001/* 002 * Copyright (C) 2010 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.collect; 018 019import static com.google.common.base.Preconditions.checkArgument; 020import static com.google.common.base.Preconditions.checkNotNull; 021import static com.google.common.base.Preconditions.checkPositionIndex; 022import static com.google.common.base.Preconditions.checkState; 023import static com.google.common.collect.CollectPreconditions.checkRemove; 024import static java.lang.Math.max; 025import static java.lang.Math.min; 026import static java.lang.System.arraycopy; 027import static java.util.Objects.requireNonNull; 028 029import com.google.common.annotations.GwtCompatible; 030import com.google.common.annotations.J2ktIncompatible; 031import com.google.common.annotations.VisibleForTesting; 032import com.google.common.math.IntMath; 033import com.google.errorprone.annotations.CanIgnoreReturnValue; 034import com.google.j2objc.annotations.Weak; 035import com.google.j2objc.annotations.WeakOuter; 036import java.util.AbstractQueue; 037import java.util.ArrayDeque; 038import java.util.ArrayList; 039import java.util.Collection; 040import java.util.Collections; 041import java.util.Comparator; 042import java.util.ConcurrentModificationException; 043import java.util.Iterator; 044import java.util.List; 045import java.util.NoSuchElementException; 046import java.util.PriorityQueue; 047import java.util.Queue; 048import org.jspecify.annotations.Nullable; 049 050/** 051 * A double-ended priority queue, which provides constant-time access to both its least element and 052 * its greatest element, as determined by the queue's specified comparator. If no comparator is 053 * given at creation time, the natural order of elements is used. If no maximum size is given at 054 * creation time, the queue is unbounded. 055 * 056 * <p>Usage example: 057 * 058 * <pre>{@code 059 * MinMaxPriorityQueue<User> users = MinMaxPriorityQueue.orderedBy(userComparator) 060 * .maximumSize(1000) 061 * .create(); 062 * }</pre> 063 * 064 * <p>As a {@link Queue} it functions exactly as a {@link PriorityQueue}: its head element -- the 065 * implicit target of the methods {@link #peek()}, {@link #poll()} and {@link #remove()} -- is 066 * defined as the <i>least</i> element in the queue according to the queue's comparator. But unlike 067 * a regular priority queue, the methods {@link #peekLast}, {@link #pollLast} and {@link 068 * #removeLast} are also provided, to act on the <i>greatest</i> element in the queue instead. 069 * 070 * <p>A min-max priority queue can be configured with a maximum size. If so, each time the size of 071 * the queue exceeds that value, the queue automatically removes its greatest element according to 072 * its comparator (which might be the element that was just added). This is different from 073 * conventional bounded queues, which either block or reject new elements when full. 074 * 075 * <p>This implementation is based on the <a 076 * href="http://portal.acm.org/citation.cfm?id=6621">min-max heap</a> developed by Atkinson, et al. 077 * Unlike many other double-ended priority queues, it stores elements in a single array, as compact 078 * as the traditional heap data structure used in {@link PriorityQueue}. 079 * 080 * <p>This class is not thread-safe, and does not accept null elements. 081 * 082 * <p><i>Performance notes:</i> 083 * 084 * <ul> 085 * <li>If you only access one end of the queue, and do use a maximum size, this class will perform 086 * significantly worse than a {@code PriorityQueue} with manual eviction above the maximum 087 * size. In many cases {@link Ordering#leastOf} may work for your use case with significantly 088 * improved (and asymptotically superior) performance. 089 * <li>The retrieval operations {@link #peek}, {@link #peekFirst}, {@link #peekLast}, {@link 090 * #element}, and {@link #size} are constant-time. 091 * <li>The enqueuing and dequeuing operations ({@link #offer}, {@link #add}, and all the forms of 092 * {@link #poll} and {@link #remove()}) run in {@code O(log n) time}. 093 * <li>The {@link #remove(Object)} and {@link #contains} operations require linear ({@code O(n)}) 094 * time. 095 * <li>If you only access one end of the queue, and don't use a maximum size, this class is 096 * functionally equivalent to {@link PriorityQueue}, but significantly slower. 