001/* 002 * Copyright (C) 2007 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.collect; 018 019import static com.google.common.base.Preconditions.checkArgument; 020import static com.google.common.base.Preconditions.checkNotNull; 021import static com.google.common.collect.CollectPreconditions.checkNonnegative; 022import static java.lang.Math.min; 023import static java.util.Arrays.asList; 024 025import com.google.common.annotations.GwtCompatible; 026import com.google.common.annotations.GwtIncompatible; 027import com.google.common.annotations.J2ktIncompatible; 028import com.google.common.base.Predicate; 029import com.google.common.base.Predicates; 030import com.google.common.collect.Collections2.FilteredCollection; 031import com.google.common.math.IntMath; 032import com.google.errorprone.annotations.CanIgnoreReturnValue; 033import com.google.errorprone.annotations.DoNotCall; 034import com.google.errorprone.annotations.concurrent.LazyInit; 035import java.io.Serializable; 036import java.util.AbstractSet; 037import java.util.Arrays; 038import java.util.BitSet; 039import java.util.Collection; 040import java.util.Collections; 041import java.util.Comparator; 042import java.util.EnumSet; 043import java.util.HashSet; 044import java.util.Iterator; 045import java.util.LinkedHashSet; 046import java.util.List; 047import java.util.Map; 048import java.util.NavigableSet; 049import java.util.NoSuchElementException; 050import java.util.Set; 051import java.util.SortedSet; 052import java.util.TreeSet; 053import java.util.concurrent.ConcurrentHashMap; 054import java.util.concurrent.CopyOnWriteArraySet; 055import java.util.function.Consumer; 056import java.util.stream.Collector; 057import java.util.stream.Stream; 058import org.jspecify.annotations.NonNull; 059import org.jspecify.annotations.Nullable; 060 061/** 062 * Static utility methods pertaining to {@link Set} instances. Also see this class's counterparts 063 * {@link Lists}, {@link Maps} and {@link Queues}. 064 * 065 * <p>See the Guava User Guide article on <a href= 066 * "https://github.com/google/guava/wiki/CollectionUtilitiesExplained#sets">{@code Sets}</a>. 067 * 068 * @author Kevin Bourrillion 069 * @author Jared Levy 070 * @author Chris Povirk 071 * @since 2.0 072 */ 073@GwtCompatible(emulated = true) 074public final class Sets { 075 private Sets() {} 076 077 /** 078 * {@link AbstractSet} substitute without the potentially-quadratic {@code removeAll} 079 * implementation. 080 */ 081 abstract static class ImprovedAbstractSet<E extends @Nullable Object> extends AbstractSet<E> { 082 @Override 083 public boolean removeAll(Collection<?> c) { 084 return removeAllImpl(this, c); 085 } 086 087 @Override 088 public boolean retainAll(Collection<?> c) { 089 return super.retainAll(checkNotNull(c)); // GWT compatibility 090 } 091 } 092 093 /** 094 * Returns an immutable set instance containing the given enum elements. Internally, the returned 095 * set will be backed by an {@link EnumSet}. 096 * 097 * <p>The iteration order of the returned set follows the enum's iteration order, not the order in 098 * which the elements are provided to the method. 099 * 100 * @param anElement one of the elements the set should contain 101 * @param otherElements the rest of the elements the set should contain 102 * @return an immutable set containing those elements, minus duplicates 103 */ 104 @GwtCompatible(serializable = true) 105 public static <E extends Enum<E>> ImmutableSet<E> immutableEnumSet( 106 E anElement, E... otherElements) { 107 return ImmutableEnumSet.asImmutable(EnumSet.of(anElement, otherElements)); 108 } 109 110 /** 111 * Returns an immutable set instance containing the given enum elements. Internally, the returned 112 * set will be backed by an {@link EnumSet}. 113 * 114 * <p>The iteration order of the returned set follows the enum's iteration order, not the order in 115 * which the elements appear in the given collection. 116 * 117 * @param elements the elements, all of the same {@code enum} type, that the set should contain 118 * @return an immutable set containing those elements, minus duplicates 119 */ 120 @GwtCompatible(serializable = true) 121 public static <E extends Enum<E>> ImmutableSet<E> immutableEnumSet(Iterable<E> elements) { 122 if (elements instanceof ImmutableEnumSet) { 123 return (ImmutableEnumSet<E>) elements; 124 } else if (elements instanceof Collection) { 125 Collection<E> collection = (Collection<E>) elements; 126 if (collection.isEmpty()) { 127 return ImmutableSet.of(); 128 } else { 129 return ImmutableEnumSet.asImmutable(EnumSet.copyOf(collection)); 130 } 131 } else { 132 Iterator<E> itr = elements.iterator(); 133 if (itr.hasNext()) { 134 EnumSet<E> enumSet = EnumSet.of(itr.next()); 135 Iterators.addAll(enumSet, itr); 136 return ImmutableEnumSet.asImmutable(enumSet); 137 } else { 138 return ImmutableSet.of(); 139 } 140 } 141 } 142 143 /** 144 * Returns a {@code Collector} that accumulates the input elements into a new {@code ImmutableSet} 145 * with an implementation specialized for enums. Unlike {@link ImmutableSet#toImmutableSet}, the 146 * resulting set will iterate over elements in their enum definition order, not encounter order. 147 * 148 * @since 21.0 149 */ 150 public static <E extends Enum<E>> Collector<E, ?, ImmutableSet<E>> toImmutableEnumSet() { 151 return CollectCollectors.toImmutableEnumSet(); 152 } 153 154 /** 155 * Returns a new, <i>mutable</i> {@code EnumSet} instance containing the given elements in their 156 * natural order. This method behaves identically to {@link EnumSet#copyOf(Collection)}, but also 157 * accepts non-{@code Collection} iterables and empty iterables. 158 */ 159 public static <E extends Enum<E>> EnumSet<E> newEnumSet( 160 Iterable<E> iterable, Class<E> elementType) { 161 EnumSet<E> set = EnumSet.noneOf(elementType); 162 Iterables.addAll(set, iterable); 163 return set; 164 } 165 166 // HashSet 167 168 /** 169 * Creates a <i>mutable</i>, initially empty {@code HashSet} instance. 170 * 171 * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSet#of()} instead. If {@code 172 * E} is an {@link Enum} type, use {@link EnumSet#noneOf} instead. Otherwise, strongly consider 173 * using a {@code LinkedHashSet} instead, at the cost of increased memory footprint, to get 174 * deterministic iteration behavior. 175 * 176 * <p><b>Note:</b> this method is now unnecessary and should be treated as deprecated. Instead, 177 * use the {@code HashSet} constructor directly, taking advantage of <a 178 * href="https://docs.oracle.com/javase/tutorial/java/generics/genTypeInference.html#type-inference-instantiation">"diamond" 179 * syntax</a>. 180 */ 181 @SuppressWarnings("NonApiType") // acts as a direct substitute for a constructor call 182 public static <E extends @Nullable Object> HashSet<E> newHashSet() { 183 return new HashSet<>(); 184 } 185 186 /** 187 * Creates a <i>mutable</i> {@code HashSet} instance initially containing the given elements. 188 * 189 * <p><b>Note:</b> if elements are non-null and won't be added or removed after this point, use 190 * {@link ImmutableSet#of()} or {@link ImmutableSet#copyOf(Object[])} instead. If {@code E} is an 191 * {@link Enum} type, use {@link EnumSet#of(Enum, Enum[])} instead. Otherwise, strongly consider 192 * using a {@code LinkedHashSet} instead, at the cost of increased memory footprint, to get 193 * deterministic iteration behavior. 194 * 195 * <p>This method is just a small convenience, either for {@code newHashSet(}{@link Arrays#asList 196 * asList}{@code (...))}, or for creating an empty set then calling {@link Collections#addAll}. 197 * This method is not actually very useful and will likely be deprecated in the future. 198 */ 199 @SuppressWarnings("NonApiType") // acts as a direct substitute for a constructor call 200 public static <E extends @Nullable Object> HashSet<E> newHashSet(E... elements) { 201 HashSet<E> set = newHashSetWithExpectedSize(elements.length); 202 Collections.addAll(set, elements); 203 return set; 204 } 205 206 /** 207 * Creates a <i>mutable</i> {@code HashSet} instance containing the given elements. A very thin 208 * convenience for creating an empty set then calling {@link Collection#addAll} or {@link 209 * Iterables#addAll}. 210 * 211 * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link 212 * ImmutableSet#copyOf(Iterable)} instead. (Or, change {@code elements} to be a {@link 213 * FluentIterable} and call {@code elements.toSet()}.) 214 * 215 * <p><b>Note:</b> if {@code E} is an {@link Enum} type, use {@link #newEnumSet(Iterable, Class)} 216 * instead. 217 * 218 * <p><b>Note:</b> if {@code elements} is a {@link Collection}, you don't need this method. 219 * Instead, use the {@code HashSet} constructor directly, taking advantage of <a 220 * href="https://docs.oracle.com/javase/tutorial/java/generics/genTypeInference.html#type-inference-instantiation">"diamond" 221 * syntax</a>. 222 * 223 * <p>Overall, this method is not very useful and will likely be deprecated in the future. 224 */ 225 @SuppressWarnings("NonApiType") // acts as a direct substitute for a constructor call 226 public static <E extends @Nullable Object> HashSet<E> newHashSet(Iterable<? extends E> elements) { 227 return (elements instanceof Collection) 228 ? new HashSet<E>((Collection<? extends E>) elements) 229 : newHashSet(elements.iterator()); 230 } 231 232 /** 233 * Creates a <i>mutable</i> {@code HashSet} instance containing the given elements. A very thin 234 * convenience for creating an empty set and then calling {@link Iterators#addAll}. 235 * 236 * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link 237 * ImmutableSet#copyOf(Iterator)} instead. 238 * 239 * <p><b>Note:</b> if {@code E} is an {@link Enum} type, you should create an {@link EnumSet} 240 * instead. 241 * 242 * <p>Overall, this method is not very useful and will likely be deprecated in the future. 243 */ 244 @SuppressWarnings("NonApiType") // acts as a direct substitute for a constructor call 245 public static <E extends @Nullable Object> HashSet<E> newHashSet(Iterator<? extends E> elements) { 246 HashSet<E> set = newHashSet(); 247 Iterators.addAll(set, elements); 248 return set; 249 } 250 251 /** 252 * Returns a new hash set using the smallest initial table size that can hold {@code expectedSize} 253 * elements without resizing. Note that this is not what {@link HashSet#HashSet(int)} does, but it 254 * is what most users want and expect it to do. 255 * 256 * <p>This behavior can't be broadly guaranteed, but has been tested with OpenJDK 1.7 and 1.8. 