Returns {@code false} if the {@code remove} method
115   * throws a {@code ClassCastException} or {@code NullPointerException}.
116   */
117  static boolean safeRemove(Collection<?> collection, @CheckForNull Object object) {
118    checkNotNull(collection);
119    try {
120      return collection.remove(object);
121    } catch (ClassCastException | NullPointerException e) {
122      return false;
123    }
124  }
125
126  static class FilteredCollection<E extends @Nullable Object> extends AbstractCollection<E> {
127    final Collection<E> unfiltered;
128    final Predicate<? super E> predicate;
129
130    FilteredCollection(Collection<E> unfiltered, Predicate<? super E> predicate) {
131      this.unfiltered = unfiltered;
132      this.predicate = predicate;
133    }
134
135    FilteredCollection<E> createCombined(Predicate<? super E> newPredicate) {
136      return new FilteredCollection<>(unfiltered, Predicates.and(predicate, newPredicate));
137    }
138
139    @Override
140    public boolean add(@ParametricNullness E element) {
141      checkArgument(predicate.apply(element));
142      return unfiltered.add(element);
143    }
144
145    @Override
146    public boolean addAll(Collection<? extends E> collection) {
147      for (E element : collection) {
148        checkArgument(predicate.apply(element));
149      }
150      return unfiltered.addAll(collection);
151    }
152
153    @Override
154    public void clear() {
155      Iterables.removeIf(unfiltered, predicate);
156    }
157
158    @Override
159    public boolean contains(@CheckForNull Object element) {
160      if (safeContains(unfiltered, element)) {
161        @SuppressWarnings("unchecked") // element is in unfiltered, so it must be an E
162        E e = (E) element;
163        return predicate.apply(e);
164      }
165      return false;
166    }
167
168    @Override
169    public boolean containsAll(Collection<?> collection) {
170      return containsAllImpl(this, collection);
171    }
172
173    @Override
174    public boolean isEmpty() {
175      return !Iterables.any(unfiltered, predicate);
176    }
177
178    @Override
179    public Iterator<E> iterator() {
180      return Iterators.filter(unfiltered.iterator(), predicate);
181    }
182
183    @Override
184    public Spliterator<E> spliterator() {
185      return CollectSpliterators.filter(unfiltered.spliterator(), predicate);
186    }
187
188    @Override
189    public void forEach(Consumer<? super E> action) {
190      checkNotNull(action);
191      unfiltered.forEach(
192          (E e) -> {
193            if (predicate.test(e)) {
194              action.accept(e);
195            }
196          });
197    }
198
199    @Override
200    public boolean remove(@CheckForNull Object element) {
201      return contains(element) && unfiltered.remove(element);
202    }
203
204    @Override
205    public boolean removeAll(final Collection<?> collection) {
206      return removeIf(collection::contains);
207    }
208
209    @Override
210    public boolean retainAll(final Collection<?> collection) {
211      return removeIf(element -> !collection.contains(element));
212    }
213
214    @Override
215    public boolean removeIf(java.util.function.Predicate<? super E> filter) {
216      checkNotNull(filter);
217      return unfiltered.removeIf(element -> predicate.apply(element) && filter.test(element));
218    }
219
220    @Override
221    public int size() {
222      int size = 0;
223      for (E e : unfiltered) {
224        if (predicate.apply(e)) {
225          size++;
226        }
227      }
228      return size;
229    }
230
231    @Override
232    public @Nullable Object[] toArray() {
233      // creating an ArrayList so filtering happens once
234      return Lists.newArrayList(iterator()).toArray();
235    }
236
237    @Override
238    @SuppressWarnings("nullness") // b/192354773 in our checker affects toArray declarations
239    public <T extends @Nullable Object> T[] toArray(T[] array) {
240      return Lists.newArrayList(iterator()).toArray(array);
241    }
242  }
243
244  /**
245   * Returns a collection that applies {@code function} to each element of {@code fromCollection}.
