001/* 002 * Copyright (C) 2011 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 005 * in compliance with the License. You may obtain a copy of the License at 006 * 007 * http://www.apache.org/licenses/LICENSE-2.0 008 * 009 * Unless required by applicable law or agreed to in writing, software distributed under the License 010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express 011 * or implied. See the License for the specific language governing permissions and limitations under 012 * the License. 013 */ 014 015package com.google.common.hash; 016 017import static com.google.common.base.Preconditions.checkArgument; 018import static com.google.common.base.Preconditions.checkNotNull; 019import static com.google.common.base.Throwables.throwIfUnchecked; 020import static java.lang.invoke.MethodType.methodType; 021 022import com.google.errorprone.annotations.Immutable; 023import com.google.j2objc.annotations.J2ObjCIncompatible; 024import java.lang.invoke.MethodHandle; 025import java.lang.invoke.MethodHandles; 026import java.lang.reflect.UndeclaredThrowableException; 027import java.security.Key; 028import java.util.ArrayList; 029import java.util.Arrays; 030import java.util.Collections; 031import java.util.Iterator; 032import java.util.List; 033import java.util.zip.Adler32; 034import java.util.zip.CRC32; 035import java.util.zip.Checksum; 036import javax.crypto.spec.SecretKeySpec; 037import org.jspecify.annotations.Nullable; 038 039/** 040 * Static methods to obtain {@link HashFunction} instances, and other static hashing-related 041 * utilities. 042 * 043 * <p>A comparison of the various hash functions can be found <a 044 * href="https://docs.google.com/spreadsheets/d/1_q2EVcxA2HjcrlVMbaqXwMj31h9M5-Bqj_m8vITOwwk/">here</a>. 045 * 046 * @author Kevin Bourrillion 047 * @author Dimitris Andreou 048 * @author Kurt Alfred Kluever 049 * @since 11.0 050 */ 051public final class Hashing { 052 /** 053 * Returns a general-purpose, <b>temporary-use</b>, non-cryptographic hash function. The algorithm 054 * the returned function implements is unspecified and subject to change without notice. 055 * 056 * <p><b>Warning:</b> a new random seed for these functions is chosen each time the {@code 057 * Hashing} class is loaded. <b>Do not use this method</b> if hash codes may escape the current 058 * process in any way, for example being sent over RPC, or saved to disk. For a general-purpose, 059 * non-cryptographic hash function that will never change behavior, we suggest {@link 060 * #murmur3_128}. 061 * 062 * <p>Repeated calls to this method on the same loaded {@code Hashing} class, using the same value 063 * for {@code minimumBits}, will return identically-behaving {@link HashFunction} instances. 064 * 065 * @param minimumBits a positive integer. This can be arbitrarily large. The returned {@link 066 * HashFunction} instance may use memory proportional to this integer. 067 * @return a hash function, described above, that produces hash codes of length {@code 068 * minimumBits} or greater 069 */ 070 public static HashFunction goodFastHash(int minimumBits) { 071 int bits = checkPositiveAndMakeMultipleOf32(minimumBits); 072 073 if (bits == 32) { 074 return Murmur3_32HashFunction.GOOD_FAST_HASH_32; 075 } 076 if (bits <= 128) { 077 return Murmur3_128HashFunction.GOOD_FAST_HASH_128; 078 } 079 080 // Otherwise, join together some 128-bit murmur3s 081 int hashFunctionsNeeded = (bits + 127) / 128; 082 HashFunction[] hashFunctions = new HashFunction[hashFunctionsNeeded]; 083 hashFunctions[0] = Murmur3_128HashFunction.GOOD_FAST_HASH_128; 084 int seed = GOOD_FAST_HASH_SEED; 085 for (int i = 1; i < hashFunctionsNeeded; i++) { 086 seed += 1500450271; // a prime; shouldn't matter 087 hashFunctions[i] = murmur3_128(seed); 088 } 089 return new ConcatenatedHashFunction(hashFunctions); 090 } 091 092 /** 093 * Used to randomize {@link #goodFastHash} instances, so that programs which persist anything 094 * dependent on the hash codes they produce will fail sooner. 