001/* 002 * Copyright (C) 2008 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 005 * in compliance with the License. You may obtain a copy of the License at 006 * 007 * http://www.apache.org/licenses/LICENSE-2.0 008 * 009 * Unless required by applicable law or agreed to in writing, software distributed under the License 010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express 011 * or implied. See the License for the specific language governing permissions and limitations under 012 * the License. 013 */ 014 015package com.google.common.primitives; 016 017import static com.google.common.base.Preconditions.checkArgument; 018import static com.google.common.base.Preconditions.checkElementIndex; 019import static com.google.common.base.Preconditions.checkNotNull; 020import static com.google.common.base.Preconditions.checkPositionIndexes; 021 022import com.google.common.annotations.GwtCompatible; 023import com.google.common.base.Converter; 024import com.google.errorprone.annotations.InlineMe; 025import java.io.Serializable; 026import java.util.AbstractList; 027import java.util.Arrays; 028import java.util.Collection; 029import java.util.Collections; 030import java.util.Comparator; 031import java.util.List; 032import java.util.RandomAccess; 033import java.util.Spliterator; 034import java.util.Spliterators; 035import javax.annotation.CheckForNull; 036 037/** 038 * Static utility methods pertaining to {@code long} primitives, that are not already found in 039 * either {@link Long} or {@link Arrays}. 040 * 041 * <p>See the Guava User Guide article on <a 042 * href="https://github.com/google/guava/wiki/PrimitivesExplained">primitive utilities</a>. 043 * 044 * @author Kevin Bourrillion 045 * @since 1.0 046 */ 047@GwtCompatible 048@ElementTypesAreNonnullByDefault 049public final class Longs { 050 private Longs() {} 051 052 /** 053 * The number of bytes required to represent a primitive {@code long} value. 054 * 055 * <p><b>Java 8+ users:</b> use {@link Long#BYTES} instead. 056 */ 057 public static final int BYTES = Long.SIZE / Byte.SIZE; 058 059 /** 060 * The largest power of two that can be represented as a {@code long}. 061 * 062 * @since 10.0 063 */ 064 public static final long MAX_POWER_OF_TWO = 1L << (Long.SIZE - 2); 065 066 /** 067 * Returns a hash code for {@code value}; equal to the result of invoking {@code ((Long) 068 * value).hashCode()}. 069 * 070 * <p>This method always return the value specified by {@link Long#hashCode()} in java, which 071 * might be different from {@code ((Long) value).hashCode()} in GWT because {@link 072 * Long#hashCode()} in GWT does not obey the JRE contract. 073 * 074 * <p><b>Java 8+ users:</b> use {@link Long#hashCode(long)} instead. 075 * 076 * @param value a primitive {@code long} value 077 * @return a hash code for the value 078 */ 079 public static int hashCode(long value) { 080 return (int) (value ^ (value >>> 32)); 081 } 082 083 /** 084 * Compares the two specified {@code long} values. The sign of the value returned is the same as 085 * that of {@code ((Long) a).compareTo(b)}. 086 * 087 * <p><b>Note:</b> this method is now unnecessary and should be treated as deprecated; use the 088 * equivalent {@link Long#compare} method instead. 089 * 090 * @param a the first {@code long} to compare 091 * @param b the second {@code long} to compare 092 * @return a negative value if {@code a} is less than {@code b}; a positive value if {@code a} is 093 * greater than {@code b}; or zero if they are equal 094 */ 095 @InlineMe(replacement = "Long.compare(a, b)") 096 public static int compare(long a, long b) { 097 return Long.compare(a, b); 098 } 099 100 /** 101 * Returns {@code true} if {@code target} is present as an element anywhere in {@code array}. 102 * 103 * @param array an array of {@code long} values, possibly empty 104 * @param target a primitive {@code long} value 105 * @return {@code true} if {@code array[i] == target} for some value of {@code i} 106 */ 107 public static boolean contains(long[] array, long target) { 108 for (long value : array) { 109 if (value == target) { 110 return true; 111 } 112 } 113 return false; 114 } 115 116 /** 117 * Returns the index of the first appearance of the value {@code target} in {@code array}. 