001/* 002 * Copyright (C) 2014 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.graph; 018 019import static com.google.common.base.Preconditions.checkArgument; 020import static com.google.common.graph.GraphConstants.NODE_NOT_IN_GRAPH; 021import static java.util.Objects.requireNonNull; 022 023import com.google.common.annotations.Beta; 024import com.google.common.base.Objects; 025import com.google.common.collect.ImmutableSet; 026import com.google.common.collect.Iterables; 027import com.google.common.collect.Iterators; 028import com.google.common.collect.Maps; 029import com.google.errorprone.annotations.CanIgnoreReturnValue; 030import java.util.ArrayDeque; 031import java.util.Collection; 032import java.util.Deque; 033import java.util.HashSet; 034import java.util.Iterator; 035import java.util.Map; 036import java.util.Optional; 037import java.util.Queue; 038import java.util.Set; 039import org.jspecify.annotations.Nullable; 040 041/** 042 * Static utility methods for {@link Graph}, {@link ValueGraph}, and {@link Network} instances. 043 * 044 * @author James Sexton 045 * @author Joshua O'Madadhain 046 * @since 20.0 047 */ 048@Beta 049public final class Graphs extends GraphsBridgeMethods { 050 051 private Graphs() {} 052 053 // Graph query methods 054 055 /** 056 * Returns true if {@code graph} has at least one cycle. A cycle is defined as a non-empty subset 057 * of edges in a graph arranged to form a path (a sequence of adjacent outgoing edges) starting 058 * and ending with the same node. 059 * 060 * <p>This method will detect any non-empty cycle, including self-loops (a cycle of length 1). 061 */ 062 public static <N> boolean hasCycle(Graph<N> graph) { 063 int numEdges = graph.edges().size(); 064 if (numEdges == 0) { 065 return false; // An edge-free graph is acyclic by definition. 066 } 067 if (!graph.isDirected() && numEdges >= graph.nodes().size()) { 068 return true; // Optimization for the undirected case: at least one cycle must exist. 069 } 070 071 Map<Object, NodeVisitState> visitedNodes = 072 Maps.newHashMapWithExpectedSize(graph.nodes().size()); 073 for (N node : graph.nodes()) { 074 if (subgraphHasCycle(graph, visitedNodes, node)) { 075 return true; 076 } 077 } 078 return false; 079 } 080 081 /** 082 * Returns true if {@code network} has at least one cycle. A cycle is defined as a non-empty 083 * subset of edges in a graph arranged to form a path (a sequence of adjacent outgoing edges) 084 * starting and ending with the same node. 085 * 086 * <p>This method will detect any non-empty cycle, including self-loops (a cycle of length 1). 087 */ 088 public static boolean hasCycle(Network<?, ?> network) { 089 // In a directed graph, parallel edges cannot introduce a cycle in an acyclic graph. 090 // However, in an undirected graph, any parallel edge induces a cycle in the graph. 091 if (!network.isDirected() 092 && network.allowsParallelEdges() 093 && network.edges().size() > network.asGraph().edges().size()) { 094 return true; 095 } 096 return hasCycle(network.asGraph()); 097 } 098 099 /** 100 * Performs a traversal of the nodes reachable from {@code startNode}. If we ever reach a node 101 * we've already visited (following only outgoing edges and without reusing edges), we know 102 * there's a cycle in the graph. 