095 */ 096 @SuppressWarnings("GoodTime") // reading system time without TimeSource 097 static final int GOOD_FAST_HASH_SEED = (int) System.currentTimeMillis(); 098 099 /** 100 * Returns a hash function implementing the <a 101 * href="https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp">32-bit murmur3 102 * algorithm, x86 variant</a> (little-endian variant), using the given seed value, <b>with a known 103 * bug</b> as described in the deprecation text. 104 * 105 * <p>The C++ equivalent is the MurmurHash3_x86_32 function (Murmur3A), which however does not 106 * have the bug. 107 * 108 * @deprecated This implementation produces incorrect hash values from the {@link 109 * HashFunction#hashString} method if the string contains non-BMP characters. Use {@link 110 * #murmur3_32_fixed(int)} instead. 111 */ 112 @Deprecated 113 public static HashFunction murmur3_32(int seed) { 114 return new Murmur3_32HashFunction(seed, /* supplementaryPlaneFix= */ false); 115 } 116 117 /** 118 * Returns a hash function implementing the <a 119 * href="https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp">32-bit murmur3 120 * algorithm, x86 variant</a> (little-endian variant), using the given seed value, <b>with a known 121 * bug</b> as described in the deprecation text. 122 * 123 * <p>The C++ equivalent is the MurmurHash3_x86_32 function (Murmur3A), which however does not 124 * have the bug. 125 * 126 * @deprecated This implementation produces incorrect hash values from the {@link 127 * HashFunction#hashString} method if the string contains non-BMP characters. Use {@link 128 * #murmur3_32_fixed()} instead. 129 */ 130 @Deprecated 131 public static HashFunction murmur3_32() { 132 return Murmur3_32HashFunction.MURMUR3_32; 133 } 134 135 /** 136 * Returns a hash function implementing the <a 137 * href="https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp">32-bit murmur3 138 * algorithm, x86 variant</a> (little-endian variant), using the given seed value. 139 * 140 * <p>The exact C++ equivalent is the MurmurHash3_x86_32 function (Murmur3A). 141 * 142 * <p>This method is called {@code murmur3_32_fixed} because it fixes a bug in the {@code 143 * HashFunction} returned by the original {@code murmur3_32} method. 144 * 145 * @since 31.0 146 */ 147 public static HashFunction murmur3_32_fixed(int seed) { 148 return new Murmur3_32HashFunction(seed, /* supplementaryPlaneFix= */ true); 149 } 150 151 /** 152 * Returns a hash function implementing the <a 153 * href="https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp">32-bit murmur3 154 * algorithm, x86 variant</a> (little-endian variant), using a seed value of zero. 155 * 156 * <p>The exact C++ equivalent is the MurmurHash3_x86_32 function (Murmur3A). 157 * 158 * <p>This method is called {@code murmur3_32_fixed} because it fixes a bug in the {@code 159 * HashFunction} returned by the original {@code murmur3_32} method. 160 * 161 * @since 31.0 162 */ 163 public static HashFunction murmur3_32_fixed() { 164 return Murmur3_32HashFunction.MURMUR3_32_FIXED; 165 } 166 167 /** 168 * Returns a hash function implementing the <a 169 * href="https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp">128-bit murmur3 170 * algorithm, x64 variant</a> (little-endian variant), using the given seed value. 171 * 172 * <p>The exact C++ equivalent is the MurmurHash3_x64_128 function (Murmur3F). 173 */ 174 public static HashFunction murmur3_128(int seed) { 175 return new Murmur3_128HashFunction(seed); 176 } 177 178 /** 179 * Returns a hash function implementing the <a 180 * href="https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp">128-bit murmur3 181 * algorithm, x64 variant</a> (little-endian variant), using a seed value of zero. 182 * 183 * <p>The exact C++ equivalent is the MurmurHash3_x64_128 function (Murmur3F). 184 */ 185 public static HashFunction murmur3_128() { 186 return Murmur3_128HashFunction.MURMUR3_128; 187 } 188 189 /** 190 * Returns a hash function implementing the <a href="https://131002.net/siphash/">64-bit 191 * SipHash-2-4 algorithm</a> using a seed value of {@code k = 00 01 02 ...}. 