097 * </ul> 098 * 099 * @author Sverre Sundsdal 100 * @author Torbjorn Gannholm 101 * @since 8.0 102 */ 103@GwtCompatible 104public final class MinMaxPriorityQueue<E> extends AbstractQueue<E> { 105 106 /** 107 * Creates a new min-max priority queue with default settings: natural order, no maximum size, no 108 * initial contents, and an initial expected size of 11. 109 */ 110 public static <E extends Comparable<E>> MinMaxPriorityQueue<E> create() { 111 return new Builder<Comparable<E>>(Ordering.natural()).create(); 112 } 113 114 /** 115 * Creates a new min-max priority queue using natural order, no maximum size, and initially 116 * containing the given elements. 117 */ 118 public static <E extends Comparable<E>> MinMaxPriorityQueue<E> create( 119 Iterable<? extends E> initialContents) { 120 return new Builder<E>(Ordering.<E>natural()).create(initialContents); 121 } 122 123 /** 124 * Creates and returns a new builder, configured to build {@code MinMaxPriorityQueue} instances 125 * that use {@code comparator} to determine the least and greatest elements. 126 */ 127 /* 128 * TODO(cpovirk): Change to Comparator<? super B> to permit Comparator<@Nullable ...> and 129 * Comparator<SupertypeOfB>? What we have here matches the immutable collections, but those also 130 * expose a public Builder constructor that accepts "? super." So maybe we should do *that* 131 * instead. 132 */ 133 public static <B> Builder<B> orderedBy(Comparator<B> comparator) { 134 return new Builder<>(comparator); 135 } 136 137 /** 138 * Creates and returns a new builder, configured to build {@code MinMaxPriorityQueue} instances 139 * sized appropriately to hold {@code expectedSize} elements. 140 */ 141 @SuppressWarnings("rawtypes") // https://github.com/google/guava/issues/989 142 public static Builder<Comparable> expectedSize(int expectedSize) { 143 return new Builder<Comparable>(Ordering.natural()).expectedSize(expectedSize); 144 } 145 146 /** 147 * Creates and returns a new builder, configured to build {@code MinMaxPriorityQueue} instances 148 * that are limited to {@code maximumSize} elements. Each time a queue grows beyond this bound, it 149 * immediately removes its greatest element (according to its comparator), which might be the 150 * element that was just added. 151 */ 152 @SuppressWarnings("rawtypes") // https://github.com/google/guava/issues/989 153 public static Builder<Comparable> maximumSize(int maximumSize) { 154 return new Builder<Comparable>(Ordering.natural()).maximumSize(maximumSize); 155 } 156 157 /** 158 * The builder class used in creation of min-max priority queues. Instead of constructing one 159 * directly, use {@link MinMaxPriorityQueue#orderedBy(Comparator)}, {@link 160 * MinMaxPriorityQueue#expectedSize(int)} or {@link MinMaxPriorityQueue#maximumSize(int)}. 161 * 162 * @param <B> the upper bound on the eventual type that can be produced by this builder (for 163 * example, a {@code Builder<Number>} can produce a {@code Queue<Number>} or {@code 164 * Queue<Integer>} but not a {@code Queue<Object>}). 165 * @since 8.0 166 */ 167 public static final class Builder<B> { 168 /* 169 * TODO(kevinb): when the dust settles, see if we still need this or can 170 * just default to DEFAULT_CAPACITY. 171 */ 172 private static final int UNSET_EXPECTED_SIZE = -1; 173 174 private final Comparator<B> comparator; 175 private int expectedSize = UNSET_EXPECTED_SIZE; 176 private int maximumSize = Integer.MAX_VALUE; 177 178 private Builder(Comparator<B> comparator) { 179 this.comparator = checkNotNull(comparator); 180 } 181 182 /** 183 * Configures this builder to build min-max priority queues with an initial expected size of 184 * {@code expectedSize}. 185 */ 186 @CanIgnoreReturnValue 187 public Builder<B> expectedSize(int expectedSize) { 188 checkArgument(expectedSize >= 0); 189 this.expectedSize = expectedSize; 190 return this; 191 } 192 193 /** 194 * Configures this builder to build {@code MinMaxPriorityQueue} instances that are limited to 195 * {@code maximumSize} elements. Each time a queue grows beyond this bound, it immediately 196 * removes its greatest element (according to its comparator), which might be the element that 197 * was just added. 