103 */ 104 private static <N> boolean subgraphHasCycle( 105 Graph<N> graph, Map<Object, NodeVisitState> visitedNodes, N startNode) { 106 Deque<NodeAndRemainingSuccessors<N>> stack = new ArrayDeque<>(); 107 stack.addLast(new NodeAndRemainingSuccessors<>(startNode)); 108 109 while (!stack.isEmpty()) { 110 // To peek at the top two items, we need to temporarily remove one. 111 NodeAndRemainingSuccessors<N> top = stack.removeLast(); 112 NodeAndRemainingSuccessors<N> prev = stack.peekLast(); 113 stack.addLast(top); 114 115 N node = top.node; 116 N previousNode = prev == null ? null : prev.node; 117 if (top.remainingSuccessors == null) { 118 NodeVisitState state = visitedNodes.get(node); 119 if (state == NodeVisitState.COMPLETE) { 120 stack.removeLast(); 121 continue; 122 } 123 if (state == NodeVisitState.PENDING) { 124 return true; 125 } 126 127 visitedNodes.put(node, NodeVisitState.PENDING); 128 top.remainingSuccessors = new ArrayDeque<>(graph.successors(node)); 129 } 130 131 if (!top.remainingSuccessors.isEmpty()) { 132 N nextNode = top.remainingSuccessors.remove(); 133 if (canTraverseWithoutReusingEdge(graph, nextNode, previousNode)) { 134 stack.addLast(new NodeAndRemainingSuccessors<>(nextNode)); 135 continue; 136 } 137 } 138 139 stack.removeLast(); 140 visitedNodes.put(node, NodeVisitState.COMPLETE); 141 } 142 return false; 143 } 144 145 private static final class NodeAndRemainingSuccessors<N> { 146 final N node; 147 148 /** 149 * The successors left to be visited, or {@code null} if we just added this {@code 150 * NodeAndRemainingSuccessors} instance to the stack. In the latter case, we'll compute the 151 * successors if we determine that we need them after we've performed the initial processing of 152 * the node. 153 */ 154 @Nullable Queue<N> remainingSuccessors; 155 156 NodeAndRemainingSuccessors(N node) { 157 this.node = node; 158 } 159 } 160 161 /** 162 * Determines whether an edge has already been used during traversal. In the directed case a cycle 163 * is always detected before reusing an edge, so no special logic is required. In the undirected 164 * case, we must take care not to "backtrack" over an edge (i.e. going from A to B and then going 165 * from B to A). 166 */ 167 private static boolean canTraverseWithoutReusingEdge( 168 Graph<?> graph, Object nextNode, @Nullable Object previousNode) { 169 if (graph.isDirected() || !Objects.equal(previousNode, nextNode)) { 170 return true; 171 } 172 // This falls into the undirected A->B->A case. The Graph interface does not support parallel 173 // edges, so this traversal would require reusing the undirected AB edge. 174 return false; 175 } 176 177 /** 178 * Returns the transitive closure of {@code graph}. The transitive closure of a graph is another 179 * graph with an edge connecting node A to node B if node B is {@link #reachableNodes(Graph, 180 * Object) reachable} from node A. 181 * 182 * <p>This is a "snapshot" based on the current topology of {@code graph}, rather than a live view 183 * of the transitive closure of {@code graph}. In other words, the returned {@link Graph} will not 184 * be updated after modifications to {@code graph}. 185 * 186 * @since 33.1.0 (present with return type {@code Graph} since 20.0) 187 */ 188 // TODO(b/31438252): Consider potential optimizations for this algorithm. 189 public static <N> ImmutableGraph<N> transitiveClosure(Graph<N> graph) { 190 ImmutableGraph.Builder<N> transitiveClosure = 191 GraphBuilder.from(graph).allowsSelfLoops(true).<N>immutable(); 192 // Every node is, at a minimum, reachable from itself. Since the resulting transitive closure 193 // will have no isolated nodes, we can skip adding nodes explicitly and let putEdge() do it. 194 195 if (graph.isDirected()) { 196 // Note: works for both directed and undirected graphs, but we only use in the directed case. 197 for (N node : graph.nodes()) { 198 for (N reachableNode : reachableNodes(graph, node)) { 199 transitiveClosure.putEdge(node, reachableNode); 200 } 201 } 202 } else { 203 // An optimization for the undirected case: for every node B reachable from node A, 204 // node A and node B have the same reachability set. 205 Set<N> visitedNodes = new HashSet<>(); 206 for (N node : graph.nodes()) { 207 if (!visitedNodes.contains(node)) { 208 Set<N> reachableNodes = reachableNodes(graph, node); 209 