118 * 119 * @param array an array of {@code long} values, possibly empty 120 * @param target a primitive {@code long} value 121 * @return the least index {@code i} for which {@code array[i] == target}, or {@code -1} if no 122 * such index exists. 123 */ 124 public static int indexOf(long[] array, long target) { 125 return indexOf(array, target, 0, array.length); 126 } 127 128 // TODO(kevinb): consider making this public 129 private static int indexOf(long[] array, long target, int start, int end) { 130 for (int i = start; i < end; i++) { 131 if (array[i] == target) { 132 return i; 133 } 134 } 135 return -1; 136 } 137 138 /** 139 * Returns the start position of the first occurrence of the specified {@code target} within 140 * {@code array}, or {@code -1} if there is no such occurrence. 141 * 142 * <p>More formally, returns the lowest index {@code i} such that {@code Arrays.copyOfRange(array, 143 * i, i + target.length)} contains exactly the same elements as {@code target}. 144 * 145 * @param array the array to search for the sequence {@code target} 146 * @param target the array to search for as a sub-sequence of {@code array} 147 */ 148 public static int indexOf(long[] array, long[] target) { 149 checkNotNull(array, "array"); 150 checkNotNull(target, "target"); 151 if (target.length == 0) { 152 return 0; 153 } 154 155 outer: 156 for (int i = 0; i < array.length - target.length + 1; i++) { 157 for (int j = 0; j < target.length; j++) { 158 if (array[i + j] != target[j]) { 159 continue outer; 160 } 161 } 162 return i; 163 } 164 return -1; 165 } 166 167 /** 168 * Returns the index of the last appearance of the value {@code target} in {@code array}. 169 * 170 * @param array an array of {@code long} values, possibly empty 171 * @param target a primitive {@code long} value 172 * @return the greatest index {@code i} for which {@code array[i] == target}, or {@code -1} if no 173 * such index exists. 174 */ 175 public static int lastIndexOf(long[] array, long target) { 176 return lastIndexOf(array, target, 0, array.length); 177 } 178 179 // TODO(kevinb): consider making this public 180 private static int lastIndexOf(long[] array, long target, int start, int end) { 181 for (int i = end - 1; i >= start; i--) { 182 if (array[i] == target) { 183 return i; 184 } 185 } 186 return -1; 187 } 188 189 /** 190 * Returns the least value present in {@code array}. 191 * 192 * @param array a <i>nonempty</i> array of {@code long} values 193 * @return the value present in {@code array} that is less than or equal to every other value in 194 * the array 195 * @throws IllegalArgumentException if {@code array} is empty 196 */ 197 public static long min(long... array) { 198 checkArgument(array.length > 0); 199 long min = array[0]; 200 for (int i = 1; i < array.length; i++) { 201 if (array[i] < min) { 202 min = array[i]; 203 } 204 } 205 return min; 206 } 207 208 /** 209 * Returns the greatest value present in {@code array}. 210 * 211 * @param array a <i>nonempty</i> array of {@code long} values 212 * @return the value present in {@code array} that is greater than or equal to every other value 213 * in the array 214 * @throws IllegalArgumentException if {@code array} is empty 215 */ 216 public static long max(long... array) { 217 checkArgument(array.length > 0); 218 long max = array[0]; 219 for (int i = 1; i < array.length; i++) { 220 if (array[i] > max) { 221 max = array[i]; 222 } 223 } 224 return max; 225 } 226 227 /** 228 * Returns the value nearest to {@code value} which is within the closed range {@code [min..max]}. 229 * 230 * <p>If {@code value} is within the range {@code [min..max]}, {@code value} is returned 231 * unchanged. If {@code value} is less than {@code min}, {@code min} is returned, and if {@code 232 * value} is greater than {@code max}, {@code max} is returned. 233 * 234 * <p><b>Java 21+ users:</b> Use {@code Math.clamp} instead. Note that that method is capable of 235 * constraining a {@code long} input to an {@code int} range. 