001/* 002 * Copyright (C) 2012 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 005 * in compliance with the License. You may obtain a copy of the License at 006 * 007 * http://www.apache.org/licenses/LICENSE-2.0 008 * 009 * Unless required by applicable law or agreed to in writing, software distributed under the License 010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express 011 * or implied. See the License for the specific language governing permissions and limitations under 012 * the License. 013 */ 014 015package com.google.common.math; 016 017import static com.google.common.base.Preconditions.checkState; 018import static com.google.common.primitives.Doubles.isFinite; 019import static java.lang.Double.NaN; 020import static java.lang.Double.isNaN; 021 022import com.google.common.annotations.GwtIncompatible; 023import com.google.common.annotations.J2ktIncompatible; 024import com.google.common.primitives.Doubles; 025 026/** 027 * A mutable object which accumulates paired double values (e.g. points on a plane) and tracks some 028 * basic statistics over all the values added so far. This class is not thread safe. 029 * 030 * @author Pete Gillin 031 * @since 20.0 032 */ 033@J2ktIncompatible 034@GwtIncompatible 035@ElementTypesAreNonnullByDefault 036public final class PairedStatsAccumulator { 037 /** Creates a new accumulator. */ 038 public PairedStatsAccumulator() {} 039 040 // These fields must satisfy the requirements of PairedStats' constructor as well as those of the 041 // stat methods of this class. 042 private final StatsAccumulator xStats = new StatsAccumulator(); 043 private final StatsAccumulator yStats = new StatsAccumulator(); 044 private double sumOfProductsOfDeltas = 0.0; 045 046 /** Adds the given pair of values to the dataset. */ 047 public void add(double x, double y) { 048 // We extend the recursive expression for the one-variable case at Art of Computer Programming 049 // vol. 2, Knuth, 4.2.2, (16) to the two-variable case. We have two value series x_i and y_i. 050 // We define the arithmetic means X_n = 1/n \sum_{i=1}^n x_i, and Y_n = 1/n \sum_{i=1}^n y_i. 051 // We also define the sum of the products of the differences from the means 052 // C_n = \sum_{i=1}^n x_i y_i - n X_n Y_n 053 // for all n >= 1. Then for all n > 1: 054 // C_{n-1} = \sum_{i=1}^{n-1} x_i y_i - (n-1) X_{n-1} Y_{n-1} 055 // C_n - C_{n-1} = x_n y_n - n X_n Y_n + (n-1) X_{n-1} Y_{n-1} 056 // = x_n y_n - X_n [ y_n + (n-1) Y_{n-1} ] + [ n X_n - x_n ] Y_{n-1} 057 // = x_n y_n - X_n y_n - x_n Y_{n-1} + X_n Y_{n-1} 058 // = (x_n - X_n) (y_n - Y_{n-1}) 059 xStats.add(x); 060 if (isFinite(x) && isFinite(y)) { 061 if (xStats.count() > 1) { 062 sumOfProductsOfDeltas += (x - xStats.mean()) * (y - yStats.mean()); 063 } 064 } else { 065 sumOfProductsOfDeltas = NaN; 066 } 067 yStats.add(y); 068 } 069 070 /** 071 * Adds the given statistics to the dataset, as if the individual values used to compute the 072 * statistics had been added directly. 073 */ 074 public void addAll(PairedStats values) { 075 if (values.count() == 0) { 076 return; 077 } 078 079 xStats.addAll(values.xStats()); 080 if (yStats.count() == 0) { 081 sumOfProductsOfDeltas = values.sumOfProductsOfDeltas(); 082 } else { 083 // This is a generalized version of the calculation in add(double, double) above. Note that 084 // non-finite inputs will have sumOfProductsOfDeltas = NaN, so non-finite values will result 085 // in NaN naturally. 