001/* 002 * Copyright (C) 2011 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 005 * in compliance with the License. You may obtain a copy of the License at 006 * 007 * http://www.apache.org/licenses/LICENSE-2.0 008 * 009 * Unless required by applicable law or agreed to in writing, software distributed under the License 010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express 011 * or implied. See the License for the specific language governing permissions and limitations under 012 * the License. 013 */ 014 015package com.google.common.util.concurrent; 016 017import static com.google.common.collect.Lists.newArrayList; 018 019import com.google.common.annotations.GwtIncompatible; 020import com.google.common.annotations.J2ktIncompatible; 021import com.google.common.annotations.VisibleForTesting; 022import com.google.common.base.MoreObjects; 023import com.google.common.base.Preconditions; 024import com.google.common.base.Supplier; 025import com.google.common.collect.ImmutableList; 026import com.google.common.collect.MapMaker; 027import com.google.common.math.IntMath; 028import com.google.common.primitives.Ints; 029import java.lang.ref.Reference; 030import java.lang.ref.ReferenceQueue; 031import java.lang.ref.WeakReference; 032import java.math.RoundingMode; 033import java.util.Arrays; 034import java.util.Collections; 035import java.util.List; 036import java.util.concurrent.ConcurrentMap; 037import java.util.concurrent.Semaphore; 038import java.util.concurrent.atomic.AtomicReferenceArray; 039import java.util.concurrent.locks.Condition; 040import java.util.concurrent.locks.Lock; 041import java.util.concurrent.locks.ReadWriteLock; 042import java.util.concurrent.locks.ReentrantLock; 043import java.util.concurrent.locks.ReentrantReadWriteLock; 044import org.jspecify.annotations.Nullable; 045 046/** 047 * A striped {@code Lock/Semaphore/ReadWriteLock}. This offers the underlying lock striping similar 048 * to that of {@code ConcurrentHashMap} in a reusable form, and extends it for semaphores and 049 * read-write locks. Conceptually, lock striping is the technique of dividing a lock into many 050 * <i>stripes</i>, increasing the granularity of a single lock and allowing independent operations 051 * to lock different stripes and proceed concurrently, instead of creating contention for a single 052 * lock. 053 * 054 * <p>The guarantee provided by this class is that equal keys lead to the same lock (or semaphore), 055 * i.e. {@code if (key1.equals(key2))} then {@code striped.get(key1) == striped.get(key2)} (assuming 056 * {@link Object#hashCode()} is correctly implemented for the keys). Note that if {@code key1} is 057 * <strong>not</strong> equal to {@code key2}, it is <strong>not</strong> guaranteed that {@code 058 * striped.get(key1) != striped.get(key2)}; the elements might nevertheless be mapped to the same 059 * lock. The lower the number of stripes, the higher the probability of this happening. 060 * 061 * <p>There are three flavors of this class: {@code Striped<Lock>}, {@code Striped<Semaphore>}, and 062 * {@code Striped<ReadWriteLock>}. For each type, two implementations are offered: {@linkplain 063 * #lock(int) strong} and {@linkplain #lazyWeakLock(int) weak} {@code Striped<Lock>}, {@linkplain 064 * #semaphore(int, int) strong} and {@linkplain #lazyWeakSemaphore(int, int) weak} {@code 065 * Striped<Semaphore>}, and {@linkplain #readWriteLock(int) strong} and {@linkplain 066 * #lazyWeakReadWriteLock(int) weak} {@code Striped<ReadWriteLock>}. <i>Strong</i> means that all 067 * stripes (locks/semaphores) are initialized eagerly, and are not reclaimed unless {@code Striped} 068 * itself is reclaimable. <i>Weak</i> means that locks/semaphores are created lazily, and they are 069 * allowed to be reclaimed if nobody is holding on to them. This is useful, for example, if one 070 * wants to create a {@code Striped<Lock>} of many locks, but worries that in most cases only a 071 * small portion of these would be in use. 072 * 073 * <p>Prior to this class, one might be tempted to use {@code Map<K, Lock>}, where {@code K} 074 * represents the task. This maximizes concurrency by having each unique key mapped to a unique 075 * lock, but also maximizes memory footprint. On the other extreme, one could use a single lock for 076 * all tasks, which minimizes memory footprint but also minimizes concurrency. Instead of choosing 077 * either of these extremes, {@code Striped} allows the user to trade between required concurrency 078 * and memory footprint. For example, if a set of tasks are CPU-bound, one could easily create a 079 * very compact {@code Striped<Lock>} of {@code availableProcessors() * 4} stripes, instead of 080 * possibly thousands of locks which could be created in a {@code Map<K, Lock>} structure. 