236 * 237 * @param value the {@code long} value to constrain 238 * @param min the lower bound (inclusive) of the range to constrain {@code value} to 239 * @param max the upper bound (inclusive) of the range to constrain {@code value} to 240 * @throws IllegalArgumentException if {@code min > max} 241 * @since 21.0 242 */ 243 public static long constrainToRange(long value, long min, long max) { 244 checkArgument(min <= max, "min (%s) must be less than or equal to max (%s)", min, max); 245 return Math.min(Math.max(value, min), max); 246 } 247 248 /** 249 * Returns the values from each provided array combined into a single array. For example, {@code 250 * concat(new long[] {a, b}, new long[] {}, new long[] {c}} returns the array {@code {a, b, c}}. 251 * 252 * @param arrays zero or more {@code long} arrays 253 * @return a single array containing all the values from the source arrays, in order 254 * @throws IllegalArgumentException if the total number of elements in {@code arrays} does not fit 255 * in an {@code int} 256 */ 257 public static long[] concat(long[]... arrays) { 258 long length = 0; 259 for (long[] array : arrays) { 260 length += array.length; 261 } 262 long[] result = new long[checkNoOverflow(length)]; 263 int pos = 0; 264 for (long[] array : arrays) { 265 System.arraycopy(array, 0, result, pos, array.length); 266 pos += array.length; 267 } 268 return result; 269 } 270 271 private static int checkNoOverflow(long result) { 272 checkArgument( 273 result == (int) result, 274 "the total number of elements (%s) in the arrays must fit in an int", 275 result); 276 return (int) result; 277 } 278 279 /** 280 * Returns a big-endian representation of {@code value} in an 8-element byte array; equivalent to 281 * {@code ByteBuffer.allocate(8).putLong(value).array()}. For example, the input value {@code 282 * 0x1213141516171819L} would yield the byte array {@code {0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 283 * 0x18, 0x19}}. 284 * 285 * <p>If you need to convert and concatenate several values (possibly even of different types), 286 * use a shared {@link java.nio.ByteBuffer} instance, or use {@link 287 * com.google.common.io.ByteStreams#newDataOutput()} to get a growable buffer. 288 */ 289 public static byte[] toByteArray(long value) { 290 // Note that this code needs to stay compatible with GWT, which has known 291 // bugs when narrowing byte casts of long values occur. 292 byte[] result = new byte[8]; 293 for (int i = 7; i >= 0; i--) { 294 result[i] = (byte) (value & 0xffL); 295 value >>= 8; 296 } 297 return result; 298 } 299 300 /** 301 * Returns the {@code long} value whose big-endian representation is stored in the first 8 bytes 302 * of {@code bytes}; equivalent to {@code ByteBuffer.wrap(bytes).getLong()}. For example, the 303 * input byte array {@code {0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19}} would yield the 304 * {@code long} value {@code 0x1213141516171819L}. 305 * 306 * <p>Arguably, it's preferable to use {@link java.nio.ByteBuffer}; that library exposes much more 307 * flexibility at little cost in readability. 308 * 309 * @throws IllegalArgumentException if {@code bytes} has fewer than 8 elements 310 */ 311 public static long fromByteArray(byte[] bytes) { 312 checkArgument(bytes.length >= BYTES, "array too small: %s < %s", bytes.length, BYTES); 313 return fromBytes( 314 bytes[0], bytes[1], bytes[2], bytes[3], bytes[4], bytes[5], bytes[6], bytes[7]); 315 } 316 317 /** 318 * Returns the {@code long} value whose byte representation is the given 8 bytes, in big-endian 319 * order; equivalent to {@code Longs.fromByteArray(new byte[] {b1, b2, b3, b4, b5, b6, b7, b8})}. 320 * 321 * @since 7.0 322 */ 323 public static long fromBytes( 324 byte b1, byte b2, byte b3, byte b4, byte b5, byte b6, byte b7, byte b8) { 325 return (b1 & 0xFFL) << 56 326 | (b2 & 0xFFL) << 48 327 | (b3 & 0xFFL) << 40 328 | (b4 & 0xFFL) << 32 329 | (b5 & 0xFFL) << 24 330 | (b6 & 0xFFL) << 16 331 | (b7 & 0xFFL) << 8 332 | (b8 & 0xFFL); 333 } 334 335 /* 336 * Moving asciiDigits into this static holder class lets ProGuard eliminate and inline the Longs 337 * class. 