086 sumOfProductsOfDeltas += 087 values.sumOfProductsOfDeltas() 088 + (values.xStats().mean() - xStats.mean()) 089 * (values.yStats().mean() - yStats.mean()) 090 * values.count(); 091 } 092 yStats.addAll(values.yStats()); 093 } 094 095 /** Returns an immutable snapshot of the current statistics. */ 096 public PairedStats snapshot() { 097 return new PairedStats(xStats.snapshot(), yStats.snapshot(), sumOfProductsOfDeltas); 098 } 099 100 /** Returns the number of pairs in the dataset. */ 101 public long count() { 102 return xStats.count(); 103 } 104 105 /** Returns an immutable snapshot of the statistics on the {@code x} values alone. */ 106 public Stats xStats() { 107 return xStats.snapshot(); 108 } 109 110 /** Returns an immutable snapshot of the statistics on the {@code y} values alone. */ 111 public Stats yStats() { 112 return yStats.snapshot(); 113 } 114 115 /** 116 * Returns the population covariance of the values. The count must be non-zero. 117 * 118 * <p>This is guaranteed to return zero if the dataset contains a single pair of finite values. It 119 * is not guaranteed to return zero when the dataset consists of the same pair of values multiple 120 * times, due to numerical errors. 121 * 122 * <h3>Non-finite values</h3> 123 * 124 * <p>If the dataset contains any non-finite values ({@link Double#POSITIVE_INFINITY}, {@link 125 * Double#NEGATIVE_INFINITY}, or {@link Double#NaN}) then the result is {@link Double#NaN}. 126 * 127 * @throws IllegalStateException if the dataset is empty 128 */ 129 public double populationCovariance() { 130 checkState(count() != 0); 131 return sumOfProductsOfDeltas / count(); 132 } 133 134 /** 135 * Returns the sample covariance of the values. The count must be greater than one. 136 * 137 * <p>This is not guaranteed to return zero when the dataset consists of the same pair of values 138 * multiple times, due to numerical errors. 139 * 140 * <h3>Non-finite values</h3> 141 * 142 * <p>If the dataset contains any non-finite values ({@link Double#POSITIVE_INFINITY}, {@link 143 * Double#NEGATIVE_INFINITY}, or {@link Double#NaN}) then the result is {@link Double#NaN}. 144 * 145 * @throws IllegalStateException if the dataset is empty or contains a single pair of values 146 */ 147 public final double sampleCovariance() { 148 checkState(count() > 1); 149 return sumOfProductsOfDeltas / (count() - 1); 150 } 151 152 /** 153 * Returns the <a href="http://mathworld.wolfram.com/CorrelationCoefficient.html">Pearson's or 154 * product-moment correlation coefficient</a> of the values. The count must greater than one, and 155 * the {@code x} and {@code y} values must both have non-zero population variance (i.e. {@code 156 * xStats().populationVariance() > 0.0 && yStats().populationVariance() > 0.0}). The result is not 157 * guaranteed to be exactly +/-1 even when the data are perfectly (anti-)correlated, due to 158 * numerical errors. However, it is guaranteed to be in the inclusive range [-1, +1]. 159 * 160 * <h3>Non-finite values</h3> 161 * 162 * <p>If the dataset contains any non-finite values ({@link Double#POSITIVE_INFINITY}, {@link 163 * Double#NEGATIVE_INFINITY}, or {@link Double#NaN}) then the result is {@link Double#NaN}. 164 * 165 * @throws IllegalStateException if the dataset is empty or contains a single pair of values, or 166 * either the {@code x} and {@code y} dataset has zero population variance 167 */ 168 public final double pearsonsCorrelationCoefficient() { 169 checkState(count() > 1); 170 if (isNaN(sumOfProductsOfDeltas)) { 171 return NaN; 172 } 173 double xSumOfSquaresOfDeltas = xStats.sumOfSquaresOfDeltas(); 174 double ySumOfSquaresOfDeltas = yStats.sumOfSquaresOfDeltas(); 175 checkState(xSumOfSquaresOfDeltas > 0.0); 176 checkState(ySumOfSquaresOfDeltas > 0.0); 177 // The product of two positive numbers can be zero if the multiplication underflowed. We 178 // force a positive value by effectively rounding up to MIN_VALUE. 