visitedNodes.addAll(reachableNodes); 210 int pairwiseMatch = 1; // start at 1 to include self-loops 211 for (N nodeU : reachableNodes) { 212 for (N nodeV : Iterables.limit(reachableNodes, pairwiseMatch++)) { 213 transitiveClosure.putEdge(nodeU, nodeV); 214 } 215 } 216 } 217 } 218 } 219 220 return transitiveClosure.build(); 221 } 222 223 /** 224 * Returns the set of nodes that are reachable from {@code node}. Node B is defined as reachable 225 * from node A if there exists a path (a sequence of adjacent outgoing edges) starting at node A 226 * and ending at node B. Note that a node is always reachable from itself via a zero-length path. 227 * 228 * <p>This is a "snapshot" based on the current topology of {@code graph}, rather than a live view 229 * of the set of nodes reachable from {@code node}. In other words, the returned {@link Set} will 230 * not be updated after modifications to {@code graph}. 231 * 232 * @throws IllegalArgumentException if {@code node} is not present in {@code graph} 233 * @since 33.1.0 (present with return type {@code Set} since 20.0) 234 */ 235 public static <N> ImmutableSet<N> reachableNodes(Graph<N> graph, N node) { 236 checkArgument(graph.nodes().contains(node), NODE_NOT_IN_GRAPH, node); 237 return ImmutableSet.copyOf(Traverser.forGraph(graph).breadthFirst(node)); 238 } 239 240 // Graph mutation methods 241 242 // Graph view methods 243 244 /** 245 * Returns a view of {@code graph} with the direction (if any) of every edge reversed. All other 246 * properties remain intact, and further updates to {@code graph} will be reflected in the view. 247 */ 248 public static <N> Graph<N> transpose(Graph<N> graph) { 249 if (!graph.isDirected()) { 250 return graph; // the transpose of an undirected graph is an identical graph 251 } 252 253 if (graph instanceof TransposedGraph) { 254 return ((TransposedGraph<N>) graph).graph; 255 } 256 257 return new TransposedGraph<>(graph); 258 } 259 260 /** 261 * Returns a view of {@code graph} with the direction (if any) of every edge reversed. All other 262 * properties remain intact, and further updates to {@code graph} will be reflected in the view. 263 */ 264 public static <N, V> ValueGraph<N, V> transpose(ValueGraph<N, V> graph) { 265 if (!graph.isDirected()) { 266 return graph; // the transpose of an undirected graph is an identical graph 267 } 268 269 if (graph instanceof TransposedValueGraph) { 270 return ((TransposedValueGraph<N, V>) graph).graph; 271 } 272 273 return new TransposedValueGraph<>(graph); 274 } 275 276 /** 277 * Returns a view of {@code network} with the direction (if any) of every edge reversed. All other 278 * properties remain intact, and further updates to {@code network} will be reflected in the view. 279 */ 280 public static <N, E> Network<N, E> transpose(Network<N, E> network) { 281 if (!network.isDirected()) { 282 return network; // the transpose of an undirected network is an identical network 283 } 284 285 if (network instanceof TransposedNetwork) { 286 return ((TransposedNetwork<N, E>) network).network; 287 } 288 289 return new TransposedNetwork<>(network); 290 } 291 292 static <N> EndpointPair<N> transpose(EndpointPair<N> endpoints) { 293 if (endpoints.isOrdered()) { 294 return EndpointPair.ordered(endpoints.target(), endpoints.source()); 295 } 296 return endpoints; 297 } 298 299 // NOTE: this should work as long as the delegate graph's implementation of edges() (like that of 300 // AbstractGraph) derives its behavior from calling successors(). 