257 * 258 * @param expectedSize the number of elements you expect to add to the returned set 259 * @return a new, empty hash set with enough capacity to hold {@code expectedSize} elements 260 * without resizing 261 * @throws IllegalArgumentException if {@code expectedSize} is negative 262 */ 263 @SuppressWarnings("NonApiType") // acts as a direct substitute for a constructor call 264 public static <E extends @Nullable Object> HashSet<E> newHashSetWithExpectedSize( 265 int expectedSize) { 266 return new HashSet<>(Maps.capacity(expectedSize)); 267 } 268 269 /** 270 * Creates a thread-safe set backed by a hash map. The set is backed by a {@link 271 * ConcurrentHashMap} instance, and thus carries the same concurrency guarantees. 272 * 273 * <p>Unlike {@code HashSet}, this class does NOT allow {@code null} to be used as an element. The 274 * set is serializable. 275 * 276 * @return a new, empty thread-safe {@code Set} 277 * @since 15.0 278 */ 279 public static <E> Set<E> newConcurrentHashSet() { 280 return Platform.newConcurrentHashSet(); 281 } 282 283 /** 284 * Creates a thread-safe set backed by a hash map and containing the given elements. The set is 285 * backed by a {@link ConcurrentHashMap} instance, and thus carries the same concurrency 286 * guarantees. 287 * 288 * <p>Unlike {@code HashSet}, this class does NOT allow {@code null} to be used as an element. The 289 * set is serializable. 290 * 291 * @param elements the elements that the set should contain 292 * @return a new thread-safe set containing those elements (minus duplicates) 293 * @throws NullPointerException if {@code elements} or any of its contents is null 294 * @since 15.0 295 */ 296 public static <E> Set<E> newConcurrentHashSet(Iterable<? extends E> elements) { 297 Set<E> set = newConcurrentHashSet(); 298 Iterables.addAll(set, elements); 299 return set; 300 } 301 302 // LinkedHashSet 303 304 /** 305 * Creates a <i>mutable</i>, empty {@code LinkedHashSet} instance. 306 * 307 * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSet#of()} instead. 308 * 309 * <p><b>Note:</b> this method is now unnecessary and should be treated as deprecated. Instead, 310 * use the {@code LinkedHashSet} constructor directly, taking advantage of <a 311 * href="https://docs.oracle.com/javase/tutorial/java/generics/genTypeInference.html#type-inference-instantiation">"diamond" 312 * syntax</a>. 313 * 314 * @return a new, empty {@code LinkedHashSet} 315 */ 316 @SuppressWarnings("NonApiType") // acts as a direct substitute for a constructor call 317 public static <E extends @Nullable Object> LinkedHashSet<E> newLinkedHashSet() { 318 return new LinkedHashSet<>(); 319 } 320 321 /** 322 * Creates a <i>mutable</i> {@code LinkedHashSet} instance containing the given elements in order. 323 * 324 * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link 325 * ImmutableSet#copyOf(Iterable)} instead. 326 * 327 * <p><b>Note:</b> if {@code elements} is a {@link Collection}, you don't need this method. 328 * Instead, use the {@code LinkedHashSet} constructor directly, taking advantage of <a 329 * href="https://docs.oracle.com/javase/tutorial/java/generics/genTypeInference.html#type-inference-instantiation">"diamond" 330 * syntax</a>. 331 * 332 * <p>Overall, this method is not very useful and will likely be deprecated in the future. 333 * 334 * @param elements the elements that the set should contain, in order 335 * @return a new {@code LinkedHashSet} containing those elements (minus duplicates) 336 */ 337 @SuppressWarnings("NonApiType") // acts as a direct substitute for a constructor call 338 public static <E extends @Nullable Object> LinkedHashSet<E> newLinkedHashSet( 339 Iterable<? extends E> elements) { 340 if (elements instanceof Collection) { 341 return new LinkedHashSet<>((Collection<? extends E>) elements); 342 } 343 LinkedHashSet<E> set = newLinkedHashSet(); 344 Iterables.addAll(set, elements); 345 return set; 346 } 347 348 /** 349 * Creates a {@code LinkedHashSet} instance, with a high enough "initial capacity" that it 350 * <i>should</i> hold {@code expectedSize} elements without growth. This behavior cannot be 351 * broadly guaranteed, but it is observed to be true for OpenJDK 1.7. It also can't be guaranteed 352 * that the method isn't inadvertently <i>oversizing</i> the returned set. 353 * 354 * @param expectedSize the number of elements you expect to add to the returned set 355 * @return a new, empty {@code LinkedHashSet} with enough capacity to hold {@code expectedSize} 356 * elements without resizing 357 * @throws IllegalArgumentException if {@code expectedSize} is negative 358 * @since 11.0 359 */ 360 @SuppressWarnings("NonApiType") // acts as a direct substitute for a constructor call 361 public static <E extends @Nullable Object> LinkedHashSet<E> newLinkedHashSetWithExpectedSize( 362 int expectedSize) { 363 return new LinkedHashSet<>(Maps.capacity(expectedSize)); 364 } 365 366 // TreeSet 367 368 /** 369 * Creates a <i>mutable</i>, empty {@code TreeSet} instance sorted by the natural sort ordering of 370 * its elements. 371 * 372 * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSortedSet#of()} instead. 373 * 374 * <p><b>Note:</b> this method is now unnecessary and should be treated as deprecated. Instead, 375 * use the {@code TreeSet} constructor directly, taking advantage of <a 376 * href="https://docs.oracle.com/javase/tutorial/java/generics/genTypeInference.html#type-inference-instantiation">"diamond" 377 * syntax</a>. 378 * 379 * @return a new, empty {@code TreeSet} 380 */ 381 @SuppressWarnings({ 382 "rawtypes", // https://github.com/google/guava/issues/989 383 "NonApiType", // acts as a direct substitute for a constructor call 384 }) 385 public static <E extends Comparable> TreeSet<E> newTreeSet() { 386 return new TreeSet<>(); 387 } 388 389 /** 390 * Creates a <i>mutable</i> {@code TreeSet} instance containing the given elements sorted by their 391 * natural ordering. 392 * 393 * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSortedSet#copyOf(Iterable)} 394 * instead. 395 * 396 * <p><b>Note:</b> If {@code elements} is a {@code SortedSet} with an explicit comparator, this 397 * method has different behavior than {@link TreeSet#TreeSet(SortedSet)}, which returns a {@code 398 * TreeSet} with that comparator. 399 * 400 * <p><b>Note:</b> this method is now unnecessary and should be treated as deprecated. Instead, 401 * use the {@code TreeSet} constructor directly, taking advantage of <a 402 * href="https://docs.oracle.com/javase/tutorial/java/generics/genTypeInference.html#type-inference-instantiation">"diamond" 403 * syntax</a>. 404 * 405 * <p>This method is just a small convenience for creating an empty set and then calling {@link 406 * Iterables#addAll}. This method is not very useful and will likely be deprecated in the future. 407 * 408 * @param elements the elements that the set should contain 409 * @return a new {@code TreeSet} containing those elements (minus duplicates) 410 */ 411 @SuppressWarnings({ 412 "rawtypes", // https://github.com/google/guava/issues/989 413 "NonApiType", // acts as a direct substitute for a constructor call 414 }) 415 public static <E extends Comparable> TreeSet<E> newTreeSet(Iterable<? extends E> elements) { 416 TreeSet<E> set = newTreeSet(); 417 Iterables.addAll(set, elements); 418 return set; 419 } 420 421 /** 422 * Creates a <i>mutable</i>, empty {@code TreeSet} instance with the given comparator. 423 * 424 * <p><b>Note:</b> if mutability is not required, use {@code 425 * ImmutableSortedSet.orderedBy(comparator).build()} instead. 426 * 427 * <p><b>Note:</b> this method is now unnecessary and should be treated as deprecated. Instead, 428 * use the {@code TreeSet} constructor directly, taking advantage of <a 429 * href="https://docs.oracle.com/javase/tutorial/java/generics/genTypeInference.html#type-inference-instantiation">"diamond" 430 * syntax</a>. One caveat to this is that the {@code TreeSet} constructor uses a null {@code 431 * Comparator} to mean "natural ordering," whereas this factory rejects null. Clean your code 432 * accordingly. 433 * 434 * @param comparator the comparator to use to sort the set 435 * @return a new, empty {@code TreeSet} 436 * @throws NullPointerException if {@code comparator} is null 437 */ 438 @SuppressWarnings("NonApiType") // acts as a direct substitute for a constructor call 439 public static <E extends @Nullable Object> TreeSet<E> newTreeSet( 440 Comparator<? super E> comparator) { 441 return new TreeSet<>(checkNotNull(comparator)); 442 } 443 444 /** 445 * Creates an empty {@code Set} that uses identity to determine equality. It compares object 446 * references, instead of calling {@code equals}, to determine whether a provided object matches 447 * an element in the set. For example, {@code contains} returns {@code false} when passed an 448 * object that equals a set member, but isn't the same instance. This behavior is similar to the 449 * way {@code IdentityHashMap} handles key lookups. 450 * 451 * @since 8.0 452 */ 453 public static <E extends @Nullable Object> Set<E> newIdentityHashSet() { 454 return Collections.newSetFromMap(Maps.<E, Boolean>newIdentityHashMap()); 455 } 456 457 /** 458 * Creates an empty {@code CopyOnWriteArraySet} instance. 459 * 460 * <p><b>Note:</b> if you need an immutable empty {@link Set}, use {@link Collections#emptySet} 461 * instead. 462 * 463 * @return a new, empty {@code CopyOnWriteArraySet} 464 * @since 12.0 465 */ 466 @J2ktIncompatible 467 @GwtIncompatible // CopyOnWriteArraySet 468 public static <E extends @Nullable Object> CopyOnWriteArraySet<E> newCopyOnWriteArraySet() { 469 return new CopyOnWriteArraySet<>(); 470 } 471 472 /** 473 * Creates a {@code CopyOnWriteArraySet} instance containing the given elements. 