081 * 082 * @author Dimitris Andreou 083 * @since 13.0 084 */ 085@J2ktIncompatible 086@GwtIncompatible 087public abstract class Striped<L> { 088 /** 089 * If there are at least this many stripes, we assume the memory usage of a ConcurrentMap will be 090 * smaller than a large array. (This assumes that in the lazy case, most stripes are unused. As 091 * always, if many stripes are in use, a non-lazy striped makes more sense.) 092 */ 093 private static final int LARGE_LAZY_CUTOFF = 1024; 094 095 private Striped() {} 096 097 /** 098 * Returns the stripe that corresponds to the passed key. It is always guaranteed that if {@code 099 * key1.equals(key2)}, then {@code get(key1) == get(key2)}. 100 * 101 * @param key an arbitrary, non-null key 102 * @return the stripe that the passed key corresponds to 103 */ 104 public abstract L get(Object key); 105 106 /** 107 * Returns the stripe at the specified index. Valid indexes are 0, inclusively, to {@code size()}, 108 * exclusively. 109 * 110 * @param index the index of the stripe to return; must be in {@code [0...size())} 111 * @return the stripe at the specified index 112 */ 113 public abstract L getAt(int index); 114 115 /** 116 * Returns the index to which the given key is mapped, so that getAt(indexFor(key)) == get(key). 117 */ 118 abstract int indexFor(Object key); 119 120 /** Returns the total number of stripes in this instance. */ 121 public abstract int size(); 122 123 /** 124 * Returns the stripes that correspond to the passed objects, in ascending (as per {@link 125 * #getAt(int)}) order. Thus, threads that use the stripes in the order returned by this method 126 * are guaranteed to not deadlock each other. 127 * 128 * <p>It should be noted that using a {@code Striped<L>} with relatively few stripes, and {@code 129 * bulkGet(keys)} with a relative large number of keys can cause an excessive number of shared 130 * stripes (much like the birthday paradox, where much fewer than anticipated birthdays are needed 131 * for a pair of them to match). Please consider carefully the implications of the number of 132 * stripes, the intended concurrency level, and the typical number of keys used in a {@code 133 * bulkGet(keys)} operation. See <a href="http://www.mathpages.com/home/kmath199.htm">Balls in 134 * Bins model</a> for mathematical formulas that can be used to estimate the probability of 135 * collisions. 136 * 137 * @param keys arbitrary non-null keys 138 * @return the stripes corresponding to the objects (one per each object, derived by delegating to 139 * {@link #get(Object)}; may contain duplicates), in an increasing index order. 140 */ 141 public Iterable<L> bulkGet(Iterable<? extends Object> keys) { 142 // Initially using the list to store the keys, then reusing it to store the respective L's 143 List<Object> result = newArrayList(keys); 144 if (result.isEmpty()) { 145 return ImmutableList.of(); 146 } 147 int[] stripes = new int[result.size()]; 148 for (int i = 0; i < result.size(); i++) { 149 stripes[i] = indexFor(result.get(i)); 150 } 151 Arrays.sort(stripes); 152 // optimize for runs of identical stripes 153 int previousStripe = stripes[0]; 154 result.set(0, getAt(previousStripe)); 155 for (int i = 1; i < result.size(); i++) { 156 int currentStripe = stripes[i]; 157 if (currentStripe == previousStripe) { 158 result.set(i, result.get(i - 1)); 159 } else { 160 result.set(i, getAt(currentStripe)); 161 previousStripe = currentStripe; 162 } 163 } 164 /* 165 * Note that the returned Iterable holds references to the returned stripes, to avoid 166 * error-prone code like: 167 * 168 * Striped<Lock> stripedLock = Striped.lazyWeakXXX(...)' 