198 */ 199 @CanIgnoreReturnValue 200 public Builder<B> maximumSize(int maximumSize) { 201 checkArgument(maximumSize > 0); 202 this.maximumSize = maximumSize; 203 return this; 204 } 205 206 /** 207 * Builds a new min-max priority queue using the previously specified options, and having no 208 * initial contents. 209 */ 210 public <T extends B> MinMaxPriorityQueue<T> create() { 211 return create(Collections.<T>emptySet()); 212 } 213 214 /** 215 * Builds a new min-max priority queue using the previously specified options, and having the 216 * given initial elements. 217 */ 218 public <T extends B> MinMaxPriorityQueue<T> create(Iterable<? extends T> initialContents) { 219 MinMaxPriorityQueue<T> queue = 220 new MinMaxPriorityQueue<>( 221 this, initialQueueSize(expectedSize, maximumSize, initialContents)); 222 for (T element : initialContents) { 223 queue.offer(element); 224 } 225 return queue; 226 } 227 228 @SuppressWarnings("unchecked") // safe "contravariant cast" 229 private <T extends B> Ordering<T> ordering() { 230 return Ordering.from((Comparator<T>) comparator); 231 } 232 } 233 234 private final Heap minHeap; 235 private final Heap maxHeap; 236 @VisibleForTesting final int maximumSize; 237 private @Nullable Object[] queue; 238 private int size; 239 private int modCount; 240 241 private MinMaxPriorityQueue(Builder<? super E> builder, int queueSize) { 242 Ordering<E> ordering = builder.ordering(); 243 this.minHeap = new Heap(ordering); 244 this.maxHeap = new Heap(ordering.reverse()); 245 minHeap.otherHeap = maxHeap; 246 maxHeap.otherHeap = minHeap; 247 248 this.maximumSize = builder.maximumSize; 249 // TODO(kevinb): pad? 250 this.queue = new Object[queueSize]; 251 } 252 253 @Override 254 public int size() { 255 return size; 256 } 257 258 /** 259 * Adds the given element to this queue. If this queue has a maximum size, after adding {@code 260 * element} the queue will automatically evict its greatest element (according to its comparator), 261 * which may be {@code element} itself. 262 * 263 * @return {@code true} always 264 */ 265 @CanIgnoreReturnValue 266 @Override 267 public boolean add(E element) { 268 offer(element); 269 return true; 270 } 271 272 @CanIgnoreReturnValue 273 @Override 274 public boolean addAll(Collection<? extends E> newElements) { 275 boolean modified = false; 276 for (E element : newElements) { 277 offer(element); 278 modified = true; 279 } 280 return modified; 281 } 282 283 /** 284 * Adds the given element to this queue. If this queue has a maximum size, after adding {@code 285 * element} the queue will automatically evict its greatest element (according to its comparator), 286 * which may be {@code element} itself. 287 */ 288 @CanIgnoreReturnValue 289 @Override 290 public boolean offer(E element) { 291 checkNotNull(element); 292 modCount++; 293 int insertIndex = size++; 294 295 growIfNeeded(); 296 297 // Adds the element to the end of the heap and bubbles it up to the correct 298 // position. 299 heapForIndex(insertIndex).bubbleUp(insertIndex, element); 300 return size <= maximumSize || pollLast() != element; 301 } 302 303 @CanIgnoreReturnValue 304 @Override 305 public @Nullable E poll() { 306 return isEmpty() ? null : removeAndGet(0); 307 } 308 309 @SuppressWarnings("unchecked") // we must carefully only allow Es to get in 310 E elementData(int index) { 311 /* 312 * requireNonNull is safe as long as we're careful to call this method only with populated 313 * indexes. 314 */ 315 return (E) requireNonNull(queue[index]); 316 } 317 318 @Override 319 public @Nullable E peek() { 320 return isEmpty() ? null : elementData(0); 321 } 322 323 /** Returns the index of the max element. */ 324 private int getMaxElementIndex() { 325 switch (size) { 326 case 1: 327 return 0; // The lone element in the queue is the maximum. 328 case 2: 329 return 1; // The lone element in the maxHeap is the maximum. 330 default: 331 // The max element must sit on the first level of the maxHeap. It is 332 // actually the *lesser* of the two from the maxHeap's perspective. 333 return (maxHeap.compareElements(1, 2) <= 0) ? 1 : 2; 334 } 335 } 336 337 /** 338 * Removes and returns the least element of this queue, or returns {@code null} if the queue is 339 * empty. 