301 private static class TransposedGraph<N> extends ForwardingGraph<N> { 302 private final Graph<N> graph; 303 304 TransposedGraph(Graph<N> graph) { 305 this.graph = graph; 306 } 307 308 @Override 309 Graph<N> delegate() { 310 return graph; 311 } 312 313 @Override 314 public Set<N> predecessors(N node) { 315 return delegate().successors(node); // transpose 316 } 317 318 @Override 319 public Set<N> successors(N node) { 320 return delegate().predecessors(node); // transpose 321 } 322 323 @Override 324 public Set<EndpointPair<N>> incidentEdges(N node) { 325 return new IncidentEdgeSet<N>(this, node) { 326 @Override 327 public Iterator<EndpointPair<N>> iterator() { 328 return Iterators.transform( 329 delegate().incidentEdges(node).iterator(), 330 edge -> EndpointPair.of(delegate(), edge.nodeV(), edge.nodeU())); 331 } 332 }; 333 } 334 335 @Override 336 public int inDegree(N node) { 337 return delegate().outDegree(node); // transpose 338 } 339 340 @Override 341 public int outDegree(N node) { 342 return delegate().inDegree(node); // transpose 343 } 344 345 @Override 346 public boolean hasEdgeConnecting(N nodeU, N nodeV) { 347 return delegate().hasEdgeConnecting(nodeV, nodeU); // transpose 348 } 349 350 @Override 351 public boolean hasEdgeConnecting(EndpointPair<N> endpoints) { 352 return delegate().hasEdgeConnecting(transpose(endpoints)); 353 } 354 } 355 356 // NOTE: this should work as long as the delegate graph's implementation of edges() (like that of 357 // AbstractValueGraph) derives its behavior from calling successors(). 358 private static class TransposedValueGraph<N, V> extends ForwardingValueGraph<N, V> { 359 private final ValueGraph<N, V> graph; 360 361 TransposedValueGraph(ValueGraph<N, V> graph) { 362 this.graph = graph; 363 } 364 365 @Override 366 ValueGraph<N, V> delegate() { 367 return graph; 368 } 369 370 @Override 371 public Set<N> predecessors(N node) { 372 return delegate().successors(node); // transpose 373 } 374 375 @Override 376 public Set<N> successors(N node) { 377 return delegate().predecessors(node); // transpose 378 } 379 380 @Override 381 public int inDegree(N node) { 382 return delegate().outDegree(node); // transpose 383 } 384 385 @Override 386 public int outDegree(N node) { 387 return delegate().inDegree(node); // transpose 388 } 389 390 @Override 391 public boolean hasEdgeConnecting(N nodeU, N nodeV) { 392 return delegate().hasEdgeConnecting(nodeV, nodeU); // transpose 393 } 394 395 @Override 396 public boolean hasEdgeConnecting(EndpointPair<N> endpoints) { 397 return delegate().hasEdgeConnecting(transpose(endpoints)); 398 } 399 400 @Override 401 public Optional<V> edgeValue(N nodeU, N nodeV) { 402 return delegate().edgeValue(nodeV, nodeU); // transpose 403 } 404 405 @Override 406 public Optional<V> edgeValue(EndpointPair<N> endpoints) { 407 return delegate().edgeValue(transpose(endpoints)); 408 } 409 410 @Override 411 public @Nullable V edgeValueOrDefault(N nodeU, N nodeV, @Nullable V defaultValue) { 412 return delegate().edgeValueOrDefault(nodeV, nodeU, defaultValue); // transpose 413 } 414 415 @Override 416 public @Nullable V edgeValueOrDefault(EndpointPair<N> endpoints, @Nullable V defaultValue) { 417 return delegate().edgeValueOrDefault(transpose(endpoints), defaultValue); 418 } 419 } 420 421 private static class TransposedNetwork<N, E> extends ForwardingNetwork<N, E> { 422 private final Network<N, E> network; 423 424 TransposedNetwork(Network<N, E> network) { 425 this.network = network; 426 } 427 428 @Override 429 Network<N, E> delegate() { 430 return network; 431 } 432 433 @Override 434 public Set<N> predecessors(N node) { 435 return delegate().successors(node); // transpose 436 } 437 438 @Override 439 public Set<N> successors(N node) { 440 return delegate().predecessors(node); // transpose 441 } 442 443 @Override 444 public int inDegree(N node) { 445 return delegate().outDegree(node); // transpose 446 } 447 448 @Override 449 public int outDegree(N node) { 450 return delegate().inDegree(node); // transpose 451 } 452 453 @Override 454 public Set<E> inEdges(N node) { 455 return delegate().outEdges(node); // transpose 