192 * 193 * @since 15.0 194 */ 195 public static HashFunction sipHash24() { 196 return SipHashFunction.SIP_HASH_24; 197 } 198 199 /** 200 * Returns a hash function implementing the <a href="https://131002.net/siphash/">64-bit 201 * SipHash-2-4 algorithm</a> using the given seed. 202 * 203 * @since 15.0 204 */ 205 public static HashFunction sipHash24(long k0, long k1) { 206 return new SipHashFunction(2, 4, k0, k1); 207 } 208 209 /** 210 * Returns a hash function implementing the MD5 hash algorithm (128 hash bits). 211 * 212 * @deprecated If you must interoperate with a system that requires MD5, then use this method, 213 * despite its deprecation. But if you can choose your hash function, avoid MD5, which is 214 * neither fast nor secure. As of January 2017, we suggest: 215 * <ul> 216 * <li>For security: 217 * {@link Hashing#sha256} or a higher-level API. 218 * <li>For speed: {@link Hashing#goodFastHash}, though see its docs for caveats. 219 * </ul> 220 */ 221 @Deprecated 222 public static HashFunction md5() { 223 return Md5Holder.MD5; 224 } 225 226 private static class Md5Holder { 227 static final HashFunction MD5 = new MessageDigestHashFunction("MD5", "Hashing.md5()"); 228 } 229 230 /** 231 * Returns a hash function implementing the SHA-1 algorithm (160 hash bits). 232 * 233 * @deprecated If you must interoperate with a system that requires SHA-1, then use this method, 234 * despite its deprecation. But if you can choose your hash function, avoid SHA-1, which is 235 * neither fast nor secure. As of January 2017, we suggest: 236 * <ul> 237 * <li>For security: 238 * {@link Hashing#sha256} or a higher-level API. 239 * <li>For speed: {@link Hashing#goodFastHash}, though see its docs for caveats. 240 * </ul> 241 */ 242 @Deprecated 243 public static HashFunction sha1() { 244 return Sha1Holder.SHA_1; 245 } 246 247 private static class Sha1Holder { 248 static final HashFunction SHA_1 = new MessageDigestHashFunction("SHA-1", "Hashing.sha1()"); 249 } 250 251 /** Returns a hash function implementing the SHA-256 algorithm (256 hash bits). */ 252 public static HashFunction sha256() { 253 return Sha256Holder.SHA_256; 254 } 255 256 private static class Sha256Holder { 257 static final HashFunction SHA_256 = 258 new MessageDigestHashFunction("SHA-256", "Hashing.sha256()"); 259 } 260 261 /** 262 * Returns a hash function implementing the SHA-384 algorithm (384 hash bits). 263 * 264 * @since 19.0 265 */ 266 public static HashFunction sha384() { 267 return Sha384Holder.SHA_384; 268 } 269 270 private static class Sha384Holder { 271 static final HashFunction SHA_384 = 272 new MessageDigestHashFunction("SHA-384", "Hashing.sha384()"); 273 } 274 275 /** Returns a hash function implementing the SHA-512 algorithm (512 hash bits). */ 276 public static HashFunction sha512() { 277 return Sha512Holder.SHA_512; 278 } 279 280 private static class Sha512Holder { 281 static final HashFunction SHA_512 = 282 new MessageDigestHashFunction("SHA-512", "Hashing.sha512()"); 283 } 284 285 /** 286 * Returns a hash function implementing the Message Authentication Code (MAC) algorithm, using the 287 * MD5 (128 hash bits) hash function and the given secret key. 288 * 289 * <p>If you are designing a new system that needs HMAC, prefer {@link #hmacSha256} or other 290 * future-proof algorithms <a 291 * href="https://datatracker.ietf.org/doc/html/rfc6151#section-2.3">over {@code hmacMd5}</a>. 292 * 293 * @param key the secret key 294 * @throws IllegalArgumentException if the given key is inappropriate for initializing this MAC 295 * @since 20.0 296 */ 297 public static HashFunction hmacMd5(Key key) { 298 return new MacHashFunction("HmacMD5", key, hmacToString("hmacMd5", key)); 299 } 300 301 /** 302 * Returns a hash function implementing the Message Authentication Code (MAC) algorithm, using the 303 * MD5 (128 hash bits) hash function and a {@link SecretKeySpec} created from the given byte array 304 * and the MD5 algorithm. 305 * 306 * <p>If you are designing a new system that needs HMAC, prefer {@link #hmacSha256} or other 307 * future-proof algorithms <a 308 * href="https://datatracker.ietf.org/doc/html/rfc6151#section-2.3">over {@code hmacMd5}</a>. 