246   * The returned collection is a live view of {@code fromCollection}; changes to one affect the
247   * other.
248   *
249   * <p>The returned collection's {@code add()} and {@code addAll()} methods throw an {@link
250   * UnsupportedOperationException}. All other collection methods are supported, as long as {@code
251   * fromCollection} supports them.
252   *
253   * <p>The returned collection isn't threadsafe or serializable, even if {@code fromCollection} is.
254   *
255   * <p>When a live view is <i>not</i> needed, it may be faster to copy the transformed collection
256   * and use the copy.
257   *
258   * <p>If the input {@code Collection} is known to be a {@code List}, consider {@link
259   * Lists#transform}. If only an {@code Iterable} is available, use {@link Iterables#transform}.
260   *
261   * <p><b>{@code Stream} equivalent:</b> {@link java.util.stream.Stream#map Stream.map}.
262   */
263  public static <F extends @Nullable Object, T extends @Nullable Object> Collection<T> transform(
264      Collection<F> fromCollection, Function<? super F, T> function) {
265    return new TransformedCollection<>(fromCollection, function);
266  }
267
268  static class TransformedCollection<F extends @Nullable Object, T extends @Nullable Object>
269      extends AbstractCollection<T> {
270    final Collection<F> fromCollection;
271    final Function<? super F, ? extends T> function;
272
273    TransformedCollection(Collection<F> fromCollection, Function<? super F, ? extends T> function) {
274      this.fromCollection = checkNotNull(fromCollection);
275      this.function = checkNotNull(function);
276    }
277
278    @Override
279    public void clear() {
280      fromCollection.clear();
281    }
282
283    @Override
284    public boolean isEmpty() {
285      return fromCollection.isEmpty();
286    }
287
288    @Override
289    public Iterator<T> iterator() {
290      return Iterators.transform(fromCollection.iterator(), function);
291    }
292
293    @Override
294    public Spliterator<T> spliterator() {
295      return CollectSpliterators.map(fromCollection.spliterator(), function);
296    }
297
298    @Override
299    public void forEach(Consumer<? super T> action) {
300      checkNotNull(action);
301      fromCollection.forEach((F f) -> action.accept(function.apply(f)));
302    }
303
304    @Override
305    public boolean removeIf(java.util.function.Predicate<? super T> filter) {
306      checkNotNull(filter);
307      return fromCollection.removeIf(element -> filter.test(function.apply(element)));
308    }
309
310    @Override
311    public int size() {
312      return fromCollection.size();
313    }
314  }
315
316  /**
317   * Returns {@code true} if the collection {@code self} contains all of the elements in the
318   * collection {@code c}.
319   *
320   * <p>This method iterates over the specified collection {@code c}, checking each element returned
321   * by the iterator in turn to see if it is contained in the specified collection {@code self}. If
322   * all elements are so contained, {@code true} is returned, otherwise {@code false}.
323   *
324   * @param self a collection which might contain all elements in {@code c}
325   * @param c a collection whose elements might be contained by {@code self}
326   */
327  static boolean containsAllImpl(Collection<?> self, Collection<?> c) {
328    for (Object o : c) {
329      if (!self.contains(o)) {
330        return false;
331      }
332    }
333    return true;
334  }
335
336  /** An implementation of {@link Collection#toString()}. */
337  static String toStringImpl(final Collection<?> collection) {
338    StringBuilder sb = newStringBuilderForCollection(collection.size()).append('[');
339    boolean first = true;
340    for (Object o : collection) {
341      if (!first) {
342        sb.append(", ");
343      }
344      first = false;
345      if (o == collection) {
346        sb.append("(this Collection)");
347      } else {
348        sb.append(o);
349      }
350    }
351    return sb.append(']').toString();
352  }
353
354  /** Returns best-effort-sized StringBuilder based on the given collection size. */
355  static StringBuilder newStringBuilderForCollection(int size) {
356    checkNonnegative(size, "size");
357    return new StringBuilder((int) min(size * 8L, Ints.MAX_POWER_OF_TWO));
358  }
359
360  /**
361   * Returns a {@link Collection} of all the permutations of the specified {@link Iterable}.