340 */ 341 @CanIgnoreReturnValue 342 public @Nullable E pollFirst() { 343 return poll(); 344 } 345 346 /** 347 * Removes and returns the least element of this queue. 348 * 349 * @throws NoSuchElementException if the queue is empty 350 */ 351 @CanIgnoreReturnValue 352 public E removeFirst() { 353 return remove(); 354 } 355 356 /** 357 * Retrieves, but does not remove, the least element of this queue, or returns {@code null} if the 358 * queue is empty. 359 */ 360 public @Nullable E peekFirst() { 361 return peek(); 362 } 363 364 /** 365 * Removes and returns the greatest element of this queue, or returns {@code null} if the queue is 366 * empty. 367 */ 368 @CanIgnoreReturnValue 369 public @Nullable E pollLast() { 370 return isEmpty() ? null : removeAndGet(getMaxElementIndex()); 371 } 372 373 /** 374 * Removes and returns the greatest element of this queue. 375 * 376 * @throws NoSuchElementException if the queue is empty 377 */ 378 @CanIgnoreReturnValue 379 public E removeLast() { 380 if (isEmpty()) { 381 throw new NoSuchElementException(); 382 } 383 return removeAndGet(getMaxElementIndex()); 384 } 385 386 /** 387 * Retrieves, but does not remove, the greatest element of this queue, or returns {@code null} if 388 * the queue is empty. 389 */ 390 public @Nullable E peekLast() { 391 return isEmpty() ? null : elementData(getMaxElementIndex()); 392 } 393 394 /** 395 * Removes the element at position {@code index}. 396 * 397 * <p>Normally this method leaves the elements at up to {@code index - 1}, inclusive, untouched. 398 * Under these circumstances, it returns {@code null}. 399 * 400 * <p>Occasionally, in order to maintain the heap invariant, it must swap a later element of the 401 * list with one before {@code index}. Under these circumstances it returns a pair of elements as 402 * a {@link MoveDesc}. The first one is the element that was previously at the end of the heap and 403 * is now at some position before {@code index}. The second element is the one that was swapped 404 * down to replace the element at {@code index}. This fact is used by iterator.remove so as to 405 * visit elements during a traversal once and only once. 406 */ 407 @VisibleForTesting 408 @CanIgnoreReturnValue 409 @Nullable MoveDesc<E> removeAt(int index) { 410 checkPositionIndex(index, size); 411 modCount++; 412 size--; 413 if (size == index) { 414 queue[size] = null; 415 return null; 416 } 417 E actualLastElement = elementData(size); 418 int lastElementAt = heapForIndex(size).swapWithConceptuallyLastElement(actualLastElement); 419 if (lastElementAt == index) { 420 // 'actualLastElement' is now at 'lastElementAt', and the element that was at 'lastElementAt' 421 // is now at the end of queue. If that's the element we wanted to remove in the first place, 422 // don't try to (incorrectly) trickle it. Instead, just delete it and we're done. 423 queue[size] = null; 424 return null; 425 } 426 E toTrickle = elementData(size); 427 queue[size] = null; 428 MoveDesc<E> changes = fillHole(index, toTrickle); 429 if (lastElementAt < index) { 430 // Last element is moved to before index, swapped with trickled element. 431 if (changes == null) { 432 // The trickled element is still after index. 433 return new MoveDesc<>(actualLastElement, toTrickle); 434 } else { 435 // The trickled element is back before index, but the replaced element 436 // has now been moved after index. 437 return new MoveDesc<>(actualLastElement, changes.replaced); 438 } 439 } 440 // Trickled element was after index to begin with, no adjustment needed. 441 return changes; 442 } 443 444 private @Nullable MoveDesc<E> fillHole(int index, E toTrickle) { 445 Heap heap = heapForIndex(index); 446 // We consider elementData(index) a "hole", and we want to fill it 447 // with the last element of the heap, toTrickle. 448 // Since the last element of the heap is from the bottom level, we 449 // optimistically fill index position with elements from lower levels, 450 // moving the hole down. In most cases this reduces the number of 451 // comparisons with toTrickle, but in some cases we will need to bubble it 452 // all the way up again. 453 int vacated = heap.fillHoleAt(index); 454 // Try to see if toTrickle can be bubbled up min levels. 