474 * 475 * @param elements the elements that the set should contain, in order 476 * @return a new {@code CopyOnWriteArraySet} containing those elements 477 * @since 12.0 478 */ 479 @J2ktIncompatible 480 @GwtIncompatible // CopyOnWriteArraySet 481 public static <E extends @Nullable Object> CopyOnWriteArraySet<E> newCopyOnWriteArraySet( 482 Iterable<? extends E> elements) { 483 // We copy elements to an ArrayList first, rather than incurring the 484 // quadratic cost of adding them to the COWAS directly. 485 Collection<? extends E> elementsCollection = 486 (elements instanceof Collection) 487 ? (Collection<? extends E>) elements 488 : Lists.newArrayList(elements); 489 return new CopyOnWriteArraySet<>(elementsCollection); 490 } 491 492 /** 493 * Creates an {@code EnumSet} consisting of all enum values that are not in the specified 494 * collection. If the collection is an {@link EnumSet}, this method has the same behavior as 495 * {@link EnumSet#complementOf}. Otherwise, the specified collection must contain at least one 496 * element, in order to determine the element type. If the collection could be empty, use {@link 497 * #complementOf(Collection, Class)} instead of this method. 498 * 499 * @param collection the collection whose complement should be stored in the enum set 500 * @return a new, modifiable {@code EnumSet} containing all values of the enum that aren't present 501 * in the given collection 502 * @throws IllegalArgumentException if {@code collection} is not an {@code EnumSet} instance and 503 * contains no elements 504 */ 505 @J2ktIncompatible 506 @GwtIncompatible // EnumSet.complementOf 507 public static <E extends Enum<E>> EnumSet<E> complementOf(Collection<E> collection) { 508 if (collection instanceof EnumSet) { 509 return EnumSet.complementOf((EnumSet<E>) collection); 510 } 511 checkArgument( 512 !collection.isEmpty(), "collection is empty; use the other version of this method"); 513 Class<E> type = collection.iterator().next().getDeclaringClass(); 514 return makeComplementByHand(collection, type); 515 } 516 517 /** 518 * Creates an {@code EnumSet} consisting of all enum values that are not in the specified 519 * collection. This is equivalent to {@link EnumSet#complementOf}, but can act on any input 520 * collection, as long as the elements are of enum type. 521 * 522 * @param collection the collection whose complement should be stored in the {@code EnumSet} 523 * @param type the type of the elements in the set 524 * @return a new, modifiable {@code EnumSet} initially containing all the values of the enum not 525 * present in the given collection 526 */ 527 @J2ktIncompatible 528 @GwtIncompatible // EnumSet.complementOf 529 public static <E extends Enum<E>> EnumSet<E> complementOf( 530 Collection<E> collection, Class<E> type) { 531 checkNotNull(collection); 532 return (collection instanceof EnumSet) 533 ? EnumSet.complementOf((EnumSet<E>) collection) 534 : makeComplementByHand(collection, type); 535 } 536 537 @J2ktIncompatible 538 @GwtIncompatible 539 private static <E extends Enum<E>> EnumSet<E> makeComplementByHand( 540 Collection<E> collection, Class<E> type) { 541 EnumSet<E> result = EnumSet.allOf(type); 542 result.removeAll(collection); 543 return result; 544 } 545 546 /** 547 * Returns a set backed by the specified map. The resulting set displays the same ordering, 548 * concurrency, and performance characteristics as the backing map. In essence, this factory 549 * method provides a {@link Set} implementation corresponding to any {@link Map} implementation. 550 * There is no need to use this method on a {@link Map} implementation that already has a 551 * corresponding {@link Set} implementation (such as {@link java.util.HashMap} or {@link 552 * java.util.TreeMap}). 553 * 554 * <p>Each method invocation on the set returned by this method results in exactly one method 555 * invocation on the backing map or its {@code keySet} view, with one exception. The {@code 556 * addAll} method is implemented as a sequence of {@code put} invocations on the backing map. 557 * 558 * <p>The specified map must be empty at the time this method is invoked, and should not be 559 * accessed directly after this method returns. These conditions are ensured if the map is created 560 * empty, passed directly to this method, and no reference to the map is retained, as illustrated 561 * in the following code fragment: 562 * 563 * <pre>{@code 564 * Set<Object> identityHashSet = Sets.newSetFromMap( 565 * new IdentityHashMap<Object, Boolean>()); 566 * }</pre> 567 * 568 * <p>The returned set is serializable if the backing map is. 569 * 570 * @param map the backing map 571 * @return the set backed by the map 572 * @throws IllegalArgumentException if {@code map} is not empty 573 * @deprecated Use {@link Collections#newSetFromMap} instead. 574 */ 575 @Deprecated 576 public static <E extends @Nullable Object> Set<E> newSetFromMap( 577 Map<E, Boolean> map) { 578 return Collections.newSetFromMap(map); 579 } 580 581 /** 582 * An unmodifiable view of a set which may be backed by other sets; this view will change as the 583 * backing sets do. Contains methods to copy the data into a new set which will then remain 584 * stable. There is usually no reason to retain a reference of type {@code SetView}; typically, 585 * you either use it as a plain {@link Set}, or immediately invoke {@link #immutableCopy} or 586 * {@link #copyInto} and forget the {@code SetView} itself. 587 * 588 * @since 2.0 589 */ 590 public abstract static class SetView<E extends @Nullable Object> extends AbstractSet<E> { 591 private SetView() {} // no subclasses but our own 592 593 /** 594 * Returns an immutable copy of the current contents of this set view. Does not support null 595 * elements. 596 * 597 * <p><b>Warning:</b> this may have unexpected results if a backing set of this view uses a 598 * nonstandard notion of equivalence, for example if it is a {@link TreeSet} using a comparator 599 * that is inconsistent with {@link Object#equals(Object)}. 600 */ 601 public ImmutableSet<@NonNull E> immutableCopy() { 602 // Not using ImmutableSet.copyOf() to avoid iterating thrice (isEmpty, size, iterator). 603 int upperBoundSize = upperBoundSize(); 604 if (upperBoundSize == 0) { 605 return ImmutableSet.of(); 606 } 607 ImmutableSet.Builder<@NonNull E> builder = 608 ImmutableSet.builderWithExpectedSize(upperBoundSize); 609 for (E element : this) { 610 builder.add(checkNotNull(element)); 611 } 612 return builder.build(); 613 } 614 615 /** 616 * Copies the current contents of this set view into an existing set. This method has equivalent 617 * behavior to {@code set.addAll(this)}, assuming that all the sets involved are based on the 618 * same notion of equivalence. 619 * 620 * @return a reference to {@code set}, for convenience 621 */ 622 // Note: S should logically extend Set<? super E> but can't due to either 623 // some javac bug or some weirdness in the spec, not sure which. 624 @CanIgnoreReturnValue 625 public <S extends Set<E>> S copyInto(S set) { 626 set.addAll(this); 627 return set; 628 } 629 630 /** 631 * Guaranteed to throw an exception and leave the collection unmodified. 632 * 633 * @throws UnsupportedOperationException always 634 * @deprecated Unsupported operation. 635 */ 636 @CanIgnoreReturnValue 637 @Deprecated 638 @Override 639 @DoNotCall("Always throws UnsupportedOperationException") 640 public final boolean add(@ParametricNullness E e) { 641 throw new UnsupportedOperationException(); 642 } 643 644 /** 645 * Guaranteed to throw an exception and leave the collection unmodified. 646 * 647 * @throws UnsupportedOperationException always 648 * @deprecated Unsupported operation. 649 */ 650 @CanIgnoreReturnValue 651 @Deprecated 652 @Override 653 @DoNotCall("Always throws UnsupportedOperationException") 654 public final boolean remove(@Nullable Object object) { 655 throw new UnsupportedOperationException(); 656 } 657 658 /** 659 * Guaranteed to throw an exception and leave the collection unmodified. 660 * 661 * @throws UnsupportedOperationException always 662 * @deprecated Unsupported operation. 663 */ 664 @CanIgnoreReturnValue 665 @Deprecated 666 @Override 667 @DoNotCall("Always throws UnsupportedOperationException") 668 public final boolean addAll(Collection<? extends E> newElements) { 669 throw new UnsupportedOperationException(); 670 } 671 672 /** 673 * Guaranteed to throw an exception and leave the collection unmodified. 674 * 675 * @throws UnsupportedOperationException always 676 * @deprecated Unsupported operation. 677 */ 678 @CanIgnoreReturnValue 679 @Deprecated 680 @Override 681 @DoNotCall("Always throws UnsupportedOperationException") 682 public final boolean removeAll(Collection<?> oldElements) { 683 throw new UnsupportedOperationException(); 684 } 685 686 /** 687 * Guaranteed to throw an exception and leave the collection unmodified. 688 * 689 * @throws UnsupportedOperationException always 690 * @deprecated Unsupported operation. 691 */ 692 @CanIgnoreReturnValue 693 @Deprecated 694 @Override 695 @DoNotCall("Always throws UnsupportedOperationException") 696 public final boolean removeIf(java.util.function.Predicate<? super E> filter) { 697 throw new UnsupportedOperationException(); 698 } 699 700 /** 701 * Guaranteed to throw an exception and leave the collection unmodified. 702 * 703 * @throws UnsupportedOperationException always 704 * @deprecated Unsupported operation. 705 */ 706 @CanIgnoreReturnValue 707 @Deprecated 708 @Override 709 @DoNotCall("Always throws UnsupportedOperationException") 710 public final boolean retainAll(Collection<?> elementsToKeep) { 711 throw new UnsupportedOperationException(); 712 } 713 714 /** 715 * Guaranteed to throw an exception and leave the collection unmodified. 716 * 717 * @throws UnsupportedOperationException always 718 * @deprecated Unsupported operation. 719 */ 720 @Deprecated 721 @Override 722 @DoNotCall("Always throws UnsupportedOperationException") 723 public final void clear() { 724 throw new UnsupportedOperationException(); 725 } 726 727 /** 728 * Scope the return type to {@link UnmodifiableIterator} to ensure this is an unmodifiable view. 729 * 730 * @since 20.0 (present with return type {@link Iterator} since 2.0) 731 */ 732 @Override 733 public abstract UnmodifiableIterator<E> iterator(); 734 735 /** 736 * Returns the upper bound on the size of this set view. 737 * 738 * <p>This method is used to presize the underlying collection when converting to an {@link 739 * ImmutableSet}. 