309 * 310 * @param key the key material of the secret key 311 * @since 20.0 312 */ 313 public static HashFunction hmacMd5(byte[] key) { 314 return hmacMd5(new SecretKeySpec(checkNotNull(key), "HmacMD5")); 315 } 316 317 /** 318 * Returns a hash function implementing the Message Authentication Code (MAC) algorithm, using the 319 * SHA-1 (160 hash bits) hash function and the given secret key. 320 * 321 * @param key the secret key 322 * @throws IllegalArgumentException if the given key is inappropriate for initializing this MAC 323 * @since 20.0 324 */ 325 public static HashFunction hmacSha1(Key key) { 326 return new MacHashFunction("HmacSHA1", key, hmacToString("hmacSha1", key)); 327 } 328 329 /** 330 * Returns a hash function implementing the Message Authentication Code (MAC) algorithm, using the 331 * SHA-1 (160 hash bits) hash function and a {@link SecretKeySpec} created from the given byte 332 * array and the SHA-1 algorithm. 333 * 334 * @param key the key material of the secret key 335 * @since 20.0 336 */ 337 public static HashFunction hmacSha1(byte[] key) { 338 return hmacSha1(new SecretKeySpec(checkNotNull(key), "HmacSHA1")); 339 } 340 341 /** 342 * Returns a hash function implementing the Message Authentication Code (MAC) algorithm, using the 343 * SHA-256 (256 hash bits) hash function and the given secret key. 344 * 345 * @param key the secret key 346 * @throws IllegalArgumentException if the given key is inappropriate for initializing this MAC 347 * @since 20.0 348 */ 349 public static HashFunction hmacSha256(Key key) { 350 return new MacHashFunction("HmacSHA256", key, hmacToString("hmacSha256", key)); 351 } 352 353 /** 354 * Returns a hash function implementing the Message Authentication Code (MAC) algorithm, using the 355 * SHA-256 (256 hash bits) hash function and a {@link SecretKeySpec} created from the given byte 356 * array and the SHA-256 algorithm. 357 * 358 * @param key the key material of the secret key 359 * @since 20.0 360 */ 361 public static HashFunction hmacSha256(byte[] key) { 362 return hmacSha256(new SecretKeySpec(checkNotNull(key), "HmacSHA256")); 363 } 364 365 /** 366 * Returns a hash function implementing the Message Authentication Code (MAC) algorithm, using the 367 * SHA-512 (512 hash bits) hash function and the given secret key. 368 * 369 * @param key the secret key 370 * @throws IllegalArgumentException if the given key is inappropriate for initializing this MAC 371 * @since 20.0 372 */ 373 public static HashFunction hmacSha512(Key key) { 374 return new MacHashFunction("HmacSHA512", key, hmacToString("hmacSha512", key)); 375 } 376 377 /** 378 * Returns a hash function implementing the Message Authentication Code (MAC) algorithm, using the 379 * SHA-512 (512 hash bits) hash function and a {@link SecretKeySpec} created from the given byte 380 * array and the SHA-512 algorithm. 381 * 382 * @param key the key material of the secret key 383 * @since 20.0 384 */ 385 public static HashFunction hmacSha512(byte[] key) { 386 return hmacSha512(new SecretKeySpec(checkNotNull(key), "HmacSHA512")); 387 } 388 389 private static String hmacToString(String methodName, Key key) { 390 return "Hashing." 391 + methodName 392 + "(Key[algorithm=" 393 + key.getAlgorithm() 394 + ", format=" 395 + key.getFormat() 396 + "])"; 397 } 398 399 /** 400 * Returns a hash function implementing the CRC32C checksum algorithm (32 hash bits) as described 401 * by RFC 3720, Section 12.1. 402 * 403 * <p>This function is best understood as a <a 404 * href="https://en.wikipedia.org/wiki/Checksum">checksum</a> rather than a true <a 405 * href="https://en.wikipedia.org/wiki/Hash_function">hash function</a>. 406 * 407 * @since 18.0 408 */ 409 public static HashFunction crc32c() { 410 return Crc32CSupplier.HASH_FUNCTION; 411 } 412 413 @Immutable 414 private enum Crc32CSupplier implements ImmutableSupplier<HashFunction> { 415 @J2ObjCIncompatible 416 JAVA_UTIL_ZIP { 417 @Override 418 public HashFunction get() { 419 return ChecksumType.CRC_32C.hashFunction; 420 } 421 }, 422 ABSTRACT_HASH_FUNCTION { 423 @Override 424 public HashFunction get() { 425 return Crc32cHashFunction.CRC_32_C; 426 } 427 }; 428 429 static final HashFunction HASH_FUNCTION = pickFunction().get(); 430 431 private static Crc32CSupplier pickFunction() { 432 Crc32CSupplier[] functions = values(); 433 434 if (functions.length == 1) { 435 // We're running under J2ObjC. 436 return functions[0]; 437 } 438 439 // We can't refer to JAVA_UTIL_ZIP directly at compile time because of J2ObjC. 440 Crc32CSupplier javaUtilZip = functions[0]; 441 442 try { 443 Class.forName("java.util.zip.CRC32C"); 444 return javaUtilZip; 445 } catch (ClassNotFoundException runningUnderJava8) { 446 return ABSTRACT_HASH_FUNCTION; 447 } 448 } 449 } 450 451 /** 452 * Returns a hash function implementing the CRC-32 checksum algorithm (32 hash bits). 