455 int bubbledTo = heap.bubbleUpAlternatingLevels(vacated, toTrickle); 456 if (bubbledTo == vacated) { 457 // Could not bubble toTrickle up min levels, try moving 458 // it from min level to max level (or max to min level) and bubble up 459 // there. 460 return heap.tryCrossOverAndBubbleUp(index, vacated, toTrickle); 461 } else { 462 return (bubbledTo < index) ? new MoveDesc<E>(toTrickle, elementData(index)) : null; 463 } 464 } 465 466 // Returned from removeAt() to iterator.remove() 467 static class MoveDesc<E> { 468 final E toTrickle; 469 final E replaced; 470 471 MoveDesc(E toTrickle, E replaced) { 472 this.toTrickle = toTrickle; 473 this.replaced = replaced; 474 } 475 } 476 477 /** Removes and returns the value at {@code index}. */ 478 private E removeAndGet(int index) { 479 E value = elementData(index); 480 removeAt(index); 481 return value; 482 } 483 484 private Heap heapForIndex(int i) { 485 return isEvenLevel(i) ? minHeap : maxHeap; 486 } 487 488 private static final int EVEN_POWERS_OF_TWO = 0x55555555; 489 private static final int ODD_POWERS_OF_TWO = 0xaaaaaaaa; 490 491 @VisibleForTesting 492 static boolean isEvenLevel(int index) { 493 int oneBased = ~~(index + 1); // for GWT 494 checkState(oneBased > 0, "negative index"); 495 return (oneBased & EVEN_POWERS_OF_TWO) > (oneBased & ODD_POWERS_OF_TWO); 496 } 497 498 /** 499 * Returns {@code true} if the MinMax heap structure holds. This is only used in testing. 500 * 501 * <p>TODO(kevinb): move to the test class? 502 */ 503 @VisibleForTesting 504 boolean isIntact() { 505 for (int i = 1; i < size; i++) { 506 if (!heapForIndex(i).verifyIndex(i)) { 507 return false; 508 } 509 } 510 return true; 511 } 512 513 /** 514 * Each instance of MinMaxPriorityQueue encapsulates two instances of Heap: a min-heap and a 515 * max-heap. Conceptually, these might each have their own array for storage, but for efficiency's 516 * sake they are stored interleaved on alternate heap levels in the same array (MMPQ.queue). 517 */ 518 @WeakOuter 519 class Heap { 520 final Ordering<E> ordering; 521 522 @SuppressWarnings("nullness:initialization.field.uninitialized") 523 @Weak 524 Heap otherHeap; // always initialized immediately after construction 525 526 Heap(Ordering<E> ordering) { 527 this.ordering = ordering; 528 } 529 530 int compareElements(int a, int b) { 531 return ordering.compare(elementData(a), elementData(b)); 532 } 533 534 /** 535 * Tries to move {@code toTrickle} from a min to a max level and bubble up there. If it moved 536 * before {@code removeIndex} this method returns a pair as described in {@link #removeAt}. 537 */ 538 @Nullable MoveDesc<E> tryCrossOverAndBubbleUp(int removeIndex, int vacated, E toTrickle) { 539 int crossOver = crossOver(vacated, toTrickle); 540 if (crossOver == vacated) { 541 return null; 542 } 543 // Successfully crossed over from min to max. 544 // Bubble up max levels. 545 E parent; 546 // If toTrickle is moved up to a parent of removeIndex, the parent is 547 // placed in removeIndex position. We must return that to the iterator so 548 // that it knows to skip it. 549 if (crossOver < removeIndex) { 550 // We crossed over to the parent level in crossOver, so the parent 551 // has already been moved. 552 parent = elementData(removeIndex); 553 } else { 554 parent = elementData(getParentIndex(removeIndex)); 555 } 556 // bubble it up the opposite heap 557 if (otherHeap.bubbleUpAlternatingLevels(crossOver, toTrickle) < removeIndex) { 558 return new MoveDesc<>(toTrickle, parent); 559 } else { 560 return null; 561 } 562 } 563 564 /** Bubbles a value from {@code index} up the appropriate heap if required. */ 565 void bubbleUp(int index, E x) { 566 int crossOver = crossOverUp(index, x); 567 568 Heap heap; 569 if (crossOver == index) { 570 heap = this; 571 } else { 572 index = crossOver; 573 heap = otherHeap; 574 } 575 heap.bubbleUpAlternatingLevels(index, x); 576 } 577 578 /** 579 * Bubbles a value from {@code index} up the levels of this heap, and returns the index the 580 * element ended up at. 581 */ 582 @CanIgnoreReturnValue 583 int bubbleUpAlternatingLevels(int index, E x) { 584 while (index > 2) { 585 int grandParentIndex = getGrandparentIndex(index); 586 E e = elementData(grandParentIndex); 587 if (ordering.compare(e, x) <= 0) { 588 break; 589 } 590 queue[index] = e; 591 index = grandParentIndex; 592 } 593 queue[index] = x; 594 return index; 595 } 596 597 /** 598 * Returns the index of minimum value between {@code index} and {@code index + len}, or {@code 599 * -1} if {@code index} is greater than {@code size}. 