338 */ 339 static final class AsciiDigits { 340 private AsciiDigits() {} 341 342 private static final byte[] asciiDigits; 343 344 static { 345 byte[] result = new byte[128]; 346 Arrays.fill(result, (byte) -1); 347 for (int i = 0; i < 10; i++) { 348 result['0' + i] = (byte) i; 349 } 350 for (int i = 0; i < 26; i++) { 351 result['A' + i] = (byte) (10 + i); 352 result['a' + i] = (byte) (10 + i); 353 } 354 asciiDigits = result; 355 } 356 357 static int digit(char c) { 358 return (c < 128) ? asciiDigits[c] : -1; 359 } 360 } 361 362 /** 363 * Parses the specified string as a signed decimal long value. The ASCII character {@code '-'} ( 364 * <code>'\u002D'</code>) is recognized as the minus sign. 365 * 366 * <p>Unlike {@link Long#parseLong(String)}, this method returns {@code null} instead of throwing 367 * an exception if parsing fails. Additionally, this method only accepts ASCII digits, and returns 368 * {@code null} if non-ASCII digits are present in the string. 369 * 370 * <p>Note that strings prefixed with ASCII {@code '+'} are rejected, even though {@link 371 * Integer#parseInt(String)} accepts them. 372 * 373 * @param string the string representation of a long value 374 * @return the long value represented by {@code string}, or {@code null} if {@code string} has a 375 * length of zero or cannot be parsed as a long value 376 * @throws NullPointerException if {@code string} is {@code null} 377 * @since 14.0 378 */ 379 @CheckForNull 380 public static Long tryParse(String string) { 381 return tryParse(string, 10); 382 } 383 384 /** 385 * Parses the specified string as a signed long value using the specified radix. The ASCII 386 * character {@code '-'} (<code>'\u002D'</code>) is recognized as the minus sign. 387 * 388 * <p>Unlike {@link Long#parseLong(String, int)}, this method returns {@code null} instead of 389 * throwing an exception if parsing fails. Additionally, this method only accepts ASCII digits, 390 * and returns {@code null} if non-ASCII digits are present in the string. 391 * 392 * <p>Note that strings prefixed with ASCII {@code '+'} are rejected, even though {@link 393 * Integer#parseInt(String)} accepts them. 394 * 395 * @param string the string representation of a long value 396 * @param radix the radix to use when parsing 397 * @return the long value represented by {@code string} using {@code radix}, or {@code null} if 398 * {@code string} has a length of zero or cannot be parsed as a long value 399 * @throws IllegalArgumentException if {@code radix < Character.MIN_RADIX} or {@code radix > 400 * Character.MAX_RADIX} 401 * @throws NullPointerException if {@code string} is {@code null} 402 * @since 19.0 403 */ 404 @CheckForNull 405 public static Long tryParse(String string, int radix) { 406 if (checkNotNull(string).isEmpty()) { 407 return null; 408 } 409 if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX) { 410 throw new IllegalArgumentException( 411 "radix must be between MIN_RADIX and MAX_RADIX but was " + radix); 412 } 413 boolean negative = string.charAt(0) == '-'; 414 int index = negative ? 1 : 0; 415 if (index == string.length()) { 416 return null; 417 } 418 int digit = AsciiDigits.digit(string.charAt(index++)); 419 if (digit < 0 || digit >= radix) { 420 return null; 421 } 422 long accum = -digit; 423 424 long cap = Long.MIN_VALUE / radix; 425 426 while (index < string.length()) { 427 digit = AsciiDigits.digit(string.charAt(index++)); 428 if (digit < 0 || digit >= radix || accum < cap) { 429 return null; 430 } 431 accum *= radix; 432 if (accum < Long.MIN_VALUE + digit) { 433 return null; 434 } 435 accum -= digit; 436 } 437 438 if (negative) { 439 return accum; 440 } else if (accum == Long.MIN_VALUE) { 441 return null; 442 } else { 443 return -accum; 444 } 445 } 446 447 private static final class LongConverter extends Converter<String, Long> implements Serializable { 448 static final Converter<String, Long> INSTANCE = new LongConverter(); 449 450 @Override 451 protected Long doForward(String value) { 452 return Long.decode(value); 453 } 454 455 @Override 456 protected String doBackward(Long value) { 457 return value.toString(); 458 } 459 460 @Override 461 public String toString() { 462 return "Longs.stringConverter()"; 463 } 464 465 private Object readResolve() { 466 return INSTANCE; 467 } 468 469 private static final long serialVersionUID = 1; 470 } 471 472 /** 473 * Returns a serializable converter object that converts between strings and longs using {@link 474 * Long#decode} and {@link Long#toString()}. The returned converter throws {@link 475 * NumberFormatException} if the input string is invalid. 476 * 477 * <p><b>Warning:</b> please see {@link Long#decode} to understand exactly how strings are parsed. 