453 * 454 * <p>To get the {@code long} value equivalent to {@link Checksum#getValue()} for a {@code 455 * HashCode} produced by this function, use {@link HashCode#padToLong()}. 456 * 457 * <p>This function is best understood as a <a 458 * href="https://en.wikipedia.org/wiki/Checksum">checksum</a> rather than a true <a 459 * href="https://en.wikipedia.org/wiki/Hash_function">hash function</a>. 460 * 461 * @since 14.0 462 */ 463 public static HashFunction crc32() { 464 return ChecksumType.CRC_32.hashFunction; 465 } 466 467 /** 468 * Returns a hash function implementing the Adler-32 checksum algorithm (32 hash bits). 469 * 470 * <p>To get the {@code long} value equivalent to {@link Checksum#getValue()} for a {@code 471 * HashCode} produced by this function, use {@link HashCode#padToLong()}. 472 * 473 * <p>This function is best understood as a <a 474 * href="https://en.wikipedia.org/wiki/Checksum">checksum</a> rather than a true <a 475 * href="https://en.wikipedia.org/wiki/Hash_function">hash function</a>. 476 * 477 * @since 14.0 478 */ 479 public static HashFunction adler32() { 480 return ChecksumType.ADLER_32.hashFunction; 481 } 482 483 @Immutable 484 enum ChecksumType implements ImmutableSupplier<Checksum> { 485 CRC_32("Hashing.crc32()") { 486 @Override 487 public Checksum get() { 488 return new CRC32(); 489 } 490 }, 491 @J2ObjCIncompatible 492 CRC_32C("Hashing.crc32c()") { 493 @Override 494 public Checksum get() { 495 return Crc32cMethodHandles.newCrc32c(); 496 } 497 }, 498 ADLER_32("Hashing.adler32()") { 499 @Override 500 public Checksum get() { 501 return new Adler32(); 502 } 503 }; 504 505 public final HashFunction hashFunction; 506 507 ChecksumType(String toString) { 508 this.hashFunction = new ChecksumHashFunction(this, 32, toString); 509 } 510 } 511 512 @J2ObjCIncompatible 513 @SuppressWarnings("unused") 514 private static final class Crc32cMethodHandles { 515 private static final MethodHandle CONSTRUCTOR = crc32cConstructor(); 516 517 @IgnoreJRERequirement // https://github.com/mojohaus/animal-sniffer/issues/67 518 static Checksum newCrc32c() { 519 try { 520 return (Checksum) CONSTRUCTOR.invokeExact(); 521 } catch (Throwable e) { 522 throwIfUnchecked(e); 523 // This should be impossible, since the constructor has no `throws` clause. 524 throw new UndeclaredThrowableException(e); 525 } 526 } 527 528 private static MethodHandle crc32cConstructor() { 529 try { 530 Class<?> clazz = Class.forName("java.util.zip.CRC32C"); 531 /* 532 * We can't cast to CRC32C at the call site because we support building with Java 8 533 * (https://github.com/google/guava/issues/6549). So we have to use asType() to change from 534 * CRC32C to Checksum. This may carry some performance cost 535 * (https://stackoverflow.com/a/22321671/28465), but I'd have to benchmark more carefully to 536 * even detect it. 537 */ 538 return MethodHandles.lookup() 539 .findConstructor(clazz, methodType(void.class)) 540 .asType(methodType(Checksum.class)); 541 } catch (ClassNotFoundException e) { 542 // We check that the class is available before calling this method. 543 throw new AssertionError(e); 544 } catch (IllegalAccessException e) { 545 // That API is public. 546 throw newLinkageError(e); 547 } catch (NoSuchMethodException e) { 548 // That constructor exists. 549 throw newLinkageError(e); 550 } 551 } 552 553 private static LinkageError newLinkageError(Throwable cause) { 554 return new LinkageError(cause.toString(), cause); 555 } 556 } 557 558 /** 559 * Returns a hash function implementing FarmHash's Fingerprint64, an open-source algorithm. 