740 */ 741 abstract int upperBoundSize(); 742 743 static int upperBoundSize(Set<?> set) { 744 return set instanceof SetView ? ((SetView) set).upperBoundSize() : set.size(); 745 } 746 } 747 748 /** 749 * Returns an unmodifiable <b>view</b> of the union of two sets. The returned set contains all 750 * elements that are contained in either backing set. Iterating over the returned set iterates 751 * first over all the elements of {@code set1}, then over each element of {@code set2}, in order, 752 * that is not contained in {@code set1}. 753 * 754 * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different 755 * equivalence relations, for example if {@code set1} is a {@link HashSet} and {@code set2} is a 756 * {@link TreeSet} or the {@link Map#keySet} of an {@code IdentityHashMap}. 757 */ 758 public static <E extends @Nullable Object> SetView<E> union( 759 final Set<? extends E> set1, final Set<? extends E> set2) { 760 checkNotNull(set1, "set1"); 761 checkNotNull(set2, "set2"); 762 763 return new SetView<E>() { 764 @Override 765 public int size() { 766 int size = set1.size(); 767 for (E e : set2) { 768 if (!set1.contains(e)) { 769 size++; 770 } 771 } 772 return size; 773 } 774 775 @Override 776 public boolean isEmpty() { 777 return set1.isEmpty() && set2.isEmpty(); 778 } 779 780 @Override 781 public UnmodifiableIterator<E> iterator() { 782 return new AbstractIterator<E>() { 783 final Iterator<? extends E> itr1 = set1.iterator(); 784 final Iterator<? extends E> itr2 = set2.iterator(); 785 786 @Override 787 protected @Nullable E computeNext() { 788 if (itr1.hasNext()) { 789 return itr1.next(); 790 } 791 while (itr2.hasNext()) { 792 E e = itr2.next(); 793 if (!set1.contains(e)) { 794 return e; 795 } 796 } 797 return endOfData(); 798 } 799 }; 800 } 801 802 @Override 803 public Stream<E> stream() { 804 return Stream.concat(set1.stream(), set2.stream().filter((E e) -> !set1.contains(e))); 805 } 806 807 @Override 808 public Stream<E> parallelStream() { 809 return stream().parallel(); 810 } 811 812 @Override 813 public boolean contains(@Nullable Object object) { 814 return set1.contains(object) || set2.contains(object); 815 } 816 817 @Override 818 public <S extends Set<E>> S copyInto(S set) { 819 set.addAll(set1); 820 set.addAll(set2); 821 return set; 822 } 823 824 @Override 825 int upperBoundSize() { 826 return upperBoundSize(set1) + upperBoundSize(set2); 827 } 828 }; 829 } 830 831 /** 832 * Returns an unmodifiable <b>view</b> of the intersection of two sets. The returned set contains 833 * all elements that are contained by both backing sets. The iteration order of the returned set 834 * matches that of {@code set1}. 835 * 836 * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different 837 * equivalence relations, for example if {@code set1} is a {@link HashSet} and {@code set2} is a 838 * {@link TreeSet} or the {@link Map#keySet} of an {@code IdentityHashMap}. 839 * 840 * <p><b>Note:</b> The returned view performs slightly better when {@code set1} is the smaller of 841 * the two sets. If you have reason to believe one of your sets will generally be smaller than the 842 * other, pass it first. Unfortunately, since this method sets the generic type of the returned 843 * set based on the type of the first set passed, this could in rare cases force you to make a 844 * cast, for example: 845 * 846 * <pre>{@code 847 * Set<Object> aFewBadObjects = ... 848 * Set<String> manyBadStrings = ... 849 * 850 * // impossible for a non-String to be in the intersection 851 * SuppressWarnings("unchecked") 852 * Set<String> badStrings = (Set) Sets.intersection( 853 * aFewBadObjects, manyBadStrings); 854 * }</pre> 855 * 856 * <p>This is unfortunate, but should come up only very rarely. 857 */ 858 public static <E extends @Nullable Object> SetView<E> intersection( 859 final Set<E> set1, final Set<?> set2) { 860 checkNotNull(set1, "set1"); 861 checkNotNull(set2, "set2"); 862 863 return new SetView<E>() { 864 @Override 865 public UnmodifiableIterator<E> iterator() { 866 return new AbstractIterator<E>() { 867 final Iterator<E> itr = set1.iterator(); 868 869 @Override 870 protected @Nullable E computeNext() { 871 while (itr.hasNext()) { 872 E e = itr.next(); 873 if (set2.contains(e)) { 874 return e; 875 } 876 } 877 return endOfData(); 878 } 879 }; 880 } 881 882 @Override 883 public Stream<E> stream() { 884 return set1.stream().filter(set2::contains); 885 } 886 887 @Override 888 public Stream<E> parallelStream() { 889 return set1.parallelStream().filter(set2::contains); 890 } 891 892 @Override 893 public int size() { 894 int size = 0; 895 for (E e : set1) { 896 if (set2.contains(e)) { 897 size++; 898 } 899 } 900 return size; 901 } 902 903 @Override 904 public boolean isEmpty() { 905 return Collections.disjoint(set2, set1); 906 } 907 908 @Override 909 public boolean contains(@Nullable Object object) { 910 return set1.contains(object) && set2.contains(object); 911 } 912 913 @Override 914 public boolean containsAll(Collection<?> collection) { 915 return set1.containsAll(collection) && set2.containsAll(collection); 916 } 917 918 @Override 919 int upperBoundSize() { 920 return min(upperBoundSize(set1), upperBoundSize(set2)); 921 } 922 }; 923 } 924 925 /** 926 * Returns an unmodifiable <b>view</b> of the difference of two sets. The returned set contains 927 * all elements that are contained by {@code set1} and not contained by {@code set2}. {@code set2} 928 * may also contain elements not present in {@code set1}; these are simply ignored. The iteration 929 * order of the returned set matches that of {@code set1}. 930 * 931 * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different 932 * equivalence relations, for example if {@code set1} is a {@link HashSet} and {@code set2} is a 933 * {@link TreeSet} or the {@link Map#keySet} of an {@code IdentityHashMap}. 934 */ 935 public static <E extends @Nullable Object> SetView<E> difference( 936 final Set<E> set1, final Set<?> set2) { 937 checkNotNull(set1, "set1"); 938 checkNotNull(set2, "set2"); 939 940 return new SetView<E>() { 941 @Override 942 public UnmodifiableIterator<E> iterator() { 943 return new AbstractIterator<E>() { 944 final Iterator<E> itr = set1.iterator(); 945 946 @Override 947 protected @Nullable E computeNext() { 948 while (itr.hasNext()) { 949 E e = itr.next(); 950 if (!set2.contains(e)) { 951 return e; 952 } 953 } 954 return endOfData(); 955 } 956 }; 957 } 958 959 @Override 960 public Stream<E> stream() { 961 return set1.stream().filter(e -> !set2.contains(e)); 962 } 963 964 @Override 965 public Stream<E> parallelStream() { 966 return set1.parallelStream().filter(e -> !set2.contains(e)); 967 } 968 969 @Override 970 public int size() { 971 int size = 0; 972 for (E e : set1) { 973 if (!set2.contains(e)) { 974 size++; 975 } 976 } 977 return size; 978 } 979 980 @Override 981 public boolean isEmpty() { 982 return set2.containsAll(set1); 983 } 984 985 @Override 986 public boolean contains(@Nullable Object element) { 987 return set1.contains(element) && !set2.contains(element); 988 } 989 990 @Override 991 int upperBoundSize() { 992 return upperBoundSize(set1); 993 } 994 }; 995 } 996 997 /** 998 * Returns an unmodifiable <b>view</b> of the symmetric difference of two sets. The returned set 999 * contains all elements that are contained in either {@code set1} or {@code set2} but not in 1000 * both. The iteration order of the returned set is undefined. 1001 * 1002 * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different 1003 * equivalence relations, for example if {@code set1} is a {@link HashSet} and {@code set2} is a 1004 * {@link TreeSet} or the {@link Map#keySet} of an {@code IdentityHashMap}. 1005 * 1006 * @since 3.0 1007 */ 1008 public static <E extends @Nullable Object> SetView<E> symmetricDifference( 1009 final Set<? extends E> set1, final Set<? extends E> set2) { 1010 checkNotNull(set1, "set1"); 1011 checkNotNull(set2, "set2"); 1012 1013 return new SetView<E>() { 1014 @Override 1015 public UnmodifiableIterator<E> iterator() { 1016 final Iterator<? extends E> itr1 = set1.iterator(); 1017 final Iterator<? extends E> itr2 = set2.iterator(); 1018 return new AbstractIterator<E>() { 1019 @Override 1020 public @Nullable E computeNext() { 1021 while (itr1.hasNext()) { 1022 E elem1 = itr1.next(); 1023 if (!set2.contains(elem1)) { 1024 return elem1; 1025 } 1026 } 1027 while (itr2.hasNext()) { 1028 E elem2 = itr2.next(); 1029 if (!set1.contains(elem2)) { 1030 return elem2; 1031 } 1032 } 1033 return endOfData(); 1034 } 1035 }; 1036 } 1037 1038 @Override 1039 public int size() { 1040 int size = 0; 1041 for (E e : set1) { 1042 if (!set2.contains(e)) { 1043 size++; 1044 } 1045 } 1046 for (E e : set2) { 1047 if (!set1.contains(e)) { 1048 size++; 1049 } 1050 } 1051 return size; 1052 } 1053 1054 @Override 1055 public boolean isEmpty() { 1056 return set1.equals(set2); 1057 } 1058 1059 @Override 1060 public boolean contains(@Nullable Object element) { 1061 return set1.contains(element) ^ set2.contains(element); 1062 } 1063 1064 @Override 1065 int upperBoundSize() { 1066 return upperBoundSize(set1) + upperBoundSize(set2); 1067 } 1068 }; 1069 } 1070 1071 /** 1072 * Returns the elements of {@code unfiltered} that satisfy a predicate. The returned set is a live 1073 * view of {@code unfiltered}; changes to one affect the other. 1074 * 1075 * <p>The resulting set's iterator does not support {@code remove()}, but all other set methods 1076 * are supported. When given an element that doesn't satisfy the predicate, the set's {@code 1077 * add()} and {@code addAll()} methods throw an {@link IllegalArgumentException}. When methods 1078 * such as {@code removeAll()} and {@code clear()} are called on the filtered set, only elements 1079 * that satisfy the filter will be removed from the underlying set. 1080 * 1081 * <p>The returned set isn't threadsafe or serializable, even if {@code unfiltered} is. 1082 * 1083 * <p>Many of the filtered set's methods, such as {@code size()}, iterate across every element in 1084 * the underlying set and determine which elements satisfy the filter. When a live view is 1085 * <i>not</i> needed, it may be faster to copy {@code Iterables.filter(unfiltered, predicate)} and 1086 * use the copy. 1087 * 1088 * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as documented at 1089 * {@link Predicate#apply}. Do not provide a predicate such as {@code 1090 * Predicates.instanceOf(ArrayList.class)}, which is inconsistent with equals. (See {@link 1091 * Iterables#filter(Iterable, Class)} for related functionality.) 