600 */ 601 int findMin(int index, int len) { 602 if (index >= size) { 603 return -1; 604 } 605 checkState(index > 0); 606 int limit = min(index, size - len) + len; 607 int minIndex = index; 608 for (int i = index + 1; i < limit; i++) { 609 if (compareElements(i, minIndex) < 0) { 610 minIndex = i; 611 } 612 } 613 return minIndex; 614 } 615 616 /** Returns the minimum child or {@code -1} if no child exists. */ 617 int findMinChild(int index) { 618 return findMin(getLeftChildIndex(index), 2); 619 } 620 621 /** Returns the minimum grand child or -1 if no grand child exists. */ 622 int findMinGrandChild(int index) { 623 int leftChildIndex = getLeftChildIndex(index); 624 if (leftChildIndex < 0) { 625 return -1; 626 } 627 return findMin(getLeftChildIndex(leftChildIndex), 4); 628 } 629 630 /** 631 * Moves an element one level up from a min level to a max level (or vice versa). Returns the 632 * new position of the element. 633 */ 634 int crossOverUp(int index, E x) { 635 if (index == 0) { 636 queue[0] = x; 637 return 0; 638 } 639 int parentIndex = getParentIndex(index); 640 E parentElement = elementData(parentIndex); 641 if (parentIndex != 0) { 642 /* 643 * This is a guard for the case of the childless aunt node. Since the end of the array is 644 * actually the middle of the heap, a smaller childless aunt node can become a child of x 645 * when we bubble up alternate levels, violating the invariant. 646 */ 647 int grandparentIndex = getParentIndex(parentIndex); 648 int auntIndex = getRightChildIndex(grandparentIndex); 649 if (auntIndex != parentIndex && getLeftChildIndex(auntIndex) >= size) { 650 E auntElement = elementData(auntIndex); 651 if (ordering.compare(auntElement, parentElement) < 0) { 652 parentIndex = auntIndex; 653 parentElement = auntElement; 654 } 655 } 656 } 657 if (ordering.compare(parentElement, x) < 0) { 658 queue[index] = parentElement; 659 queue[parentIndex] = x; 660 return parentIndex; 661 } 662 queue[index] = x; 663 return index; 664 } 665 666 // About the term "aunt node": it's better to leave gender out of it, but for this the English 667 // language has nothing for us. Except for the whimsical neologism "pibling" (!) which we 668 // obviously could not expect to increase anyone's understanding of the code. 669 670 /** 671 * Swap {@code actualLastElement} with the conceptually correct last element of the heap. 672 * Returns the index that {@code actualLastElement} now resides in. 673 * 674 * <p>Since the last element of the array is actually in the middle of the sorted structure, a 675 * childless aunt node could be smaller, which would corrupt the invariant if this element 676 * becomes the new parent of the aunt node. In that case, we first switch the last element with 677 * its aunt node, before returning. 678 */ 679 int swapWithConceptuallyLastElement(E actualLastElement) { 680 int parentIndex = getParentIndex(size); 681 if (parentIndex != 0) { 682 int grandparentIndex = getParentIndex(parentIndex); 683 int auntIndex = getRightChildIndex(grandparentIndex); 684 if (auntIndex != parentIndex && getLeftChildIndex(auntIndex) >= size) { 685 E auntElement = elementData(auntIndex); 686 if (ordering.compare(auntElement, actualLastElement) < 0) { 687 queue[auntIndex] = actualLastElement; 688 queue[size] = auntElement; 689 return auntIndex; 690 } 691 } 692 } 693 return size; 694 } 695 696 /** 697 * Crosses an element over to the opposite heap by moving it one level down (or up if there are 698 * no elements below it). 699 * 700 * <p>Returns the new position of the element. 701 */ 702 int crossOver(int index, E x) { 703 int minChildIndex = findMinChild(index); 704 // TODO(kevinb): split the && into two if's and move crossOverUp so it's 705 // only called when there's no child. 706 if ((minChildIndex > 0) && (ordering.compare(elementData(minChildIndex), x) < 0)) { 707 queue[index] = elementData(minChildIndex); 708 queue[minChildIndex] = x; 709 return minChildIndex; 710 } 711 return crossOverUp(index, x); 712 } 713 714 /** 715 * Fills the hole at {@code index} by moving in the least of its grandchildren to this position, 716 * then recursively filling the new hole created. 