560 * 561 * <p>This is designed for generating persistent fingerprints of strings. It isn't 562 * cryptographically secure, but it produces a high-quality hash with fewer collisions than some 563 * alternatives we've used in the past. 564 * 565 * <p>FarmHash fingerprints are encoded by {@link HashCode#asBytes} in little-endian order. This 566 * means {@link HashCode#asLong} is guaranteed to return the same value that 567 * farmhash::Fingerprint64() would for the same input (when compared using {@link 568 * com.google.common.primitives.UnsignedLongs}'s encoding of 64-bit unsigned numbers). 569 * 570 * <p>This function is best understood as a <a 571 * href="https://en.wikipedia.org/wiki/Fingerprint_(computing)">fingerprint</a> rather than a true 572 * <a href="https://en.wikipedia.org/wiki/Hash_function">hash function</a>. 573 * 574 * @since 20.0 575 */ 576 public static HashFunction farmHashFingerprint64() { 577 return FarmHashFingerprint64.FARMHASH_FINGERPRINT_64; 578 } 579 580 /** 581 * Returns a hash function implementing the Fingerprint2011 hashing function (64 hash bits). 582 * 583 * <p>This is designed for generating persistent fingerprints of strings. It isn't 584 * cryptographically secure, but it produces a high-quality hash with few collisions. Fingerprints 585 * generated using this are byte-wise identical to those created using the C++ version, but note 586 * that this uses unsigned integers (see {@link com.google.common.primitives.UnsignedInts}). 587 * Comparisons between the two should take this into account. 588 * 589 * <p>Fingerprint2011() is a form of Murmur2 on strings up to 32 bytes and a form of CityHash for 590 * longer strings. It could have been one or the other throughout. The main advantage of the 591 * combination is that CityHash has a bunch of special cases for short strings that don't need to 592 * be replicated here. The result will never be 0 or 1. 593 * 594 * <p>This function is best understood as a <a 595 * href="https://en.wikipedia.org/wiki/Fingerprint_(computing)">fingerprint</a> rather than a true 596 * <a href="https://en.wikipedia.org/wiki/Hash_function">hash function</a>. 597 * 598 * @since 31.1 599 */ 600 public static HashFunction fingerprint2011() { 601 return Fingerprint2011.FINGERPRINT_2011; 602 } 603 604 /** 605 * Assigns to {@code hashCode} a "bucket" in the range {@code [0, buckets)}, in a uniform manner 606 * that minimizes the need for remapping as {@code buckets} grows. That is, {@code 607 * consistentHash(h, n)} equals: 608 * 609 * <ul> 610 * <li>{@code n - 1}, with approximate probability {@code 1/n} 611 * <li>{@code consistentHash(h, n - 1)}, otherwise (probability {@code 1 - 1/n}) 612 * </ul> 613 * 614 * <p>This method is suitable for the common use case of dividing work among buckets that meet the 615 * following conditions: 616 * 617 * <ul> 618 * <li>You want to assign the same fraction of inputs to each bucket. 619 * <li>When you reduce the number of buckets, you can accept that the most recently added 620 * buckets will be removed first. More concretely, if you are dividing traffic among tasks, 621 * you can decrease the number of tasks from 15 and 10, killing off the final 5 tasks, and 622 * {@code consistentHash} will handle it. If, however, you are dividing traffic among 623 * servers {@code alpha}, {@code bravo}, and {@code charlie} and you occasionally need to 624 * take each of the servers offline, {@code consistentHash} will be a poor fit: It provides 625 * no way for you to specify which of the three buckets is disappearing. Thus, if your 626 * buckets change from {@code [alpha, bravo, charlie]} to {@code [bravo, charlie]}, it will 627 * assign all the old {@code alpha} traffic to {@code bravo} and all the old {@code bravo} 628 * traffic to {@code charlie}, rather than letting {@code bravo} keep its traffic. 629 * </ul> 630 * 631 * <p>See the <a href="http://en.wikipedia.org/wiki/Consistent_hashing">Wikipedia article on 632 * consistent hashing</a> for more information. 