1092 * 1093 * <p><b>Java 8+ users:</b> many use cases for this method are better addressed by {@link 1094 * java.util.stream.Stream#filter}. This method is not being deprecated, but we gently encourage 1095 * you to migrate to streams. 1096 */ 1097 // TODO(kevinb): how to omit that last sentence when building GWT javadoc? 1098 public static <E extends @Nullable Object> Set<E> filter( 1099 Set<E> unfiltered, Predicate<? super E> predicate) { 1100 if (unfiltered instanceof SortedSet) { 1101 return filter((SortedSet<E>) unfiltered, predicate); 1102 } 1103 if (unfiltered instanceof FilteredSet) { 1104 // Support clear(), removeAll(), and retainAll() when filtering a filtered 1105 // collection. 1106 FilteredSet<E> filtered = (FilteredSet<E>) unfiltered; 1107 Predicate<E> combinedPredicate = Predicates.and(filtered.predicate, predicate); 1108 return new FilteredSet<>((Set<E>) filtered.unfiltered, combinedPredicate); 1109 } 1110 1111 return new FilteredSet<>(checkNotNull(unfiltered), checkNotNull(predicate)); 1112 } 1113 1114 /** 1115 * Returns the elements of a {@code SortedSet}, {@code unfiltered}, that satisfy a predicate. The 1116 * returned set is a live view of {@code unfiltered}; changes to one affect the other. 1117 * 1118 * <p>The resulting set's iterator does not support {@code remove()}, but all other set methods 1119 * are supported. When given an element that doesn't satisfy the predicate, the set's {@code 1120 * add()} and {@code addAll()} methods throw an {@link IllegalArgumentException}. When methods 1121 * such as {@code removeAll()} and {@code clear()} are called on the filtered set, only elements 1122 * that satisfy the filter will be removed from the underlying set. 1123 * 1124 * <p>The returned set isn't threadsafe or serializable, even if {@code unfiltered} is. 1125 * 1126 * <p>Many of the filtered set's methods, such as {@code size()}, iterate across every element in 1127 * the underlying set and determine which elements satisfy the filter. When a live view is 1128 * <i>not</i> needed, it may be faster to copy {@code Iterables.filter(unfiltered, predicate)} and 1129 * use the copy. 1130 * 1131 * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as documented at 1132 * {@link Predicate#apply}. Do not provide a predicate such as {@code 1133 * Predicates.instanceOf(ArrayList.class)}, which is inconsistent with equals. (See {@link 1134 * Iterables#filter(Iterable, Class)} for related functionality.) 1135 * 1136 * @since 11.0 1137 */ 1138 public static <E extends @Nullable Object> SortedSet<E> filter( 1139 SortedSet<E> unfiltered, Predicate<? super E> predicate) { 1140 if (unfiltered instanceof FilteredSet) { 1141 // Support clear(), removeAll(), and retainAll() when filtering a filtered 1142 // collection. 1143 FilteredSet<E> filtered = (FilteredSet<E>) unfiltered; 1144 Predicate<E> combinedPredicate = Predicates.and(filtered.predicate, predicate); 1145 return new FilteredSortedSet<>((SortedSet<E>) filtered.unfiltered, combinedPredicate); 1146 } 1147 1148 return new FilteredSortedSet<>(checkNotNull(unfiltered), checkNotNull(predicate)); 1149 } 1150 1151 /** 1152 * Returns the elements of a {@code NavigableSet}, {@code unfiltered}, that satisfy a predicate. 1153 * The returned set is a live view of {@code unfiltered}; changes to one affect the other. 1154 * 1155 * <p>The resulting set's iterator does not support {@code remove()}, but all other set methods 1156 * are supported. When given an element that doesn't satisfy the predicate, the set's {@code 1157 * add()} and {@code addAll()} methods throw an {@link IllegalArgumentException}. When methods 1158 * such as {@code removeAll()} and {@code clear()} are called on the filtered set, only elements 1159 * that satisfy the filter will be removed from the underlying set. 1160 * 1161 * <p>The returned set isn't threadsafe or serializable, even if {@code unfiltered} is. 1162 * 1163 * <p>Many of the filtered set's methods, such as {@code size()}, iterate across every element in 1164 * the underlying set and determine which elements satisfy the filter. When a live view is 1165 * <i>not</i> needed, it may be faster to copy {@code Iterables.filter(unfiltered, predicate)} and 1166 * use the copy. 1167 * 1168 * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as documented at 1169 * {@link Predicate#apply}. Do not provide a predicate such as {@code 1170 * Predicates.instanceOf(ArrayList.class)}, which is inconsistent with equals. (See {@link 1171 * Iterables#filter(Iterable, Class)} for related functionality.) 1172 * 1173 * @since 14.0 1174 */ 1175 @GwtIncompatible // NavigableSet 1176 public static <E extends @Nullable Object> NavigableSet<E> filter( 1177 NavigableSet<E> unfiltered, Predicate<? super E> predicate) { 1178 if (unfiltered instanceof FilteredSet) { 1179 // Support clear(), removeAll(), and retainAll() when filtering a filtered 1180 // collection. 1181 FilteredSet<E> filtered = (FilteredSet<E>) unfiltered; 1182 Predicate<E> combinedPredicate = Predicates.and(filtered.predicate, predicate); 1183 return new FilteredNavigableSet<>((NavigableSet<E>) filtered.unfiltered, combinedPredicate); 1184 } 1185 1186 return new FilteredNavigableSet<>(checkNotNull(unfiltered), checkNotNull(predicate)); 1187 } 1188 1189 private static class FilteredSet<E extends @Nullable Object> extends FilteredCollection<E> 1190 implements Set<E> { 1191 FilteredSet(Set<E> unfiltered, Predicate<? super E> predicate) { 1192 super(unfiltered, predicate); 1193 } 1194 1195 @Override 1196 public boolean equals(@Nullable Object object) { 1197 return equalsImpl(this, object); 1198 } 1199 1200 @Override 1201 public int hashCode() { 1202 return hashCodeImpl(this); 1203 } 1204 } 1205 1206 private static class FilteredSortedSet<E extends @Nullable Object> extends FilteredSet<E> 1207 implements SortedSet<E> { 1208 1209 FilteredSortedSet(SortedSet<E> unfiltered, Predicate<? super E> predicate) { 1210 super(unfiltered, predicate); 1211 } 1212 1213 @Override 1214 public @Nullable Comparator<? super E> comparator() { 1215 return ((SortedSet<E>) unfiltered).comparator(); 1216 } 1217 1218 @Override 1219 public SortedSet<E> subSet(@ParametricNullness E fromElement, @ParametricNullness E toElement) { 1220 return new FilteredSortedSet<>( 1221 ((SortedSet<E>) unfiltered).subSet(fromElement, toElement), predicate); 1222 } 1223 1224 @Override 1225 public SortedSet<E> headSet(@ParametricNullness E toElement) { 1226 return new FilteredSortedSet<>(((SortedSet<E>) unfiltered).headSet(toElement), predicate); 1227 } 1228 1229 @Override 1230 public SortedSet<E> tailSet(@ParametricNullness E fromElement) { 1231 return new FilteredSortedSet<>(((SortedSet<E>) unfiltered).tailSet(fromElement), predicate); 1232 } 1233 1234 @Override 1235 @ParametricNullness 1236 public E first() { 1237 return Iterators.find(unfiltered.iterator(), predicate); 1238 } 1239 1240 @Override 1241 @ParametricNullness 1242 public E last() { 1243 SortedSet<E> sortedUnfiltered = (SortedSet<E>) unfiltered; 1244 while (true) { 1245 E element = sortedUnfiltered.last(); 1246 if (predicate.apply(element)) { 1247 return element; 1248 } 1249 sortedUnfiltered = sortedUnfiltered.headSet(element); 1250 } 1251 } 1252 } 1253 1254 @GwtIncompatible // NavigableSet 1255 private static class FilteredNavigableSet<E extends @Nullable Object> extends FilteredSortedSet<E> 1256 implements NavigableSet<E> { 1257 FilteredNavigableSet(NavigableSet<E> unfiltered, Predicate<? super E> predicate) { 1258 super(unfiltered, predicate); 1259 } 1260 1261 NavigableSet<E> unfiltered() { 1262 return (NavigableSet<E>) unfiltered; 1263 } 1264 1265 @Override 1266 public @Nullable E lower(@ParametricNullness E e) { 1267 return Iterators.find(unfiltered().headSet(e, false).descendingIterator(), predicate, null); 1268 } 1269 1270 @Override 1271 public @Nullable E floor(@ParametricNullness E e) { 1272 return Iterators.find(unfiltered().headSet(e, true).descendingIterator(), predicate, null); 1273 } 1274 1275 @Override 1276 public @Nullable E ceiling(@ParametricNullness E e) { 1277 return Iterables.find(unfiltered().tailSet(e, true), predicate, null); 1278 } 1279 1280 @Override 1281 public @Nullable E higher(@ParametricNullness E e) { 1282 return Iterables.find(unfiltered().tailSet(e, false), predicate, null); 1283 } 1284 1285 @Override 1286 public @Nullable E pollFirst() { 1287 return Iterables.removeFirstMatching(unfiltered(), predicate); 1288 } 1289 1290 @Override 1291 public @Nullable E pollLast() { 1292 return Iterables.removeFirstMatching(unfiltered().descendingSet(), predicate); 1293 } 1294 1295 @Override 1296 public NavigableSet<E> descendingSet() { 1297 return Sets.filter(unfiltered().descendingSet(), predicate); 1298 } 1299 1300 @Override 1301 public Iterator<E> descendingIterator() { 1302 return Iterators.filter(unfiltered().descendingIterator(), predicate); 1303 } 1304 1305 @Override 1306 @ParametricNullness 1307 public E last() { 1308 return Iterators.find(unfiltered().descendingIterator(), predicate); 1309 } 1310 1311 @Override 1312 public NavigableSet<E> subSet( 1313 @ParametricNullness E fromElement, 1314 boolean fromInclusive, 1315 @ParametricNullness E toElement, 1316 boolean toInclusive) { 1317 return filter( 1318 unfiltered().subSet(fromElement, fromInclusive, toElement, toInclusive), predicate); 1319 } 1320 1321 @Override 1322 public NavigableSet<E> headSet(@ParametricNullness E toElement, boolean inclusive) { 1323 return filter(unfiltered().headSet(toElement, inclusive), predicate); 1324 } 1325 1326 @Override 1327 public NavigableSet<E> tailSet(@ParametricNullness E fromElement, boolean inclusive) { 1328 return filter(unfiltered().tailSet(fromElement, inclusive), predicate); 1329 } 1330 } 1331 1332 /** 1333 * Returns every possible list that can be formed by choosing one element from each of the given 1334 * sets in order; the "n-ary <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian 1335 * product</a>" of the sets. For example: 1336 * 1337 * <pre>{@code 1338 * Sets.cartesianProduct(ImmutableList.of( 1339 * ImmutableSet.of(1, 2), 1340 * ImmutableSet.of("A", "B", "C"))) 1341 * }</pre> 1342 * 1343 * <p>returns a set containing six lists: 1344 * 1345 * <ul> 1346 * <li>{@code ImmutableList.of(1, "A")} 1347 * <li>{@code ImmutableList.of(1, "B")} 1348 * <li>{@code ImmutableList.of(1, "C")} 1349 * <li>{@code ImmutableList.of(2, "A")} 1350 * <li>{@code ImmutableList.of(2, "B")} 1351 * <li>{@code ImmutableList.of(2, "C")} 1352 * </ul> 1353 * 1354 * <p>The result is guaranteed to be in the "traditional", lexicographical order for Cartesian 1355 * products that you would get from nesting for loops: 1356 * 1357 * <pre>{@code 1358 * for (B b0 : sets.get(0)) { 1359 * for (B b1 : sets.get(1)) { 1360 * ... 