478 * For example, the string {@code "0123"} is treated as <i>octal</i> and converted to the value 479 * {@code 83L}. 480 * 481 * @since 16.0 482 */ 483 public static Converter<String, Long> stringConverter() { 484 return LongConverter.INSTANCE; 485 } 486 487 /** 488 * Returns an array containing the same values as {@code array}, but guaranteed to be of a 489 * specified minimum length. If {@code array} already has a length of at least {@code minLength}, 490 * it is returned directly. Otherwise, a new array of size {@code minLength + padding} is 491 * returned, containing the values of {@code array}, and zeroes in the remaining places. 492 * 493 * @param array the source array 494 * @param minLength the minimum length the returned array must guarantee 495 * @param padding an extra amount to "grow" the array by if growth is necessary 496 * @throws IllegalArgumentException if {@code minLength} or {@code padding} is negative 497 * @return an array containing the values of {@code array}, with guaranteed minimum length {@code 498 * minLength} 499 */ 500 public static long[] ensureCapacity(long[] array, int minLength, int padding) { 501 checkArgument(minLength >= 0, "Invalid minLength: %s", minLength); 502 checkArgument(padding >= 0, "Invalid padding: %s", padding); 503 return (array.length < minLength) ? Arrays.copyOf(array, minLength + padding) : array; 504 } 505 506 /** 507 * Returns a string containing the supplied {@code long} values separated by {@code separator}. 508 * For example, {@code join("-", 1L, 2L, 3L)} returns the string {@code "1-2-3"}. 509 * 510 * @param separator the text that should appear between consecutive values in the resulting string 511 * (but not at the start or end) 512 * @param array an array of {@code long} values, possibly empty 513 */ 514 public static String join(String separator, long... array) { 515 checkNotNull(separator); 516 if (array.length == 0) { 517 return ""; 518 } 519 520 // For pre-sizing a builder, just get the right order of magnitude 521 StringBuilder builder = new StringBuilder(array.length * 10); 522 builder.append(array[0]); 523 for (int i = 1; i < array.length; i++) { 524 builder.append(separator).append(array[i]); 525 } 526 return builder.toString(); 527 } 528 529 /** 530 * Returns a comparator that compares two {@code long} arrays <a 531 * href="http://en.wikipedia.org/wiki/Lexicographical_order">lexicographically</a>. That is, it 532 * compares, using {@link #compare(long, long)}), the first pair of values that follow any common 533 * prefix, or when one array is a prefix of the other, treats the shorter array as the lesser. For 534 * example, {@code [] < [1L] < [1L, 2L] < [2L]}. 535 * 536 * <p>The returned comparator is inconsistent with {@link Object#equals(Object)} (since arrays 537 * support only identity equality), but it is consistent with {@link Arrays#equals(long[], 538 * long[])}. 539 * 540 * @since 2.0 541 */ 542 public static Comparator<long[]> lexicographicalComparator() { 543 return LexicographicalComparator.INSTANCE; 544 } 545 546 private enum LexicographicalComparator implements Comparator<long[]> { 547 INSTANCE; 548 549 @Override 550 public int compare(long[] left, long[] right) { 551 int minLength = Math.min(left.length, right.length); 552 for (int i = 0; i < minLength; i++) { 553 int result = Long.compare(left[i], right[i]); 554 if (result != 0) { 555 return result; 556 } 557 } 558 return left.length - right.length; 559 } 560 561 @Override 562 public String toString() { 563 return "Longs.lexicographicalComparator()"; 564 } 565 } 566 567 /** 568 * Sorts the elements of {@code array} in descending order. 569 * 570 * @since 23.1 571 */ 572 public static void sortDescending(long[] array) { 573 checkNotNull(array); 574 sortDescending(array, 0, array.length); 575 } 576 577 /** 578 * Sorts the elements of {@code array} between {@code fromIndex} inclusive and {@code toIndex} 579 * exclusive in descending order. 580 * 581 * @since 23.1 582 */ 583 public static void sortDescending(long[] array, int fromIndex, int toIndex) { 584 checkNotNull(array); 585 checkPositionIndexes(fromIndex, toIndex, array.length); 586 Arrays.sort(array, fromIndex, toIndex); 587 reverse(array, fromIndex, toIndex); 588 } 589 590 /** 591 * Reverses the elements of {@code array}. This is equivalent to {@code 592 * Collections.reverse(Longs.asList(array))}, but is likely to be more efficient. 