169 * Iterable<Lock> locks = stripedLock.bulkGet(keys); 170 * for (Lock lock : locks) { 171 * lock.lock(); 172 * } 173 * operation(); 174 * for (Lock lock : locks) { 175 * lock.unlock(); 176 * } 177 * 178 * If we only held the int[] stripes, translating it on the fly to L's, the original locks might 179 * be garbage collected after locking them, ending up in a huge mess. 180 */ 181 @SuppressWarnings("unchecked") // we carefully replaced all keys with their respective L's 182 List<L> asStripes = (List<L>) result; 183 return Collections.unmodifiableList(asStripes); 184 } 185 186 // Static factories 187 188 /** 189 * Creates a {@code Striped<L>} with eagerly initialized, strongly referenced locks. Every lock is 190 * obtained from the passed supplier. 191 * 192 * @param stripes the minimum number of stripes (locks) required 193 * @param supplier a {@code Supplier<L>} object to obtain locks from 194 * @return a new {@code Striped<L>} 195 */ 196 static <L> Striped<L> custom(int stripes, Supplier<L> supplier) { 197 return new CompactStriped<>(stripes, supplier); 198 } 199 200 /** 201 * Creates a {@code Striped<Lock>} with eagerly initialized, strongly referenced locks. Every lock 202 * is reentrant. 203 * 204 * @param stripes the minimum number of stripes (locks) required 205 * @return a new {@code Striped<Lock>} 206 */ 207 public static Striped<Lock> lock(int stripes) { 208 return custom(stripes, PaddedLock::new); 209 } 210 211 /** 212 * Creates a {@code Striped<Lock>} with lazily initialized, weakly referenced locks. Every lock is 213 * reentrant. 214 * 215 * @param stripes the minimum number of stripes (locks) required 216 * @return a new {@code Striped<Lock>} 217 */ 218 public static Striped<Lock> lazyWeakLock(int stripes) { 219 return lazyWeakCustom(stripes, () -> new ReentrantLock(false)); 220 } 221 222 /** 223 * Creates a {@code Striped<L>} with lazily initialized, weakly referenced locks. Every lock is 224 * obtained from the passed supplier. 225 * 226 * @param stripes the minimum number of stripes (locks) required 227 * @param supplier a {@code Supplier<L>} object to obtain locks from 228 * @return a new {@code Striped<L>} 229 */ 230 static <L> Striped<L> lazyWeakCustom(int stripes, Supplier<L> supplier) { 231 return stripes < LARGE_LAZY_CUTOFF 232 ? new SmallLazyStriped<L>(stripes, supplier) 233 : new LargeLazyStriped<L>(stripes, supplier); 234 } 235 236 /** 237 * Creates a {@code Striped<Semaphore>} with eagerly initialized, strongly referenced semaphores, 238 * with the specified number of permits. 239 * 240 * @param stripes the minimum number of stripes (semaphores) required 241 * @param permits the number of permits in each semaphore 242 * @return a new {@code Striped<Semaphore>} 243 */ 244 public static Striped<Semaphore> semaphore(int stripes, int permits) { 245 return custom(stripes, () -> new PaddedSemaphore(permits)); 246 } 247 248 /** 249 * Creates a {@code Striped<Semaphore>} with lazily initialized, weakly referenced semaphores, 250 * with the specified number of permits. 251 * 252 * @param stripes the minimum number of stripes (semaphores) required 253 * @param permits the number of permits in each semaphore 254 * @return a new {@code Striped<Semaphore>} 255 */ 256 public static Striped<Semaphore> lazyWeakSemaphore(int stripes, int permits) { 257 return lazyWeakCustom(stripes, () -> new Semaphore(permits, false)); 258 } 259 260 /** 261 * Creates a {@code Striped<ReadWriteLock>} with eagerly initialized, strongly referenced 262 * read-write locks. Every lock is reentrant. 263 * 264 * @param stripes the minimum number of stripes (locks) required 265 * @return a new {@code Striped<ReadWriteLock>} 266 */ 267 public static Striped<ReadWriteLock> readWriteLock(int stripes) { 268 return custom(stripes, ReentrantReadWriteLock::new); 269 } 270 271 /** 272 * Creates a {@code Striped<ReadWriteLock>} with lazily initialized, weakly referenced read-write 273 * locks. Every lock is reentrant. 274 * 275 * @param stripes the minimum number of stripes (locks) required 276 * @return a new {@code Striped<ReadWriteLock>} 277 */ 278 public static Striped<ReadWriteLock> lazyWeakReadWriteLock(int stripes) { 279 return lazyWeakCustom(stripes, WeakSafeReadWriteLock::new); 280 } 281 /** 282 * ReadWriteLock implementation whose read and write locks retain a reference back to this lock. 283 * Otherwise, a reference to just the read lock or just the write lock would not suffice to ensure 284 * the {@code ReadWriteLock} is retained. 