633 */ 634 public static int consistentHash(HashCode hashCode, int buckets) { 635 return consistentHash(hashCode.padToLong(), buckets); 636 } 637 638 /** 639 * Assigns to {@code input} a "bucket" in the range {@code [0, buckets)}, in a uniform manner that 640 * minimizes the need for remapping as {@code buckets} grows. That is, {@code consistentHash(h, 641 * n)} equals: 642 * 643 * <ul> 644 * <li>{@code n - 1}, with approximate probability {@code 1/n} 645 * <li>{@code consistentHash(h, n - 1)}, otherwise (probability {@code 1 - 1/n}) 646 * </ul> 647 * 648 * <p>This method is suitable for the common use case of dividing work among buckets that meet the 649 * following conditions: 650 * 651 * <ul> 652 * <li>You want to assign the same fraction of inputs to each bucket. 653 * <li>When you reduce the number of buckets, you can accept that the most recently added 654 * buckets will be removed first. More concretely, if you are dividing traffic among tasks, 655 * you can decrease the number of tasks from 15 and 10, killing off the final 5 tasks, and 656 * {@code consistentHash} will handle it. If, however, you are dividing traffic among 657 * servers {@code alpha}, {@code bravo}, and {@code charlie} and you occasionally need to 658 * take each of the servers offline, {@code consistentHash} will be a poor fit: It provides 659 * no way for you to specify which of the three buckets is disappearing. Thus, if your 660 * buckets change from {@code [alpha, bravo, charlie]} to {@code [bravo, charlie]}, it will 661 * assign all the old {@code alpha} traffic to {@code bravo} and all the old {@code bravo} 662 * traffic to {@code charlie}, rather than letting {@code bravo} keep its traffic. 663 * </ul> 664 * 665 * <p>See the <a href="http://en.wikipedia.org/wiki/Consistent_hashing">Wikipedia article on 666 * consistent hashing</a> for more information. 667 */ 668 public static int consistentHash(long input, int buckets) { 669 checkArgument(buckets > 0, "buckets must be positive: %s", buckets); 670 LinearCongruentialGenerator generator = new LinearCongruentialGenerator(input); 671 int candidate = 0; 672 int next; 673 674 // Jump from bucket to bucket until we go out of range 675 while (true) { 676 next = (int) ((candidate + 1) / generator.nextDouble()); 677 if (next >= 0 && next < buckets) { 678 candidate = next; 679 } else { 680 return candidate; 681 } 682 } 683 } 684 685 /** 686 * Returns a hash code, having the same bit length as each of the input hash codes, that combines 687 * the information of these hash codes in an ordered fashion. That is, whenever two equal hash 688 * codes are produced by two calls to this method, it is <i>as likely as possible</i> that each 689 * was computed from the <i>same</i> input hash codes in the <i>same</i> order. 690 * 691 * @throws IllegalArgumentException if {@code hashCodes} is empty, or the hash codes do not all 692 * have the same bit length 693 */ 694 public static HashCode combineOrdered(Iterable<HashCode> hashCodes) { 695 Iterator<HashCode> iterator = hashCodes.iterator(); 696 checkArgument(iterator.hasNext(), "Must be at least 1 hash code to combine."); 697 int bits = iterator.next().bits(); 698 byte[] resultBytes = new byte[bits / 8]; 699 for (HashCode hashCode : hashCodes) { 700 byte[] nextBytes = hashCode.asBytes(); 701 checkArgument( 702 nextBytes.length == resultBytes.length, "All hashcodes must have the same bit length."); 703 for (int i = 0; i < nextBytes.length; i++) { 704 resultBytes[i] = (byte) (resultBytes[i] * 37 ^ nextBytes[i]); 705 } 706 } 707 return HashCode.fromBytesNoCopy(resultBytes); 708 } 709 710 /** 711 * Returns a hash code, having the same bit length as each of the input hash codes, that combines 712 * the information of these hash codes in an unordered fashion. That is, whenever two equal hash 713 * codes are produced by two calls to this method, it is <i>as likely as possible</i> that each 714 * was computed from the <i>same</i> input hash codes in <i>some</i> order. 