593 * 594 * @since 23.1 595 */ 596 public static void reverse(long[] array) { 597 checkNotNull(array); 598 reverse(array, 0, array.length); 599 } 600 601 /** 602 * Reverses the elements of {@code array} between {@code fromIndex} inclusive and {@code toIndex} 603 * exclusive. This is equivalent to {@code 604 * Collections.reverse(Longs.asList(array).subList(fromIndex, toIndex))}, but is likely to be more 605 * efficient. 606 * 607 * @throws IndexOutOfBoundsException if {@code fromIndex < 0}, {@code toIndex > array.length}, or 608 * {@code toIndex > fromIndex} 609 * @since 23.1 610 */ 611 public static void reverse(long[] array, int fromIndex, int toIndex) { 612 checkNotNull(array); 613 checkPositionIndexes(fromIndex, toIndex, array.length); 614 for (int i = fromIndex, j = toIndex - 1; i < j; i++, j--) { 615 long tmp = array[i]; 616 array[i] = array[j]; 617 array[j] = tmp; 618 } 619 } 620 621 /** 622 * Performs a right rotation of {@code array} of "distance" places, so that the first element is 623 * moved to index "distance", and the element at index {@code i} ends up at index {@code (distance 624 * + i) mod array.length}. This is equivalent to {@code Collections.rotate(Longs.asList(array), 625 * distance)}, but is considerably faster and avoids allocation and garbage collection. 626 * 627 * <p>The provided "distance" may be negative, which will rotate left. 628 * 629 * @since 32.0.0 630 */ 631 public static void rotate(long[] array, int distance) { 632 rotate(array, distance, 0, array.length); 633 } 634 635 /** 636 * Performs a right rotation of {@code array} between {@code fromIndex} inclusive and {@code 637 * toIndex} exclusive. This is equivalent to {@code 638 * Collections.rotate(Longs.asList(array).subList(fromIndex, toIndex), distance)}, but is 639 * considerably faster and avoids allocations and garbage collection. 640 * 641 * <p>The provided "distance" may be negative, which will rotate left. 642 * 643 * @throws IndexOutOfBoundsException if {@code fromIndex < 0}, {@code toIndex > array.length}, or 644 * {@code toIndex > fromIndex} 645 * @since 32.0.0 646 */ 647 public static void rotate(long[] array, int distance, int fromIndex, int toIndex) { 648 // See Ints.rotate for more details about possible algorithms here. 649 checkNotNull(array); 650 checkPositionIndexes(fromIndex, toIndex, array.length); 651 if (array.length <= 1) { 652 return; 653 } 654 655 int length = toIndex - fromIndex; 656 // Obtain m = (-distance mod length), a non-negative value less than "length". This is how many 657 // places left to rotate. 658 int m = -distance % length; 659 m = (m < 0) ? m + length : m; 660 // The current index of what will become the first element of the rotated section. 661 int newFirstIndex = m + fromIndex; 662 if (newFirstIndex == fromIndex) { 663 return; 664 } 665 666 reverse(array, fromIndex, newFirstIndex); 667 reverse(array, newFirstIndex, toIndex); 668 reverse(array, fromIndex, toIndex); 669 } 670 671 /** 672 * Returns an array containing each value of {@code collection}, converted to a {@code long} value 673 * in the manner of {@link Number#longValue}. 674 * 675 * <p>Elements are copied from the argument collection as if by {@code collection.toArray()}. 676 * Calling this method is as thread-safe as calling that method. 677 * 678 * @param collection a collection of {@code Number} instances 679 * @return an array containing the same values as {@code collection}, in the same order, converted 680 * to primitives 681 * @throws NullPointerException if {@code collection} or any of its elements is null 682 * @since 1.0 (parameter was {@code Collection<Long>} before 12.0) 683 */ 684 public static long[] toArray(Collection<? extends Number> collection) { 685 if (collection instanceof LongArrayAsList) { 686 return ((LongArrayAsList) collection).toLongArray(); 687 } 688 689 Object[] boxedArray = collection.toArray(); 690 int len = boxedArray.length; 691 long[] array = new long[len]; 692 for (int i = 0; i < len; i++) { 693 // checkNotNull for GWT (do not optimize) 694 array[i] = ((Number) checkNotNull(boxedArray[i])).longValue(); 695 } 696 return array; 697 } 698 699 /** 700 * Returns a fixed-size list backed by the specified array, similar to {@link 701 * Arrays#asList(Object[])}. The list supports {@link List#set(int, Object)}, but any attempt to 702 * set a value to {@code null} will result in a {@link NullPointerException}. 