456 } 457 458 @Override 459 public Set<E> outEdges(N node) { 460 return delegate().inEdges(node); // transpose 461 } 462 463 @Override 464 public EndpointPair<N> incidentNodes(E edge) { 465 EndpointPair<N> endpointPair = delegate().incidentNodes(edge); 466 return EndpointPair.of(network, endpointPair.nodeV(), endpointPair.nodeU()); // transpose 467 } 468 469 @Override 470 public Set<E> edgesConnecting(N nodeU, N nodeV) { 471 return delegate().edgesConnecting(nodeV, nodeU); // transpose 472 } 473 474 @Override 475 public Set<E> edgesConnecting(EndpointPair<N> endpoints) { 476 return delegate().edgesConnecting(transpose(endpoints)); 477 } 478 479 @Override 480 public Optional<E> edgeConnecting(N nodeU, N nodeV) { 481 return delegate().edgeConnecting(nodeV, nodeU); // transpose 482 } 483 484 @Override 485 public Optional<E> edgeConnecting(EndpointPair<N> endpoints) { 486 return delegate().edgeConnecting(transpose(endpoints)); 487 } 488 489 @Override 490 public @Nullable E edgeConnectingOrNull(N nodeU, N nodeV) { 491 return delegate().edgeConnectingOrNull(nodeV, nodeU); // transpose 492 } 493 494 @Override 495 public @Nullable E edgeConnectingOrNull(EndpointPair<N> endpoints) { 496 return delegate().edgeConnectingOrNull(transpose(endpoints)); 497 } 498 499 @Override 500 public boolean hasEdgeConnecting(N nodeU, N nodeV) { 501 return delegate().hasEdgeConnecting(nodeV, nodeU); // transpose 502 } 503 504 @Override 505 public boolean hasEdgeConnecting(EndpointPair<N> endpoints) { 506 return delegate().hasEdgeConnecting(transpose(endpoints)); 507 } 508 } 509 510 // Graph copy methods 511 512 /** 513 * Returns the subgraph of {@code graph} induced by {@code nodes}. This subgraph is a new graph 514 * that contains all of the nodes in {@code nodes}, and all of the {@link Graph#edges() edges} 515 * from {@code graph} for which both nodes are contained by {@code nodes}. 516 * 517 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 518 */ 519 public static <N> MutableGraph<N> inducedSubgraph(Graph<N> graph, Iterable<? extends N> nodes) { 520 MutableGraph<N> subgraph = 521 (nodes instanceof Collection) 522 ? GraphBuilder.from(graph).expectedNodeCount(((Collection) nodes).size()).build() 523 : GraphBuilder.from(graph).build(); 524 for (N node : nodes) { 525 subgraph.addNode(node); 526 } 527 for (N node : subgraph.nodes()) { 528 for (N successorNode : graph.successors(node)) { 529 if (subgraph.nodes().contains(successorNode)) { 530 subgraph.putEdge(node, successorNode); 531 } 532 } 533 } 534 return subgraph; 535 } 536 537 /** 538 * Returns the subgraph of {@code graph} induced by {@code nodes}. This subgraph is a new graph 539 * that contains all of the nodes in {@code nodes}, and all of the {@link Graph#edges() edges} 540 * (and associated edge values) from {@code graph} for which both nodes are contained by {@code 541 * nodes}. 542 * 543 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 544 */ 545 public static <N, V> MutableValueGraph<N, V> inducedSubgraph( 546 ValueGraph<N, V> graph, Iterable<? extends N> nodes) { 547 MutableValueGraph<N, V> subgraph = 548 (nodes instanceof Collection) 549 ? ValueGraphBuilder.from(graph).expectedNodeCount(((Collection) nodes).size()).build() 550 : ValueGraphBuilder.from(graph).build(); 551 for (N node : nodes) { 552 subgraph.addNode(node); 553 } 554 for (N node : subgraph.nodes()) { 555 for (N successorNode : graph.successors(node)) { 556 if (subgraph.nodes().contains(successorNode)) { 557 // requireNonNull is safe because the endpoint pair comes from the graph. 