285 */ 286 private static final class WeakSafeReadWriteLock implements ReadWriteLock { 287 private final ReadWriteLock delegate; 288 289 WeakSafeReadWriteLock() { 290 this.delegate = new ReentrantReadWriteLock(); 291 } 292 293 @Override 294 public Lock readLock() { 295 return new WeakSafeLock(delegate.readLock(), this); 296 } 297 298 @Override 299 public Lock writeLock() { 300 return new WeakSafeLock(delegate.writeLock(), this); 301 } 302 } 303 304 /** Lock object that ensures a strong reference is retained to a specified object. */ 305 private static final class WeakSafeLock extends ForwardingLock { 306 private final Lock delegate; 307 308 @SuppressWarnings("unused") 309 private final WeakSafeReadWriteLock strongReference; 310 311 WeakSafeLock(Lock delegate, WeakSafeReadWriteLock strongReference) { 312 this.delegate = delegate; 313 this.strongReference = strongReference; 314 } 315 316 @Override 317 Lock delegate() { 318 return delegate; 319 } 320 321 @Override 322 public Condition newCondition() { 323 return new WeakSafeCondition(delegate.newCondition(), strongReference); 324 } 325 } 326 327 /** Condition object that ensures a strong reference is retained to a specified object. */ 328 private static final class WeakSafeCondition extends ForwardingCondition { 329 private final Condition delegate; 330 331 @SuppressWarnings("unused") 332 private final WeakSafeReadWriteLock strongReference; 333 334 WeakSafeCondition(Condition delegate, WeakSafeReadWriteLock strongReference) { 335 this.delegate = delegate; 336 this.strongReference = strongReference; 337 } 338 339 @Override 340 Condition delegate() { 341 return delegate; 342 } 343 } 344 345 private abstract static class PowerOfTwoStriped<L> extends Striped<L> { 346 /** Capacity (power of two) minus one, for fast mod evaluation */ 347 final int mask; 348 349 PowerOfTwoStriped(int stripes) { 350 Preconditions.checkArgument(stripes > 0, "Stripes must be positive"); 351 this.mask = stripes > Ints.MAX_POWER_OF_TWO ? ALL_SET : ceilToPowerOfTwo(stripes) - 1; 352 } 353 354 @Override 355 final int indexFor(Object key) { 356 int hash = smear(key.hashCode()); 357 return hash & mask; 358 } 359 360 @Override 361 public final L get(Object key) { 362 return getAt(indexFor(key)); 363 } 364 } 365 366 /** 367 * Implementation of Striped where 2^k stripes are represented as an array of the same length, 368 * eagerly initialized. 369 */ 370 private static class CompactStriped<L> extends PowerOfTwoStriped<L> { 371 /** Size is a power of two. */ 372 private final Object[] array; 373 374 private CompactStriped(int stripes, Supplier<L> supplier) { 375 super(stripes); 376 Preconditions.checkArgument(stripes <= Ints.MAX_POWER_OF_TWO, "Stripes must be <= 2^30)"); 377 378 this.array = new Object[mask + 1]; 379 for (int i = 0; i < array.length; i++) { 380 array[i] = supplier.get(); 381 } 382 } 383 384 @SuppressWarnings("unchecked") // we only put L's in the array 385 @Override 386 public L getAt(int index) { 387 return (L) array[index]; 388 } 389 390 @Override 391 public int size() { 392 return array.length; 393 } 394 } 395 396 /** 397 * Implementation of Striped where up to 2^k stripes can be represented, using an 398 * AtomicReferenceArray of size 2^k. To map a user key into a stripe, we take a k-bit slice of the 399 * user key's (smeared) hashCode(). The stripes are lazily initialized and are weakly referenced. 400 */ 401 @VisibleForTesting 402 static class SmallLazyStriped<L> extends PowerOfTwoStriped<L> { 403 final AtomicReferenceArray<@Nullable ArrayReference<? extends L>> locks; 404 final Supplier<L> supplier; 405 final int size; 406 final ReferenceQueue<L> queue = new ReferenceQueue<>(); 407 408 SmallLazyStriped(int stripes, Supplier<L> supplier) { 409 super(stripes); 410 this.size = (mask == ALL_SET) ? Integer.MAX_VALUE : mask + 1; 411 this.locks = new AtomicReferenceArray<>(size); 412 this.supplier = supplier; 413 } 414 415 @Override 416 public L getAt(int index) { 417 if (size != Integer.MAX_VALUE) { 418 Preconditions.checkElementIndex(index, size()); 419 } // else no check necessary, all index values are valid 420 ArrayReference<? extends L> existingRef = locks.get(index); 