179 double productOfSumsOfSquaresOfDeltas = 180 ensurePositive(xSumOfSquaresOfDeltas * ySumOfSquaresOfDeltas); 181 return ensureInUnitRange(sumOfProductsOfDeltas / Math.sqrt(productOfSumsOfSquaresOfDeltas)); 182 } 183 184 /** 185 * Returns a linear transformation giving the best fit to the data according to <a 186 * href="http://mathworld.wolfram.com/LeastSquaresFitting.html">Ordinary Least Squares linear 187 * regression</a> of {@code y} as a function of {@code x}. The count must be greater than one, and 188 * either the {@code x} or {@code y} data must have a non-zero population variance (i.e. {@code 189 * xStats().populationVariance() > 0.0 || yStats().populationVariance() > 0.0}). The result is 190 * guaranteed to be horizontal if there is variance in the {@code x} data but not the {@code y} 191 * data, and vertical if there is variance in the {@code y} data but not the {@code x} data. 192 * 193 * <p>This fit minimizes the root-mean-square error in {@code y} as a function of {@code x}. This 194 * error is defined as the square root of the mean of the squares of the differences between the 195 * actual {@code y} values of the data and the values predicted by the fit for the {@code x} 196 * values (i.e. it is the square root of the mean of the squares of the vertical distances between 197 * the data points and the best fit line). For this fit, this error is a fraction {@code sqrt(1 - 198 * R*R)} of the population standard deviation of {@code y}, where {@code R} is the Pearson's 199 * correlation coefficient (as given by {@link #pearsonsCorrelationCoefficient()}). 200 * 201 * <p>The corresponding root-mean-square error in {@code x} as a function of {@code y} is a 202 * fraction {@code sqrt(1/(R*R) - 1)} of the population standard deviation of {@code x}. This fit 203 * does not normally minimize that error: to do that, you should swap the roles of {@code x} and 204 * {@code y}. 205 * 206 * <h3>Non-finite values</h3> 207 * 208 * <p>If the dataset contains any non-finite values ({@link Double#POSITIVE_INFINITY}, {@link 209 * Double#NEGATIVE_INFINITY}, or {@link Double#NaN}) then the result is {@link 210 * LinearTransformation#forNaN()}. 211 * 212 * @throws IllegalStateException if the dataset is empty or contains a single pair of values, or 213 * both the {@code x} and {@code y} dataset have zero population variance 214 */ 215 public final LinearTransformation leastSquaresFit() { 216 checkState(count() > 1); 217 if (isNaN(sumOfProductsOfDeltas)) { 218 return LinearTransformation.forNaN(); 219 } 220 double xSumOfSquaresOfDeltas = xStats.sumOfSquaresOfDeltas(); 221 if (xSumOfSquaresOfDeltas > 0.0) { 222 if (yStats.sumOfSquaresOfDeltas() > 0.0) { 223 return LinearTransformation.mapping(xStats.mean(), yStats.mean()) 224 .withSlope(sumOfProductsOfDeltas / xSumOfSquaresOfDeltas); 225 } else { 226 return LinearTransformation.horizontal(yStats.mean()); 227 } 228 } else { 229 checkState(yStats.sumOfSquaresOfDeltas() > 0.0); 230 return LinearTransformation.vertical(xStats.mean()); 231 } 232 } 233 234 private double ensurePositive(double value) { 235 if (value > 0.0) { 236 return value; 237 } else { 238 return Double.MIN_VALUE; 239 } 240 } 241 242 private static double ensureInUnitRange(double value) { 243 return Doubles.constrainToRange(value, -1.0, 1.0); 244 } 245}