362   *
363   * <p><i>Notes:</i> This is an implementation of the algorithm for Lexicographical Permutations
364   * Generation, described in Knuth's "The Art of Computer Programming", Volume 4, Chapter 7,
365   * Section 7.2.1.2. The iteration order follows the lexicographical order. This means that the
366   * first permutation will be in ascending order, and the last will be in descending order.
367   *
368   * <p>Duplicate elements are considered equal. For example, the list [1, 1] will have only one
369   * permutation, instead of two. This is why the elements have to implement {@link Comparable}.
370   *
371   * <p>An empty iterable has only one permutation, which is an empty list.
372   *
373   * <p>This method is equivalent to {@code Collections2.orderedPermutations(list,
374   * Ordering.natural())}.
375   *
376   * @param elements the original iterable whose elements have to be permuted.
377   * @return an immutable {@link Collection} containing all the different permutations of the
378   *     original iterable.
379   * @throws NullPointerException if the specified iterable is null or has any null elements.
380   * @since 12.0
381   */
382  public static <E extends Comparable<? super E>> Collection<List<E>> orderedPermutations(
383      Iterable<E> elements) {
384    return orderedPermutations(elements, Ordering.natural());
385  }
386
387  /**
388   * Returns a {@link Collection} of all the permutations of the specified {@link Iterable} using
389   * the specified {@link Comparator} for establishing the lexicographical ordering.
390   *
391   * <p>Examples:
392   *
393   * <pre>{@code
394   * for (List<String> perm : orderedPermutations(asList("b", "c", "a"))) {
395   *   println(perm);
396   * }
397   * // -> ["a", "b", "c"]
398   * // -> ["a", "c", "b"]
399   * // -> ["b", "a", "c"]
400   * // -> ["b", "c", "a"]
401   * // -> ["c", "a", "b"]
402   * // -> ["c", "b", "a"]
403   *
404   * for (List<Integer> perm : orderedPermutations(asList(1, 2, 2, 1))) {
405   *   println(perm);
406   * }
407   * // -> [1, 1, 2, 2]
408   * // -> [1, 2, 1, 2]
409   * // -> [1, 2, 2, 1]
410   * // -> [2, 1, 1, 2]
411   * // -> [2, 1, 2, 1]
412   * // -> [2, 2, 1, 1]
413   * }</pre>
414   *
415   * <p><i>Notes:</i> This is an implementation of the algorithm for Lexicographical Permutations
416   * Generation, described in Knuth's "The Art of Computer Programming", Volume 4, Chapter 7,
417   * Section 7.2.1.2. The iteration order follows the lexicographical order. This means that the
418   * first permutation will be in ascending order, and the last will be in descending order.
419   *
420   * <p>Elements that compare equal are considered equal and no new permutations are created by
421   * swapping them.
422   *
423   * <p>An empty iterable has only one permutation, which is an empty list.
424   *
425   * @param elements the original iterable whose elements have to be permuted.
426   * @param comparator a comparator for the iterable's elements.
427   * @return an immutable {@link Collection} containing all the different permutations of the
428   *     original iterable.
429   * @throws NullPointerException If the specified iterable is null, has any null elements, or if
430   *     the specified comparator is null.
431   * @since 12.0
432   */
433  public static <E> Collection<List<E>> orderedPermutations(
434      Iterable<E> elements, Comparator<? super E> comparator) {
435    return new OrderedPermutationCollection<E>(elements, comparator);
436  }
437
438  private static final class OrderedPermutationCollection<E> extends AbstractCollection<List<E>> {
439    final ImmutableList<E> inputList;
440    final Comparator<? super E> comparator;
441    final int size;
442
443    OrderedPermutationCollection(Iterable<E> input, Comparator<? super E> comparator) {
444      this.inputList = ImmutableList.sortedCopyOf(comparator, input);
445      this.comparator = comparator;
446      this.size = calculateSize(inputList, comparator);
447    }
448
449    /**
450     * The number of permutations with repeated elements is calculated as follows:
451     *
452     * <ul>
453     *   <li>For an empty list, it is 1 (base case).