717 * 718 * @return the position of the new hole (where the lowest grandchild moved from, that had no 719 * grandchild to replace it) 720 */ 721 int fillHoleAt(int index) { 722 int minGrandchildIndex; 723 while ((minGrandchildIndex = findMinGrandChild(index)) > 0) { 724 queue[index] = elementData(minGrandchildIndex); 725 index = minGrandchildIndex; 726 } 727 return index; 728 } 729 730 private boolean verifyIndex(int i) { 731 if ((getLeftChildIndex(i) < size) && (compareElements(i, getLeftChildIndex(i)) > 0)) { 732 return false; 733 } 734 if ((getRightChildIndex(i) < size) && (compareElements(i, getRightChildIndex(i)) > 0)) { 735 return false; 736 } 737 if ((i > 0) && (compareElements(i, getParentIndex(i)) > 0)) { 738 return false; 739 } 740 if ((i > 2) && (compareElements(getGrandparentIndex(i), i) > 0)) { 741 return false; 742 } 743 return true; 744 } 745 746 // These would be static if inner classes could have static members. 747 748 private int getLeftChildIndex(int i) { 749 return i * 2 + 1; 750 } 751 752 private int getRightChildIndex(int i) { 753 return i * 2 + 2; 754 } 755 756 private int getParentIndex(int i) { 757 return (i - 1) / 2; 758 } 759 760 private int getGrandparentIndex(int i) { 761 return getParentIndex(getParentIndex(i)); // (i - 3) / 4 762 } 763 } 764 765 /** 766 * Iterates the elements of the queue in no particular order. 767 * 768 * <p>If the underlying queue is modified during iteration an exception will be thrown. 769 */ 770 private class QueueIterator implements Iterator<E> { 771 private int cursor = -1; 772 private int nextCursor = -1; 773 private int expectedModCount = modCount; 774 // The same element is not allowed in both forgetMeNot and skipMe, but duplicates are allowed in 775 // either of them, up to the same multiplicity as the queue. 776 private @Nullable Queue<E> forgetMeNot; 777 private @Nullable List<E> skipMe; 778 private @Nullable E lastFromForgetMeNot; 779 private boolean canRemove; 780 781 @Override 782 public boolean hasNext() { 783 checkModCount(); 784 nextNotInSkipMe(cursor + 1); 785 return (nextCursor < size()) || ((forgetMeNot != null) && !forgetMeNot.isEmpty()); 786 } 787 788 @Override 789 public E next() { 790 checkModCount(); 791 nextNotInSkipMe(cursor + 1); 792 if (nextCursor < size()) { 793 cursor = nextCursor; 794 canRemove = true; 795 return elementData(cursor); 796 } else if (forgetMeNot != null) { 797 cursor = size(); 798 lastFromForgetMeNot = forgetMeNot.poll(); 799 if (lastFromForgetMeNot != null) { 800 canRemove = true; 801 return lastFromForgetMeNot; 802 } 803 } 804 throw new NoSuchElementException("iterator moved past last element in queue."); 805 } 806 807 @Override 808 public void remove() { 809 checkRemove(canRemove); 810 checkModCount(); 811 canRemove = false; 812 expectedModCount++; 813 if (cursor < size()) { 814 MoveDesc<E> moved = removeAt(cursor); 815 if (moved != null) { 816 // Either both are null or neither is, but we check both to satisfy the nullness checker. 817 if (forgetMeNot == null || skipMe == null) { 818 forgetMeNot = new ArrayDeque<>(); 819 skipMe = new ArrayList<>(3); 820 } 821 if (!foundAndRemovedExactReference(skipMe, moved.toTrickle)) { 822 forgetMeNot.add(moved.toTrickle); 823 } 824 if (!foundAndRemovedExactReference(forgetMeNot, moved.replaced)) { 825 skipMe.add(moved.replaced); 826 } 827 } 828 cursor--; 829 nextCursor--; 830 } else { // we must have set lastFromForgetMeNot in next() 831 checkState(removeExact(requireNonNull(lastFromForgetMeNot))); 832 lastFromForgetMeNot = null; 833 } 834 } 835 836 /** Returns true if an exact reference (==) was found and removed from the supplied iterable. */ 837 private boolean foundAndRemovedExactReference(Iterable<E> elements, E target) { 838 for (Iterator<E> it = elements.iterator(); it.hasNext(); ) { 839 E element = it.next(); 840 if (element == target) { 841 it.remove(); 842 return true; 843 } 844 } 845 return false; 846 } 847 848 /** Removes only this exact instance, not others that are equals() */ 849 private boolean removeExact(Object target) { 850 for (int i = 0; i < size; i++) { 851 if (queue[i] == target) { 852 removeAt(i); 853 return true; 854 } 855 } 856 return false; 857 } 858 859 private void checkModCount() { 860 if (modCount != expectedModCount) { 861 throw new ConcurrentModificationException(); 862 } 863 } 864 865 /** 866 * Advances nextCursor to the index of the first element after {@code c} that is not in {@code 867 * skipMe} and returns {@code size()} if there is no such element. 