558 subgraph.putEdgeValue( 559 node, 560 successorNode, 561 requireNonNull(graph.edgeValueOrDefault(node, successorNode, null))); 562 } 563 } 564 } 565 return subgraph; 566 } 567 568 /** 569 * Returns the subgraph of {@code network} induced by {@code nodes}. This subgraph is a new graph 570 * that contains all of the nodes in {@code nodes}, and all of the {@link Network#edges() edges} 571 * from {@code network} for which the {@link Network#incidentNodes(Object) incident nodes} are 572 * both contained by {@code nodes}. 573 * 574 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 575 */ 576 public static <N, E> MutableNetwork<N, E> inducedSubgraph( 577 Network<N, E> network, Iterable<? extends N> nodes) { 578 MutableNetwork<N, E> subgraph = 579 (nodes instanceof Collection) 580 ? NetworkBuilder.from(network).expectedNodeCount(((Collection) nodes).size()).build() 581 : NetworkBuilder.from(network).build(); 582 for (N node : nodes) { 583 subgraph.addNode(node); 584 } 585 for (N node : subgraph.nodes()) { 586 for (E edge : network.outEdges(node)) { 587 N successorNode = network.incidentNodes(edge).adjacentNode(node); 588 if (subgraph.nodes().contains(successorNode)) { 589 subgraph.addEdge(node, successorNode, edge); 590 } 591 } 592 } 593 return subgraph; 594 } 595 596 /** Creates a mutable copy of {@code graph} with the same nodes and edges. */ 597 public static <N> MutableGraph<N> copyOf(Graph<N> graph) { 598 MutableGraph<N> copy = GraphBuilder.from(graph).expectedNodeCount(graph.nodes().size()).build(); 599 for (N node : graph.nodes()) { 600 copy.addNode(node); 601 } 602 for (EndpointPair<N> edge : graph.edges()) { 603 copy.putEdge(edge.nodeU(), edge.nodeV()); 604 } 605 return copy; 606 } 607 608 /** Creates a mutable copy of {@code graph} with the same nodes, edges, and edge values. */ 609 public static <N, V> MutableValueGraph<N, V> copyOf(ValueGraph<N, V> graph) { 610 MutableValueGraph<N, V> copy = 611 ValueGraphBuilder.from(graph).expectedNodeCount(graph.nodes().size()).build(); 612 for (N node : graph.nodes()) { 613 copy.addNode(node); 614 } 615 for (EndpointPair<N> edge : graph.edges()) { 616 // requireNonNull is safe because the endpoint pair comes from the graph. 617 copy.putEdgeValue( 618 edge.nodeU(), 619 edge.nodeV(), 620 requireNonNull(graph.edgeValueOrDefault(edge.nodeU(), edge.nodeV(), null))); 621 } 622 return copy; 623 } 624 625 /** Creates a mutable copy of {@code network} with the same nodes and edges. */ 626 public static <N, E> MutableNetwork<N, E> copyOf(Network<N, E> network) { 627 MutableNetwork<N, E> copy = 628 NetworkBuilder.from(network) 629 .expectedNodeCount(network.nodes().size()) 630 .expectedEdgeCount(network.edges().size()) 631 .build(); 632 for (N node : network.nodes()) { 633 copy.addNode(node); 634 } 635 for (E edge : network.edges()) { 636 EndpointPair<N> endpointPair = network.incidentNodes(edge); 637 copy.addEdge(endpointPair.nodeU(), endpointPair.nodeV(), edge); 638 } 639 return copy; 640 } 641 642 @CanIgnoreReturnValue 643 static int checkNonNegative(int value) { 644 checkArgument(value >= 0, "Not true that %s is non-negative.", value); 645 return value; 646 } 647 648 @CanIgnoreReturnValue 649 static long checkNonNegative(long value) { 650 checkArgument(value >= 0, "Not true that %s is non-negative.", value); 651 return value; 652 } 653 654 @CanIgnoreReturnValue 655 static int checkPositive(int value) { 656 checkArgument(value > 0, "Not true that %s is positive.", value); 657 return value; 658 } 659 660 @CanIgnoreReturnValue 661 static long checkPositive(long value) { 662 checkArgument(value > 0, "Not true that %s is positive.", value); 663 return value; 664 } 665 666 /** 667 * An enum representing the state of a node during DFS. {@code PENDING} means that the node is on 668 * the stack of the DFS, while {@code COMPLETE} means that the node and all its successors have 669 * been already explored. Any node that has not been explored will not have a state at all. 670 */ 671 private enum NodeVisitState { 672 PENDING, 673 COMPLETE 674 } 675}