454     *   <li>When r numbers are added to a list of n-r elements, the number of permutations is
455     *       increased by a factor of (n choose r).
456     * </ul>
457     */
458    private static <E> int calculateSize(
459        List<E> sortedInputList, Comparator<? super E> comparator) {
460      int permutations = 1;
461      int n = 1;
462      int r = 1;
463      while (n < sortedInputList.size()) {
464        int comparison = comparator.compare(sortedInputList.get(n - 1), sortedInputList.get(n));
465        if (comparison < 0) {
466          // We move to the next non-repeated element.
467          permutations = IntMath.saturatedMultiply(permutations, IntMath.binomial(n, r));
468          r = 0;
469          if (permutations == Integer.MAX_VALUE) {
470            return Integer.MAX_VALUE;
471          }
472        }
473        n++;
474        r++;
475      }
476      return IntMath.saturatedMultiply(permutations, IntMath.binomial(n, r));
477    }
478
479    @Override
480    public int size() {
481      return size;
482    }
483
484    @Override
485    public boolean isEmpty() {
486      return false;
487    }
488
489    @Override
490    public Iterator<List<E>> iterator() {
491      return new OrderedPermutationIterator<E>(inputList, comparator);
492    }
493
494    @Override
495    public boolean contains(@CheckForNull Object obj) {
496      if (obj instanceof List) {
497        List<?> list = (List<?>) obj;
498        return isPermutation(inputList, list);
499      }
500      return false;
501    }
502
503    @Override
504    public String toString() {
505      return "orderedPermutationCollection(" + inputList + ")";
506    }
507  }
508
509  private static final class OrderedPermutationIterator<E> extends AbstractIterator<List<E>> {
510    @CheckForNull List<E> nextPermutation;
511    final Comparator<? super E> comparator;
512
513    OrderedPermutationIterator(List<E> list, Comparator<? super E> comparator) {
514      this.nextPermutation = Lists.newArrayList(list);
515      this.comparator = comparator;
516    }
517
518    @Override
519    @CheckForNull
520    protected List<E> computeNext() {
521      if (nextPermutation == null) {
522        return endOfData();
523      }
524      ImmutableList<E> next = ImmutableList.copyOf(nextPermutation);
525      calculateNextPermutation();
526      return next;
527    }
528
529    void calculateNextPermutation() {
530      int j = findNextJ();
531      if (j == -1) {
532        nextPermutation = null;
533        return;
534      }
535      /*
536       * requireNonNull is safe because we don't clear nextPermutation until we're done calling this
537       * method.
538       */
539      requireNonNull(nextPermutation);
540
541      int l = findNextL(j);
542      Collections.swap(nextPermutation, j, l);
543      int n = nextPermutation.size();
544      Collections.reverse(nextPermutation.subList(j + 1, n));
545    }
546
547    int findNextJ() {
548      /*
549       * requireNonNull is safe because we don't clear nextPermutation until we're done calling this
550       * method.
551       */
552      requireNonNull(nextPermutation);
553      for (int k = nextPermutation.size() - 2; k >= 0; k--) {
554        if (comparator.compare(nextPermutation.get(k), nextPermutation.get(k + 1)) < 0) {
555          return k;
556        }
557      }
558      return -1;
559    }
560
561    int findNextL(int j) {
562      /*
563       * requireNonNull is safe because we don't clear nextPermutation until we're done calling this
564       * method.