1361 * ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...); 1362 * // operate on tuple 1363 * } 1364 * } 1365 * }</pre> 1366 * 1367 * <p>Note that if any input set is empty, the Cartesian product will also be empty. If no sets at 1368 * all are provided (an empty list), the resulting Cartesian product has one element, an empty 1369 * list (counter-intuitive, but mathematically consistent). 1370 * 1371 * <p><i>Performance notes:</i> while the cartesian product of sets of size {@code m, n, p} is a 1372 * set of size {@code m x n x p}, its actual memory consumption is much smaller. When the 1373 * cartesian set is constructed, the input sets are merely copied. Only as the resulting set is 1374 * iterated are the individual lists created, and these are not retained after iteration. 1375 * 1376 * @param sets the sets to choose elements from, in the order that the elements chosen from those 1377 * sets should appear in the resulting lists 1378 * @param <B> any common base class shared by all axes (often just {@link Object}) 1379 * @return the Cartesian product, as an immutable set containing immutable lists 1380 * @throws NullPointerException if {@code sets}, any one of the {@code sets}, or any element of a 1381 * provided set is null 1382 * @throws IllegalArgumentException if the cartesian product size exceeds the {@code int} range 1383 * @since 2.0 1384 */ 1385 public static <B> Set<List<B>> cartesianProduct(List<? extends Set<? extends B>> sets) { 1386 return CartesianSet.create(sets); 1387 } 1388 1389 /** 1390 * Returns every possible list that can be formed by choosing one element from each of the given 1391 * sets in order; the "n-ary <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian 1392 * product</a>" of the sets. For example: 1393 * 1394 * <pre>{@code 1395 * Sets.cartesianProduct( 1396 * ImmutableSet.of(1, 2), 1397 * ImmutableSet.of("A", "B", "C")) 1398 * }</pre> 1399 * 1400 * <p>returns a set containing six lists: 1401 * 1402 * <ul> 1403 * <li>{@code ImmutableList.of(1, "A")} 1404 * <li>{@code ImmutableList.of(1, "B")} 1405 * <li>{@code ImmutableList.of(1, "C")} 1406 * <li>{@code ImmutableList.of(2, "A")} 1407 * <li>{@code ImmutableList.of(2, "B")} 1408 * <li>{@code ImmutableList.of(2, "C")} 1409 * </ul> 1410 * 1411 * <p>The result is guaranteed to be in the "traditional", lexicographical order for Cartesian 1412 * products that you would get from nesting for loops: 1413 * 1414 * <pre>{@code 1415 * for (B b0 : sets.get(0)) { 1416 * for (B b1 : sets.get(1)) { 1417 * ... 1418 * ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...); 1419 * // operate on tuple 1420 * } 1421 * } 1422 * }</pre> 1423 * 1424 * <p>Note that if any input set is empty, the Cartesian product will also be empty. If no sets at 1425 * all are provided (an empty list), the resulting Cartesian product has one element, an empty 1426 * list (counter-intuitive, but mathematically consistent). 1427 * 1428 * <p><i>Performance notes:</i> while the cartesian product of sets of size {@code m, n, p} is a 1429 * set of size {@code m x n x p}, its actual memory consumption is much smaller. When the 1430 * cartesian set is constructed, the input sets are merely copied. Only as the resulting set is 1431 * iterated are the individual lists created, and these are not retained after iteration. 1432 * 1433 * @param sets the sets to choose elements from, in the order that the elements chosen from those 1434 * sets should appear in the resulting lists 1435 * @param <B> any common base class shared by all axes (often just {@link Object}) 1436 * @return the Cartesian product, as an immutable set containing immutable lists 1437 * @throws NullPointerException if {@code sets}, any one of the {@code sets}, or any element of a 1438 * provided set is null 1439 * @throws IllegalArgumentException if the cartesian product size exceeds the {@code int} range 1440 * @since 2.0 1441 */ 1442 @SafeVarargs 1443 public static <B> Set<List<B>> cartesianProduct(Set<? extends B>... sets) { 1444 return cartesianProduct(asList(sets)); 1445 } 1446 1447 private static final class CartesianSet<E> extends ForwardingCollection<List<E>> 1448 implements Set<List<E>> { 1449 private final transient ImmutableList<ImmutableSet<E>> axes; 1450 private final transient CartesianList<E> delegate; 1451 1452 static <E> Set<List<E>> create(List<? extends Set<? extends E>> sets) { 1453 ImmutableList.Builder<ImmutableSet<E>> axesBuilder = new ImmutableList.Builder<>(sets.size()); 1454 for (Set<? extends E> set : sets) { 1455 ImmutableSet<E> copy = ImmutableSet.copyOf(set); 1456 if (copy.isEmpty()) { 1457 return ImmutableSet.of(); 1458 } 1459 axesBuilder.add(copy); 1460 } 1461 final ImmutableList<ImmutableSet<E>> axes = axesBuilder.build(); 1462 ImmutableList<List<E>> listAxes = 1463 new ImmutableList<List<E>>() { 1464 @Override 1465 public int size() { 1466 return axes.size(); 1467 } 1468 1469 @Override 1470 public List<E> get(int index) { 1471 return axes.get(index).asList(); 1472 } 1473 1474 @Override 1475 boolean isPartialView() { 1476 return true; 1477 } 1478 1479 // redeclare to help optimizers with b/310253115 1480 @SuppressWarnings("RedundantOverride") 1481 @Override 1482 @J2ktIncompatible // serialization 1483 @GwtIncompatible // serialization 1484 Object writeReplace() { 1485 return super.writeReplace(); 1486 } 1487 }; 1488 return new CartesianSet<E>(axes, new CartesianList<E>(listAxes)); 1489 } 1490 1491 private CartesianSet(ImmutableList<ImmutableSet<E>> axes, CartesianList<E> delegate) { 1492 this.axes = axes; 1493 this.delegate = delegate; 1494 } 1495 1496 @Override 1497 protected Collection<List<E>> delegate() { 1498 return delegate; 1499 } 1500 1501 @Override 1502 public boolean contains(@Nullable Object object) { 1503 if (!(object instanceof List)) { 1504 return false; 1505 } 1506 List<?> list = (List<?>) object; 1507 if (list.size() != axes.size()) { 1508 return false; 1509 } 1510 int i = 0; 1511 for (Object o : list) { 1512 if (!axes.get(i).contains(o)) { 1513 return false; 1514 } 1515 i++; 1516 } 1517 return true; 1518 } 1519 1520 @Override 1521 public boolean equals(@Nullable Object object) { 1522 // Warning: this is broken if size() == 0, so it is critical that we 1523 // substitute an empty ImmutableSet to the user in place of this 1524 if (object instanceof CartesianSet) { 1525 CartesianSet<?> that = (CartesianSet<?>) object; 1526 return this.axes.equals(that.axes); 1527 } 1528 if (object instanceof Set) { 1529 Set<?> that = (Set<?>) object; 1530 return this.size() == that.size() && this.containsAll(that); 1531 } 1532 return false; 1533 } 1534 1535 @Override 1536 public int hashCode() { 1537 // Warning: this is broken if size() == 0, so it is critical that we 1538 // substitute an empty ImmutableSet to the user in place of this 1539 1540 // It's a weird formula, but tests prove it works. 1541 int adjust = size() - 1; 1542 for (int i = 0; i < axes.size(); i++) { 1543 adjust *= 31; 1544 adjust = ~~adjust; 1545 // in GWT, we have to deal with integer overflow carefully 1546 } 1547 int hash = 1; 1548 for (Set<E> axis : axes) { 1549 hash = 31 * hash + (size() / axis.size() * axis.hashCode()); 1550 1551 hash = ~~hash; 1552 } 1553 hash += adjust; 1554 return ~~hash; 1555 } 1556 } 1557 1558 /** 1559 * Returns the set of all possible subsets of {@code set}. For example, {@code 1560 * powerSet(ImmutableSet.of(1, 2))} returns the set {@code {{}, {1}, {2}, {1, 2}}}. 1561 * 1562 * <p>Elements appear in these subsets in the same iteration order as they appeared in the input 1563 * set. The order in which these subsets appear in the outer set is undefined. Note that the power 1564 * set of the empty set is not the empty set, but a one-element set containing the empty set. 1565 * 1566 * <p>The returned set and its constituent sets use {@code equals} to decide whether two elements 1567 * are identical, even if the input set uses a different concept of equivalence. 1568 * 1569 * <p><i>Performance notes:</i> while the power set of a set with size {@code n} is of size {@code 1570 * 2^n}, its memory usage is only {@code O(n)}. When the power set is constructed, the input set 1571 * is merely copied. Only as the power set is iterated are the individual subsets created, and 1572 * these subsets themselves occupy only a small constant amount of memory. 