703 * 704 * <p>The returned list maintains the values, but not the identities, of {@code Long} objects 705 * written to or read from it. For example, whether {@code list.get(0) == list.get(0)} is true for 706 * the returned list is unspecified. 707 * 708 * <p>The returned list is serializable. 709 * 710 * <p><b>Note:</b> when possible, you should represent your data as an {@link ImmutableLongArray} 711 * instead, which has an {@link ImmutableLongArray#asList asList} view. 712 * 713 * @param backingArray the array to back the list 714 * @return a list view of the array 715 */ 716 public static List<Long> asList(long... backingArray) { 717 if (backingArray.length == 0) { 718 return Collections.emptyList(); 719 } 720 return new LongArrayAsList(backingArray); 721 } 722 723 @GwtCompatible 724 private static class LongArrayAsList extends AbstractList<Long> 725 implements RandomAccess, Serializable { 726 final long[] array; 727 final int start; 728 final int end; 729 730 LongArrayAsList(long[] array) { 731 this(array, 0, array.length); 732 } 733 734 LongArrayAsList(long[] array, int start, int end) { 735 this.array = array; 736 this.start = start; 737 this.end = end; 738 } 739 740 @Override 741 public int size() { 742 return end - start; 743 } 744 745 @Override 746 public boolean isEmpty() { 747 return false; 748 } 749 750 @Override 751 public Long get(int index) { 752 checkElementIndex(index, size()); 753 return array[start + index]; 754 } 755 756 @Override 757 public Spliterator.OfLong spliterator() { 758 return Spliterators.spliterator(array, start, end, 0); 759 } 760 761 @Override 762 public boolean contains(@CheckForNull Object target) { 763 // Overridden to prevent a ton of boxing 764 return (target instanceof Long) && Longs.indexOf(array, (Long) target, start, end) != -1; 765 } 766 767 @Override 768 public int indexOf(@CheckForNull Object target) { 769 // Overridden to prevent a ton of boxing 770 if (target instanceof Long) { 771 int i = Longs.indexOf(array, (Long) target, start, end); 772 if (i >= 0) { 773 return i - start; 774 } 775 } 776 return -1; 777 } 778 779 @Override 780 public int lastIndexOf(@CheckForNull Object target) { 781 // Overridden to prevent a ton of boxing 782 if (target instanceof Long) { 783 int i = Longs.lastIndexOf(array, (Long) target, start, end); 784 if (i >= 0) { 785 return i - start; 786 } 787 } 788 return -1; 789 } 790 791 @Override 792 public Long set(int index, Long element) { 793 checkElementIndex(index, size()); 794 long oldValue = array[start + index]; 795 // checkNotNull for GWT (do not optimize) 796 array[start + index] = checkNotNull(element); 797 return oldValue; 798 } 799 800 @Override 801 public List<Long> subList(int fromIndex, int toIndex) { 802 int size = size(); 803 checkPositionIndexes(fromIndex, toIndex, size); 804 if (fromIndex == toIndex) { 805 return Collections.emptyList(); 806 } 807 return new LongArrayAsList(array, start + fromIndex, start + toIndex); 808 } 809 810 @Override 811 public boolean equals(@CheckForNull Object object) { 812 if (object == this) { 813 return true; 814 } 815 if (object instanceof LongArrayAsList) { 816 LongArrayAsList that = (LongArrayAsList) object; 817 int size = size(); 818 if (that.size() != size) { 819 return false; 820 } 821 for (int i = 0; i < size; i++) { 822 if (array[start + i] != that.array[that.start + i]) { 823 return false; 824 } 825 } 826 return true; 827 } 828 return super.equals(object); 829 } 830 831 @Override 832 public int hashCode() { 833 int result = 1; 834 for (int i = start; i < end; i++) { 835 result = 31 * result + Longs.hashCode(array[i]); 836 } 837 return result; 838 } 839 840 @Override 841 public String toString() { 842 StringBuilder builder = new StringBuilder(size() * 10); 843 builder.append('[').append(array[start]); 844 for (int i = start + 1; i < end; i++) { 845 builder.append(", ").append(array[i]); 846 } 847 return builder.append(']').toString(); 848 } 849 850 long[] toLongArray() { 851 return Arrays.copyOfRange(array, start, end); 852 } 853 854 private static final long serialVersionUID = 0; 855 } 856}