715 * 716 * @throws IllegalArgumentException if {@code hashCodes} is empty, or the hash codes do not all 717 * have the same bit length 718 */ 719 public static HashCode combineUnordered(Iterable<HashCode> hashCodes) { 720 Iterator<HashCode> iterator = hashCodes.iterator(); 721 checkArgument(iterator.hasNext(), "Must be at least 1 hash code to combine."); 722 byte[] resultBytes = new byte[iterator.next().bits() / 8]; 723 for (HashCode hashCode : hashCodes) { 724 byte[] nextBytes = hashCode.asBytes(); 725 checkArgument( 726 nextBytes.length == resultBytes.length, "All hashcodes must have the same bit length."); 727 for (int i = 0; i < nextBytes.length; i++) { 728 resultBytes[i] += nextBytes[i]; 729 } 730 } 731 return HashCode.fromBytesNoCopy(resultBytes); 732 } 733 734 /** Checks that the passed argument is positive, and ceils it to a multiple of 32. */ 735 static int checkPositiveAndMakeMultipleOf32(int bits) { 736 checkArgument(bits > 0, "Number of bits must be positive"); 737 return (bits + 31) & ~31; 738 } 739 740 /** 741 * Returns a hash function which computes its hash code by concatenating the hash codes of the 742 * underlying hash functions together. This can be useful if you need to generate hash codes of a 743 * specific length. 744 * 745 * <p>For example, if you need 1024-bit hash codes, you could join two {@link Hashing#sha512} hash 746 * functions together: {@code Hashing.concatenating(Hashing.sha512(), Hashing.sha512())}. 747 * 748 * @since 19.0 749 */ 750 public static HashFunction concatenating( 751 HashFunction first, HashFunction second, HashFunction... rest) { 752 // We can't use Lists.asList() here because there's no hash->collect dependency 753 List<HashFunction> list = new ArrayList<>(); 754 list.add(first); 755 list.add(second); 756 Collections.addAll(list, rest); 757 return new ConcatenatedHashFunction(list.toArray(new HashFunction[0])); 758 } 759 760 /** 761 * Returns a hash function which computes its hash code by concatenating the hash codes of the 762 * underlying hash functions together. This can be useful if you need to generate hash codes of a 763 * specific length. 764 * 765 * <p>For example, if you need 1024-bit hash codes, you could join two {@link Hashing#sha512} hash 766 * functions together: {@code Hashing.concatenating(Hashing.sha512(), Hashing.sha512())}. 767 * 768 * @since 19.0 769 */ 770 public static HashFunction concatenating(Iterable<HashFunction> hashFunctions) { 771 checkNotNull(hashFunctions); 772 // We can't use Iterables.toArray() here because there's no hash->collect dependency 773 List<HashFunction> list = new ArrayList<>(); 774 for (HashFunction hashFunction : hashFunctions) { 775 list.add(hashFunction); 776 } 777 checkArgument(!list.isEmpty(), "number of hash functions (%s) must be > 0", list.size()); 778 return new ConcatenatedHashFunction(list.toArray(new HashFunction[0])); 779 } 780 781 private static final class ConcatenatedHashFunction extends AbstractCompositeHashFunction { 782 783 private ConcatenatedHashFunction(HashFunction... functions) { 784 super(functions); 785 for (HashFunction function : functions) { 786 checkArgument( 787 function.bits() % 8 == 0, 788 "the number of bits (%s) in hashFunction (%s) must be divisible by 8", 789 function.bits(), 790 function); 791 } 792 } 793 794 @Override 795 HashCode makeHash(Hasher[] hashers) { 796 byte[] bytes = new byte[bits() / 8]; 797 int i = 0; 798 for (Hasher hasher : hashers) { 799 HashCode newHash = hasher.hash(); 800 i += newHash.writeBytesTo(bytes, i, newHash.bits() / 8); 801 } 802 return HashCode.fromBytesNoCopy(bytes); 803 } 804 805 @Override 806 public int bits() { 807 int bitSum = 0; 808 for (HashFunction function : functions) { 809 bitSum += function.bits(); 810 } 811 return bitSum; 812 } 813 814 @Override 815 public boolean equals(@Nullable Object object) { 816 if (object instanceof ConcatenatedHashFunction) { 817 ConcatenatedHashFunction other = (ConcatenatedHashFunction) object; 818 return Arrays.equals(functions, other.functions); 819 } 820 return false; 821 } 822 823 @Override 824 public int hashCode() { 825 return Arrays.hashCode(functions); 826 } 827 } 828 829 /** 830 * Linear CongruentialGenerator to use for consistent hashing. See 831 * http://en.wikipedia.org/wiki/Linear_congruential_generator 832 */ 833 private static final class LinearCongruentialGenerator { 834 private long state; 835 836 public LinearCongruentialGenerator(long seed) { 837 this.state = seed; 838 } 839 840 public double nextDouble() { 841 state = 2862933555777941757L * state + 1; 842 return ((double) ((int) (state >>> 33) + 1)) / 0x1.0p31; 843 } 844 } 845 846 private Hashing() {} 847}