1573 * 1574 * @param set the set of elements to construct a power set from 1575 * @return the power set, as an immutable set of immutable sets 1576 * @throws IllegalArgumentException if {@code set} has more than 30 unique elements (causing the 1577 * power set size to exceed the {@code int} range) 1578 * @throws NullPointerException if {@code set} is or contains {@code null} 1579 * @see <a href="http://en.wikipedia.org/wiki/Power_set">Power set article at Wikipedia</a> 1580 * @since 4.0 1581 */ 1582 @GwtCompatible(serializable = false) 1583 public static <E> Set<Set<E>> powerSet(Set<E> set) { 1584 return new PowerSet<E>(set); 1585 } 1586 1587 private static final class SubSet<E> extends AbstractSet<E> { 1588 private final ImmutableMap<E, Integer> inputSet; 1589 private final int mask; 1590 1591 SubSet(ImmutableMap<E, Integer> inputSet, int mask) { 1592 this.inputSet = inputSet; 1593 this.mask = mask; 1594 } 1595 1596 @Override 1597 public Iterator<E> iterator() { 1598 return new UnmodifiableIterator<E>() { 1599 final ImmutableList<E> elements = inputSet.keySet().asList(); 1600 int remainingSetBits = mask; 1601 1602 @Override 1603 public boolean hasNext() { 1604 return remainingSetBits != 0; 1605 } 1606 1607 @Override 1608 public E next() { 1609 int index = Integer.numberOfTrailingZeros(remainingSetBits); 1610 if (index == 32) { 1611 throw new NoSuchElementException(); 1612 } 1613 remainingSetBits &= ~(1 << index); 1614 return elements.get(index); 1615 } 1616 }; 1617 } 1618 1619 @Override 1620 public int size() { 1621 return Integer.bitCount(mask); 1622 } 1623 1624 @Override 1625 public boolean contains(@Nullable Object o) { 1626 Integer index = inputSet.get(o); 1627 return index != null && (mask & (1 << index)) != 0; 1628 } 1629 } 1630 1631 private static final class PowerSet<E> extends AbstractSet<Set<E>> { 1632 final ImmutableMap<E, Integer> inputSet; 1633 1634 PowerSet(Set<E> input) { 1635 checkArgument( 1636 input.size() <= 30, "Too many elements to create power set: %s > 30", input.size()); 1637 this.inputSet = Maps.indexMap(input); 1638 } 1639 1640 @Override 1641 public int size() { 1642 return 1 << inputSet.size(); 1643 } 1644 1645 @Override 1646 public boolean isEmpty() { 1647 return false; 1648 } 1649 1650 @Override 1651 public Iterator<Set<E>> iterator() { 1652 return new AbstractIndexedListIterator<Set<E>>(size()) { 1653 @Override 1654 protected Set<E> get(final int setBits) { 1655 return new SubSet<>(inputSet, setBits); 1656 } 1657 }; 1658 } 1659 1660 @Override 1661 public boolean contains(@Nullable Object obj) { 1662 if (obj instanceof Set) { 1663 Set<?> set = (Set<?>) obj; 1664 return inputSet.keySet().containsAll(set); 1665 } 1666 return false; 1667 } 1668 1669 @Override 1670 public boolean equals(@Nullable Object obj) { 1671 if (obj instanceof PowerSet) { 1672 PowerSet<?> that = (PowerSet<?>) obj; 1673 return inputSet.keySet().equals(that.inputSet.keySet()); 1674 } 1675 return super.equals(obj); 1676 } 1677 1678 @Override 1679 public int hashCode() { 1680 /* 1681 * The sum of the sums of the hash codes in each subset is just the sum of 1682 * each input element's hash code times the number of sets that element 1683 * appears in. Each element appears in exactly half of the 2^n sets, so: 1684 */ 1685 return inputSet.keySet().hashCode() << (inputSet.size() - 1); 1686 } 1687 1688 @Override 1689 public String toString() { 1690 return "powerSet(" + inputSet + ")"; 1691 } 1692 } 1693 1694 /** 1695 * Returns the set of all subsets of {@code set} of size {@code size}. For example, {@code 1696 * combinations(ImmutableSet.of(1, 2, 3), 2)} returns the set {@code {{1, 2}, {1, 3}, {2, 3}}}. 1697 * 1698 * <p>Elements appear in these subsets in the same iteration order as they appeared in the input 1699 * set. The order in which these subsets appear in the outer set is undefined. 1700 * 1701 * <p>The returned set and its constituent sets use {@code equals} to decide whether two elements 1702 * are identical, even if the input set uses a different concept of equivalence. 1703 * 1704 * <p><i>Performance notes:</i> the memory usage of the returned set is only {@code O(n)}. When 1705 * the result set is constructed, the input set is merely copied. Only as the result set is 1706 * iterated are the individual subsets created. Each of these subsets occupies an additional O(n) 1707 * memory but only for as long as the user retains a reference to it. That is, the set returned by 1708 * {@code combinations} does not retain the individual subsets. 1709 * 1710 * @param set the set of elements to take combinations of 1711 * @param size the number of elements per combination 1712 * @return the set of all combinations of {@code size} elements from {@code set} 1713 * @throws IllegalArgumentException if {@code size} is not between 0 and {@code set.size()} 1714 * inclusive 1715 * @throws NullPointerException if {@code set} is or contains {@code null} 1716 * @since 23.0 1717 */ 1718 public static <E> Set<Set<E>> combinations(Set<E> set, final int size) { 1719 final ImmutableMap<E, Integer> index = Maps.indexMap(set); 1720 checkNonnegative(size, "size"); 1721 checkArgument(size <= index.size(), "size (%s) must be <= set.size() (%s)", size, index.size()); 1722 if (size == 0) { 1723 return ImmutableSet.<Set<E>>of(ImmutableSet.<E>of()); 1724 } else if (size == index.size()) { 1725 return ImmutableSet.<Set<E>>of(index.keySet()); 1726 } 1727 return new AbstractSet<Set<E>>() { 1728 @Override 1729 public boolean contains(@Nullable Object o) { 1730 if (o instanceof Set) { 1731 Set<?> s = (Set<?>) o; 1732 return s.size() == size && index.keySet().containsAll(s); 1733 } 1734 return false; 1735 } 1736 1737 @Override 1738 public Iterator<Set<E>> iterator() { 1739 return new AbstractIterator<Set<E>>() { 1740 final BitSet bits = new BitSet(index.size()); 1741 1742 @Override 1743 protected @Nullable Set<E> computeNext() { 1744 if (bits.isEmpty()) { 1745 bits.set(0, size); 1746 } else { 1747 int firstSetBit = bits.nextSetBit(0); 1748 int bitToFlip = bits.nextClearBit(firstSetBit); 1749 1750 if (bitToFlip == index.size()) { 1751 return endOfData(); 1752 } 1753 1754 /* 1755 * The current set in sorted order looks like 1756 * {firstSetBit, firstSetBit + 1, ..., bitToFlip - 1, ...} 1757 * where it does *not* contain bitToFlip. 1758 * 1759 * The next combination is 1760 * 1761 * {0, 1, ..., bitToFlip - firstSetBit - 2, bitToFlip, ...} 1762 * 1763 * This is lexicographically next if you look at the combinations in descending order 1764 * e.g. {2, 1, 0}, {3, 1, 0}, {3, 2, 0}, {3, 2, 1}, {4, 1, 0}... 1765 */ 1766 1767 bits.set(0, bitToFlip - firstSetBit - 1); 1768 bits.clear(bitToFlip - firstSetBit - 1, bitToFlip); 1769 bits.set(bitToFlip); 1770 } 1771 final BitSet copy = (BitSet) bits.clone(); 1772 return new AbstractSet<E>() { 1773 @Override 1774 public boolean contains(@Nullable Object o) { 1775 Integer i = index.get(o); 1776 return i != null && copy.get(i); 1777 } 1778 1779 @Override 1780 public Iterator<E> iterator() { 1781 return new AbstractIterator<E>() { 1782 int i = -1; 1783 1784 @Override 1785 protected @Nullable E computeNext() { 1786 i = copy.nextSetBit(i + 1); 1787 if (i == -1) { 1788 return endOfData(); 1789 } 1790 return index.keySet().asList().get(i); 1791 } 1792 }; 1793 } 1794 1795 @Override 1796 public int size() { 1797 return size; 1798 } 1799 }; 1800 } 1801 }; 1802 } 1803 1804 @Override 1805 public int size() { 1806 return IntMath.binomial(index.size(), size); 1807 } 1808 1809 @Override 1810 public String toString() { 1811 return "Sets.combinations(" + index.keySet() + ", " + size + ")"; 1812 } 1813 }; 1814 } 1815 1816 /** An implementation for {@link Set#hashCode()}. */ 1817 static int hashCodeImpl(Set<?> s) { 1818 int hashCode = 0; 1819 for (Object o : s) { 1820 hashCode += o != null ? o.hashCode() : 0; 1821 1822 hashCode = ~~hashCode; 1823 // Needed to deal with unusual integer overflow in GWT. 1824 } 1825 return hashCode; 1826 } 1827 1828 /** An implementation for {@link Set#equals(Object)}. */ 1829 static boolean equalsImpl(Set<?> s, @Nullable Object object) { 1830 if (s == object) { 1831 return true; 1832 } 1833 if (object instanceof Set) { 1834 Set<?> o = (Set<?>) object; 1835 1836 try { 1837 return s.size() == o.size() && s.containsAll(o); 1838 } catch (NullPointerException | ClassCastException ignored) { 1839 return false; 1840 } 1841 } 1842 return false; 1843 } 1844 1845 /** 1846 * Returns an unmodifiable view of the specified navigable set. This method allows modules to 1847 * provide users with "read-only" access to internal navigable sets. Query operations on the 1848 * returned set "read through" to the specified set, and attempts to modify the returned set, 1849 * whether direct or via its collection views, result in an {@code UnsupportedOperationException}. 1850 * 1851 * <p>The returned navigable set will be serializable if the specified navigable set is 1852 * serializable. 1853 * 1854 * <p><b>Java 8+ users and later:</b> Prefer {@link Collections#unmodifiableNavigableSet}. 1855 * 1856 * @param set the navigable set for which an unmodifiable view is to be returned 1857 * @return an unmodifiable view of the specified navigable set 1858 * @since 12.0 1859 */ 1860 public static <E extends @Nullable Object> NavigableSet<E> unmodifiableNavigableSet( 1861 NavigableSet<E> set) { 1862 if (set instanceof ImmutableCollection || set instanceof UnmodifiableNavigableSet) { 1863 return set; 1864 } 1865 return new UnmodifiableNavigableSet<>(set); 1866 } 1867 1868 static final class UnmodifiableNavigableSet<E extends @Nullable Object> 1869 extends ForwardingSortedSet<E> implements NavigableSet<E>, Serializable { 1870 private final NavigableSet<E> delegate; 1871 private final SortedSet<E> unmodifiableDelegate; 1872 1873 UnmodifiableNavigableSet(NavigableSet<E> delegate) { 1874 this.delegate = checkNotNull(delegate); 1875 this.unmodifiableDelegate = Collections.unmodifiableSortedSet(delegate); 1876 } 1877 1878 @Override 1879 protected SortedSet<E> delegate() { 1880 return unmodifiableDelegate; 1881 } 1882 1883 // default methods not forwarded by ForwardingSortedSet 1884 1885 @Override 1886 public boolean removeIf(java.util.function.Predicate<? super E> filter) { 1887 throw new UnsupportedOperationException(); 1888 } 1889 1890 @Override 1891 public Stream<E> stream() { 1892 return delegate.stream(); 1893 } 1894 1895 @Override 1896 public Stream<E> parallelStream() { 1897 return delegate.parallelStream(); 1898 } 1899 1900 @Override 1901 public void forEach(Consumer<? super E> action) { 1902 delegate.forEach(action); 1903 } 1904 1905 @Override 1906 public @Nullable E lower(@ParametricNullness E e) { 1907 return delegate.lower(e); 1908 } 1909 1910 @Override 1911 public @Nullable E floor(@ParametricNullness E e) { 1912 return delegate.floor(e); 1913 } 1914 1915 @Override 1916 public @Nullable E ceiling(@ParametricNullness E e) { 1917 return delegate.ceiling(e); 1918 } 1919 1920 @Override 1921 public @Nullable E higher(@ParametricNullness E e) { 1922 return delegate.higher(e); 1923 } 1924 1925 @Override 1926 public @Nullable E pollFirst() { 1927 throw new UnsupportedOperationException(); 1928 } 1929 1930 @Override 1931 public @Nullable E pollLast() { 1932 throw new UnsupportedOperationException(); 1933 } 1934 1935 @LazyInit private transient @Nullable UnmodifiableNavigableSet<E> descendingSet; 1936 1937 @Override 1938 public NavigableSet<E> descendingSet() { 1939 UnmodifiableNavigableSet<E> result = descendingSet; 1940 if (result == null) { 1941 result = descendingSet = new UnmodifiableNavigableSet<>(delegate.descendingSet()); 1942 result.descendingSet = this; 1943 } 1944 return result; 1945 } 1946 1947 @Override 1948 public Iterator<E> descendingIterator() { 1949 return Iterators.unmodifiableIterator(delegate.descendingIterator()); 1950 } 1951 1952 @Override 1953 public NavigableSet<E> subSet( 1954 @ParametricNullness E fromElement, 1955 boolean fromInclusive, 1956 @ParametricNullness E toElement, 1957 boolean toInclusive) { 1958 return unmodifiableNavigableSet( 1959 delegate.subSet(fromElement, fromInclusive, toElement, toInclusive)); 1960 } 1961 1962 @Override 1963 public NavigableSet<E> headSet(@ParametricNullness E toElement, boolean inclusive) { 1964 return unmodifiableNavigableSet(delegate.headSet(toElement, inclusive)); 1965 } 1966 1967 @Override 1968 public NavigableSet<E> tailSet(@ParametricNullness E fromElement, boolean inclusive) { 1969 return unmodifiableNavigableSet(delegate.tailSet(fromElement, inclusive)); 1970 } 1971 1972 private static final long serialVersionUID = 0; 1973 } 1974 1975 /** 1976 * Returns a synchronized (thread-safe) navigable set backed by the specified navigable set. In 1977 * order to guarantee serial access, it is critical that <b>all</b> access to the backing 1978 * navigable set is accomplished through the returned navigable set (or its views). 1979 * 1980 * <p>It is imperative that the user manually synchronize on the returned sorted set when 1981 * iterating over it or any of its {@code descendingSet}, {@code subSet}, {@code headSet}, or 1982 * {@code tailSet} views. 1983 * 1984 * <pre>{@code 1985 * NavigableSet<E> set = synchronizedNavigableSet(new TreeSet<E>()); 1986 * ... 1987 * synchronized (set) { 1988 * // Must be in the synchronized block 1989 * Iterator<E> it = set.iterator(); 1990 * while (it.hasNext()) { 1991 * foo(it.next()); 1992 * } 1993 * } 1994 * }</pre> 1995 * 1996 * <p>or: 1997 * 1998 * <pre>{@code 1999 * NavigableSet<E> set = synchronizedNavigableSet(new TreeSet<E>()); 2000 * NavigableSet<E> set2 = set.descendingSet().headSet(foo); 2001 * ... 2002 * synchronized (set) { // Note: set, not set2!!! 2003 * // Must be in the synchronized block 2004 * Iterator<E> it = set2.descendingIterator(); 2005 * while (it.hasNext()) 2006 * foo(it.next()); 2007 * } 2008 * } 2009 * }</pre> 2010 * 2011 * <p>Failure to follow this advice may result in non-deterministic behavior. 2012 * 2013 * <p>The returned navigable set will be serializable if the specified navigable set is 2014 * serializable. 2015 * 2016 * <p><b>Java 8+ users and later:</b> Prefer {@link Collections#synchronizedNavigableSet}. 2017 * 2018 * @param navigableSet the navigable set to be "wrapped" in a synchronized navigable set. 2019 * @return a synchronized view of the specified navigable set. 2020 * @since 13.0 2021 */ 2022 @GwtIncompatible // NavigableSet 2023 @J2ktIncompatible // Synchronized 2024 public static <E extends @Nullable Object> NavigableSet<E> synchronizedNavigableSet( 2025 NavigableSet<E> navigableSet) { 2026 return Synchronized.navigableSet(navigableSet); 2027 } 2028 2029 /** Remove each element in an iterable from a set. */ 2030 static boolean removeAllImpl(Set<?> set, Iterator<?> iterator) { 2031 boolean changed = false; 2032 while (iterator.hasNext()) { 2033 changed |= set.remove(iterator.next()); 2034 } 2035 return changed; 2036 } 2037 2038 static boolean removeAllImpl(Set<?> set, Collection<?> collection) { 2039 checkNotNull(collection); // for GWT 2040 if (collection instanceof Multiset) { 2041 collection = ((Multiset<?>) collection).elementSet(); 2042 } 2043 /* 2044 * AbstractSet.removeAll(List) has quadratic behavior if the list size 2045 * is just more than the set's size. We augment the test by 2046 * assuming that sets have fast contains() performance, and other 2047 * collections don't. See 2048 * https://github.com/google/guava/issues/1013 2049 */ 2050 if (collection instanceof Set && collection.size() > set.size()) { 2051 return Iterators.removeAll(set.iterator(), collection); 2052 } else { 2053 return removeAllImpl(set, collection.iterator()); 2054 } 2055 } 2056 2057 @GwtIncompatible // NavigableSet 2058 static class DescendingSet<E extends @Nullable Object> extends ForwardingNavigableSet<E> { 2059 private final NavigableSet<E> forward; 2060 2061 DescendingSet(NavigableSet<E> forward) { 2062 this.forward = forward; 2063 } 2064 2065 @Override 2066 protected NavigableSet<E> delegate() { 2067 return forward; 2068 } 2069 2070 @Override 2071 public @Nullable E lower(@ParametricNullness E e) { 2072 return forward.higher(e); 2073 } 2074 2075 @Override 2076 public @Nullable E floor(@ParametricNullness E e) { 2077 return forward.ceiling(e); 2078 } 2079 2080 @Override 2081 public @Nullable E ceiling(@ParametricNullness E e) { 2082 return forward.floor(e); 2083 } 2084 2085 @Override 2086 public @Nullable E higher(@ParametricNullness E e) { 2087 return forward.lower(e); 2088 } 2089 2090 @Override 2091 public @Nullable E pollFirst() { 2092 return forward.pollLast(); 2093 } 2094 2095 @Override 2096 public @Nullable E pollLast() { 2097 return forward.pollFirst(); 2098 } 2099 2100 @Override 2101 public NavigableSet<E> descendingSet() { 2102 return forward; 2103 } 2104 2105 @Override 2106 public Iterator<E> descendingIterator() { 2107 return forward.iterator(); 2108 } 2109 2110 @Override 2111 public NavigableSet<E> subSet( 2112 @ParametricNullness E fromElement, 2113 boolean fromInclusive, 2114 @ParametricNullness E toElement, 2115 boolean toInclusive) { 2116 return forward.subSet(toElement, toInclusive, fromElement, fromInclusive).descendingSet(); 2117 } 2118 2119 @Override 2120 public SortedSet<E> subSet(@ParametricNullness E fromElement, @ParametricNullness E toElement) { 2121 return standardSubSet(fromElement, toElement); 2122 } 2123 2124 @Override 2125 public NavigableSet<E> headSet(@ParametricNullness E toElement, boolean inclusive) { 2126 return forward.tailSet(toElement, inclusive).descendingSet(); 2127 } 2128 2129 @Override 2130 public SortedSet<E> headSet(@ParametricNullness E toElement) { 2131 return standardHeadSet(toElement); 2132 } 2133 2134 @Override 2135 public NavigableSet<E> tailSet(@ParametricNullness E fromElement, boolean inclusive) { 2136 return forward.headSet(fromElement, inclusive).descendingSet(); 2137 } 2138 2139 @Override 2140 public SortedSet<E> tailSet(@ParametricNullness E fromElement) { 2141 return standardTailSet(fromElement); 2142 } 2143 2144 @SuppressWarnings("unchecked") 2145 @Override 2146 public Comparator<? super E> comparator() { 2147 Comparator<? super E> forwardComparator = forward.comparator(); 2148 if (forwardComparator == null) { 2149 return (Comparator) Ordering.natural().reverse(); 2150 } else { 2151 return reverse(forwardComparator); 2152 } 2153 } 2154 2155 // If we inline this, we get a javac error. 2156 private static <T extends @Nullable Object> Ordering<T> reverse(Comparator<T> forward) { 2157 return Ordering.from(forward).reverse(); 2158 } 2159 2160 @Override 2161 @ParametricNullness 2162 public E first() { 2163 return forward.last(); 2164 } 2165 2166 @Override 2167 @ParametricNullness 2168 public E last() { 2169 return forward.first(); 2170 } 2171 2172 @Override 2173 public Iterator<E> iterator() { 2174 return forward.descendingIterator(); 2175 } 2176 2177 @Override 2178 public @Nullable Object[] toArray() { 2179 return standardToArray(); 2180 } 2181 2182 @Override 2183 @SuppressWarnings("nullness") // b/192354773 in our checker affects toArray declarations 2184 public <T extends @Nullable Object> T[] toArray(T[] array) { 2185 return standardToArray(array); 2186 } 2187 2188 @Override 2189 public String toString() { 2190 return standardToString(); 2191 } 2192 } 2193 2194 /** 2195 * Returns a view of the portion of {@code set} whose elements are contained by {@code range}. 2196 * 2197 * <p>This method delegates to the appropriate methods of {@link NavigableSet} (namely {@link 2198 * NavigableSet#subSet(Object, boolean, Object, boolean) subSet()}, {@link 2199 * NavigableSet#tailSet(Object, boolean) tailSet()}, and {@link NavigableSet#headSet(Object, 2200 * boolean) headSet()}) to actually construct the view. Consult these methods for a full 2201 * description of the returned view's behavior. 2202 * 2203 * <p><b>Warning:</b> {@code Range}s always represent a range of values using the values' natural 2204 * ordering. {@code NavigableSet} on the other hand can specify a custom ordering via a {@link 2205 * Comparator}, which can violate the natural ordering. Using this method (or in general using 2206 * {@code Range}) with unnaturally-ordered sets can lead to unexpected and undefined behavior. 2207 * 2208 * @since 20.0 2209 */ 2210 @GwtIncompatible // NavigableSet 2211 public static <K extends Comparable<? super K>> NavigableSet<K> subSet( 2212 NavigableSet<K> set, Range<K> range) { 2213 if (set.comparator() != null 2214 && set.comparator() != Ordering.natural() 2215 && range.hasLowerBound() 2216 && range.hasUpperBound()) { 2217 checkArgument( 2218 set.comparator().compare(range.lowerEndpoint(), range.upperEndpoint()) <= 0, 2219 "set is using a custom comparator which is inconsistent with the natural ordering."); 2220 } 2221 if (range.hasLowerBound() && range.hasUpperBound()) { 2222 return set.subSet( 2223 range.lowerEndpoint(), 2224 range.lowerBoundType() == BoundType.CLOSED, 2225 range.upperEndpoint(), 2226 range.upperBoundType() == BoundType.CLOSED); 2227 } else if (range.hasLowerBound()) { 2228 return set.tailSet(range.lowerEndpoint(), range.lowerBoundType() == BoundType.CLOSED); 2229 } else if (range.hasUpperBound()) { 2230 return set.headSet(range.upperEndpoint(), range.upperBoundType() == BoundType.CLOSED); 2231 } 2232 return checkNotNull(set); 2233 } 2234}