868 */ 869 private void nextNotInSkipMe(int c) { 870 if (nextCursor < c) { 871 if (skipMe != null) { 872 while (c < size() && foundAndRemovedExactReference(skipMe, elementData(c))) { 873 c++; 874 } 875 } 876 nextCursor = c; 877 } 878 } 879 } 880 881 /** 882 * Returns an iterator over the elements contained in this collection, <i>in no particular 883 * order</i>. 884 * 885 * <p>The iterator is <i>fail-fast</i>: If the MinMaxPriorityQueue is modified at any time after 886 * the iterator is created, in any way except through the iterator's own remove method, the 887 * iterator will generally throw a {@link ConcurrentModificationException}. Thus, in the face of 888 * concurrent modification, the iterator fails quickly and cleanly, rather than risking arbitrary, 889 * non-deterministic behavior at an undetermined time in the future. 890 * 891 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed as it is, generally 892 * speaking, impossible to make any hard guarantees in the presence of unsynchronized concurrent 893 * modification. Fail-fast iterators throw {@code ConcurrentModificationException} on a 894 * best-effort basis. Therefore, it would be wrong to write a program that depended on this 895 * exception for its correctness: <i>the fail-fast behavior of iterators should be used only to 896 * detect bugs.</i> 897 * 898 * @return an iterator over the elements contained in this collection 899 */ 900 @Override 901 public Iterator<E> iterator() { 902 return new QueueIterator(); 903 } 904 905 @Override 906 public void clear() { 907 for (int i = 0; i < size; i++) { 908 queue[i] = null; 909 } 910 size = 0; 911 } 912 913 @Override 914 @J2ktIncompatible // Incompatible return type change. Use inherited (unoptimized) implementation 915 public Object[] toArray() { 916 Object[] copyTo = new Object[size]; 917 arraycopy(queue, 0, copyTo, 0, size); 918 return copyTo; 919 } 920 921 /** 922 * Returns the comparator used to order the elements in this queue. Obeys the general contract of 923 * {@link PriorityQueue#comparator}, but returns {@link Ordering#natural} instead of {@code null} 924 * to indicate natural ordering. 925 */ 926 public Comparator<? super E> comparator() { 927 return minHeap.ordering; 928 } 929 930 @VisibleForTesting 931 int capacity() { 932 return queue.length; 933 } 934 935 // Size/capacity-related methods 936 937 private static final int DEFAULT_CAPACITY = 11; 938 939 @VisibleForTesting 940 static int initialQueueSize( 941 int configuredExpectedSize, int maximumSize, Iterable<?> initialContents) { 942 // Start with what they said, if they said it, otherwise DEFAULT_CAPACITY 943 int result = 944 (configuredExpectedSize == Builder.UNSET_EXPECTED_SIZE) 945 ? DEFAULT_CAPACITY 946 : configuredExpectedSize; 947 948 // Enlarge to contain initial contents 949 if (initialContents instanceof Collection) { 950 int initialSize = ((Collection<?>) initialContents).size(); 951 result = max(result, initialSize); 952 } 953 954 // Now cap it at maxSize + 1 955 return capAtMaximumSize(result, maximumSize); 956 } 957 958 private void growIfNeeded() { 959 if (size > queue.length) { 960 int newCapacity = calculateNewCapacity(); 961 Object[] newQueue = new Object[newCapacity]; 962 arraycopy(queue, 0, newQueue, 0, queue.length); 963 queue = newQueue; 964 } 965 } 966 967 /** Returns ~2x the old capacity if small; ~1.5x otherwise. */ 968 private int calculateNewCapacity() { 969 int oldCapacity = queue.length; 970 int newCapacity = 971 (oldCapacity < 64) ? (oldCapacity + 1) * 2 : IntMath.checkedMultiply(oldCapacity / 2, 3); 972 return capAtMaximumSize(newCapacity, maximumSize); 973 } 974 975 /** There's no reason for the queueSize to ever be more than maxSize + 1 */ 976 private static int capAtMaximumSize(int queueSize, int maximumSize) { 977 return min(queueSize - 1, maximumSize) + 1; // don't overflow 978 } 979}