565       */
566      requireNonNull(nextPermutation);
567      E ak = nextPermutation.get(j);
568      for (int l = nextPermutation.size() - 1; l > j; l--) {
569        if (comparator.compare(ak, nextPermutation.get(l)) < 0) {
570          return l;
571        }
572      }
573      throw new AssertionError("this statement should be unreachable");
574    }
575  }
576
577  /**
578   * Returns a {@link Collection} of all the permutations of the specified {@link Collection}.
579   *
580   * <p><i>Notes:</i> This is an implementation of the Plain Changes algorithm for permutations
581   * generation, described in Knuth's "The Art of Computer Programming", Volume 4, Chapter 7,
582   * Section 7.2.1.2.
583   *
584   * <p>If the input list contains equal elements, some of the generated permutations will be equal.
585   *
586   * <p>An empty collection has only one permutation, which is an empty list.
587   *
588   * @param elements the original collection whose elements have to be permuted.
589   * @return an immutable {@link Collection} containing all the different permutations of the
590   *     original collection.
591   * @throws NullPointerException if the specified collection is null or has any null elements.
592   * @since 12.0
593   */
594  public static <E> Collection<List<E>> permutations(Collection<E> elements) {
595    return new PermutationCollection<E>(ImmutableList.copyOf(elements));
596  }
597
598  private static final class PermutationCollection<E> extends AbstractCollection<List<E>> {
599    final ImmutableList<E> inputList;
600
601    PermutationCollection(ImmutableList<E> input) {
602      this.inputList = input;
603    }
604
605    @Override
606    public int size() {
607      return IntMath.factorial(inputList.size());
608    }
609
610    @Override
611    public boolean isEmpty() {
612      return false;
613    }
614
615    @Override
616    public Iterator<List<E>> iterator() {
617      return new PermutationIterator<E>(inputList);
618    }
619
620    @Override
621    public boolean contains(@CheckForNull Object obj) {
622      if (obj instanceof List) {
623        List<?> list = (List<?>) obj;
624        return isPermutation(inputList, list);
625      }
626      return false;
627    }
628
629    @Override
630    public String toString() {
631      return "permutations(" + inputList + ")";
632    }
633  }
634
635  private static class PermutationIterator<E> extends AbstractIterator<List<E>> {
636    final List<E> list;
637    final int[] c;
638    final int[] o;
639    int j;
640
641    PermutationIterator(List<E> list) {
642      this.list = new ArrayList<>(list);
643      int n = list.size();
644      c = new int[n];
645      o = new int[n];
646      Arrays.fill(c, 0);
647      Arrays.fill(o, 1);
648      j = Integer.MAX_VALUE;
649    }
650
651    @Override
652    @CheckForNull
653    protected List<E> computeNext() {
654      if (j <= 0) {
655        return endOfData();
656      }
657      ImmutableList<E> next = ImmutableList.copyOf(list);
658      calculateNextPermutation();
659      return next;
660    }
661
662    void calculateNextPermutation() {
663      j = list.size() - 1;
664      int s = 0;
665
666      // Handle the special case of an empty list. Skip the calculation of the
667      // next permutation.
668      if (j == -1) {
669        return;
670      }
671
672      while (true) {
673        int q = c[j] + o[j];
674        if (q < 0) {
675          switchDirection();
676          continue;
677        }
678        if (q == j + 1) {
679          if (j == 0) {
680            break;
681          }
682          s++;
683          switchDirection();
684          continue;
685        }
686
687        Collections.swap(list, j - c[j] + s, j - q + s);
688        c[j] = q;
689        break;
690      }
691    }
692
693    void switchDirection() {
694      o[j] = -o[j];
695      j--;
696    }
697  }
698
699  /** Returns {@code true} if the second list is a permutation of the first. */
700  private static boolean isPermutation(List<?> first, List<?> second) {
701    if (first.size() != second.size()) {
702      return false;
703    }
704    Multiset<?> firstMultiset = HashMultiset.create(first);
705    Multiset<?> secondMultiset = HashMultiset.create(second);
706    return firstMultiset.equals(secondMultiset);
707  }
708}