421 L existing = existingRef == null ? null : existingRef.get(); 422 if (existing != null) { 423 return existing; 424 } 425 L created = supplier.get(); 426 ArrayReference<L> newRef = new ArrayReference<>(created, index, queue); 427 while (!locks.compareAndSet(index, existingRef, newRef)) { 428 // we raced, we need to re-read and try again 429 existingRef = locks.get(index); 430 existing = existingRef == null ? null : existingRef.get(); 431 if (existing != null) { 432 return existing; 433 } 434 } 435 drainQueue(); 436 return created; 437 } 438 439 // N.B. Draining the queue is only necessary to ensure that we don't accumulate empty references 440 // in the array. We could skip this if we decide we don't care about holding on to Reference 441 // objects indefinitely. 442 private void drainQueue() { 443 Reference<? extends L> ref; 444 while ((ref = queue.poll()) != null) { 445 // We only ever register ArrayReferences with the queue so this is always safe. 446 ArrayReference<? extends L> arrayRef = (ArrayReference<? extends L>) ref; 447 // Try to clear out the array slot, n.b. if we fail that is fine, in either case the 448 // arrayRef will be out of the array after this step. 449 locks.compareAndSet(arrayRef.index, arrayRef, null); 450 } 451 } 452 453 @Override 454 public int size() { 455 return size; 456 } 457 458 private static final class ArrayReference<L> extends WeakReference<L> { 459 final int index; 460 461 ArrayReference(L referent, int index, ReferenceQueue<L> queue) { 462 super(referent, queue); 463 this.index = index; 464 } 465 } 466 } 467 468 /** 469 * Implementation of Striped where up to 2^k stripes can be represented, using a ConcurrentMap 470 * where the key domain is [0..2^k). To map a user key into a stripe, we take a k-bit slice of the 471 * user key's (smeared) hashCode(). The stripes are lazily initialized and are weakly referenced. 472 */ 473 @VisibleForTesting 474 static class LargeLazyStriped<L> extends PowerOfTwoStriped<L> { 475 final ConcurrentMap<Integer, L> locks; 476 final Supplier<L> supplier; 477 final int size; 478 479 LargeLazyStriped(int stripes, Supplier<L> supplier) { 480 super(stripes); 481 this.size = (mask == ALL_SET) ? Integer.MAX_VALUE : mask + 1; 482 this.supplier = supplier; 483 this.locks = new MapMaker().weakValues().makeMap(); 484 } 485 486 @Override 487 public L getAt(int index) { 488 if (size != Integer.MAX_VALUE) { 489 Preconditions.checkElementIndex(index, size()); 490 } // else no check necessary, all index values are valid 491 L existing = locks.get(index); 492 if (existing != null) { 493 return existing; 494 } 495 L created = supplier.get(); 496 existing = locks.putIfAbsent(index, created); 497 return MoreObjects.firstNonNull(existing, created); 498 } 499 500 @Override 501 public int size() { 502 return size; 503 } 504 } 505 506 /** A bit mask were all bits are set. */ 507 private static final int ALL_SET = ~0; 508 509 private static int ceilToPowerOfTwo(int x) { 510 return 1 << IntMath.log2(x, RoundingMode.CEILING); 511 } 512 513 /* 514 * This method was written by Doug Lea with assistance from members of JCP JSR-166 Expert Group 515 * and released to the public domain, as explained at 516 * http://creativecommons.org/licenses/publicdomain 517 * 518 * As of 2010/06/11, this method is identical to the (package private) hash method in OpenJDK 7's 519 * java.util.HashMap class. 520 */ 521 // Copied from java/com/google/common/collect/Hashing.java 522 private static int smear(int hashCode) { 523 hashCode ^= (hashCode >>> 20) ^ (hashCode >>> 12); 524 return hashCode ^ (hashCode >>> 7) ^ (hashCode >>> 4); 525 } 526 527 private static class PaddedLock extends ReentrantLock { 528 /* 529 * Padding from 40 into 64 bytes, same size as cache line. Might be beneficial to add a fourth 530 * long here, to minimize chance of interference between consecutive locks, but I couldn't 531 * observe any benefit from that. 532 */ 533 long unused1; 534 long unused2; 535 long unused3; 536 537 PaddedLock() { 538 super(false); 539 } 540 } 541 542 private static class PaddedSemaphore extends Semaphore { 543 // See PaddedReentrantLock comment 544 long unused1; 545 long unused2; 546 long unused3; 547 548 PaddedSemaphore(int permits) { 549 super(permits, false); 550 } 551 } 552}