001/* 002 * Copyright (C) 2009 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 005 * in compliance with the License. You may obtain a copy of the License at 006 * 007 * http://www.apache.org/licenses/LICENSE-2.0 008 * 009 * Unless required by applicable law or agreed to in writing, software distributed under the License 010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express 011 * or implied. See the License for the specific language governing permissions and limitations under 012 * the License. 013 */ 014 015package com.google.common.primitives; 016 017import static com.google.common.base.Preconditions.checkArgument; 018import static com.google.common.base.Preconditions.checkNotNull; 019import static com.google.common.base.Preconditions.checkPositionIndexes; 020import static java.security.AccessController.doPrivileged; 021import static java.util.Objects.requireNonNull; 022 023import com.google.common.annotations.GwtIncompatible; 024import com.google.common.annotations.J2ktIncompatible; 025import com.google.common.annotations.VisibleForTesting; 026import com.google.errorprone.annotations.CanIgnoreReturnValue; 027import java.lang.reflect.Field; 028import java.nio.ByteOrder; 029import java.security.PrivilegedActionException; 030import java.security.PrivilegedExceptionAction; 031import java.util.Arrays; 032import java.util.Comparator; 033import java.util.Objects; 034import sun.misc.Unsafe; 035 036/** 037 * Static utility methods pertaining to {@code byte} primitives that interpret values as 038 * <i>unsigned</i> (that is, any negative value {@code b} is treated as the positive value {@code 039 * 256 + b}). The corresponding methods that treat the values as signed are found in {@link 040 * SignedBytes}, and the methods for which signedness is not an issue are in {@link Bytes}. 041 * 042 * <p>See the Guava User Guide article on <a 043 * href="https://github.com/google/guava/wiki/PrimitivesExplained">primitive utilities</a>. 044 * 045 * @author Kevin Bourrillion 046 * @author Martin Buchholz 047 * @author Hiroshi Yamauchi 048 * @author Louis Wasserman 049 * @since 1.0 050 */ 051@J2ktIncompatible 052@GwtIncompatible 053public final class UnsignedBytes { 054 private UnsignedBytes() {} 055 056 /** 057 * The largest power of two that can be represented as an unsigned {@code byte}. 058 * 059 * @since 10.0 060 */ 061 public static final byte MAX_POWER_OF_TWO = (byte) 0x80; 062 063 /** 064 * The largest value that fits into an unsigned byte. 065 * 066 * @since 13.0 067 */ 068 public static final byte MAX_VALUE = (byte) 0xFF; 069 070 private static final int UNSIGNED_MASK = 0xFF; 071 072 /** 073 * Returns the value of the given byte as an integer, when treated as unsigned. That is, returns 074 * {@code value + 256} if {@code value} is negative; {@code value} itself otherwise. 075 * 076 * <p><b>Java 8+ users:</b> use {@link Byte#toUnsignedInt(byte)} instead. 077 * 078 * @since 6.0 079 */ 080 public static int toInt(byte value) { 081 return value & UNSIGNED_MASK; 082 } 083 084 /** 085 * Returns the {@code byte} value that, when treated as unsigned, is equal to {@code value}, if 086 * possible. 087 * 088 * @param value a value between 0 and 255 inclusive 089 * @return the {@code byte} value that, when treated as unsigned, equals {@code value} 090 * @throws IllegalArgumentException if {@code value} is negative or greater than 255 091 */ 092 @CanIgnoreReturnValue 093 public static byte checkedCast(long value) { 094 checkArgument(value >> Byte.SIZE == 0, "out of range: %s", value); 095 return (byte) value; 096 } 097 098 /** 099 * Returns the {@code byte} value that, when treated as unsigned, is nearest in value to {@code 100 * value}. 101 * 102 * @param value any {@code long} value 103 * @return {@code (byte) 255} if {@code value >= 255}, {@code (byte) 0} if {@code value <= 0}, and 104 * {@code value} cast to {@code byte} otherwise 105 */ 106 public static byte saturatedCast(long value) { 107 if (value > toInt(MAX_VALUE)) { 108 return MAX_VALUE; // -1 109 } 110 if (value < 0) { 111 return (byte) 0; 112 } 113 return (byte) value; 114 } 115 116 /** 117 * Compares the two specified {@code byte} values, treating them as unsigned values between 0 and 118 * 255 inclusive. For example, {@code (byte) -127} is considered greater than {@code (byte) 127} 119 * because it is seen as having the value of positive {@code 129}. 120 * 121 * @param a the first {@code byte} to compare 122 * @param b the second {@code byte} to compare 123 * @return a negative value if {@code a} is less than {@code b}; a positive value if {@code a} is 124 * greater than {@code b}; or zero if they are equal 125 */ 126 public static int compare(byte a, byte b) { 127 return toInt(a) - toInt(b); 128 } 129 130 /** 131 * Returns the least value present in {@code array}, treating values as unsigned. 132 * 133 * @param array a <i>nonempty</i> array of {@code byte} values 134 * @return the value present in {@code array} that is less than or equal to every other value in 135 * the array according to {@link #compare} 136 * @throws IllegalArgumentException if {@code array} is empty 137 */ 138 public static byte min(byte... array) { 139 checkArgument(array.length > 0); 140 int min = toInt(array[0]); 141 for (int i = 1; i < array.length; i++) { 142 int next = toInt(array[i]); 143 if (next < min) { 144 min = next; 145 } 146 } 147 return (byte) min; 148 } 149 150 /** 151 * Returns the greatest value present in {@code array}, treating values as unsigned. 152 * 153 * @param array a <i>nonempty</i> array of {@code byte} values 154 * @return the value present in {@code array} that is greater than or equal to every other value 155 * in the array according to {@link #compare} 156 * @throws IllegalArgumentException if {@code array} is empty 157 */ 158 public static byte max(byte... array) { 159 checkArgument(array.length > 0); 160 int max = toInt(array[0]); 161 for (int i = 1; i < array.length; i++) { 162 int next = toInt(array[i]); 163 if (next > max) { 164 max = next; 165 } 166 } 167 return (byte) max; 168 } 169 170 /** 171 * Returns a string representation of x, where x is treated as unsigned. 172 * 173 * @since 13.0 174 */ 175 public static String toString(byte x) { 176 return toString(x, 10); 177 } 178 179 /** 180 * Returns a string representation of {@code x} for the given radix, where {@code x} is treated as 181 * unsigned. 182 * 183 * @param x the value to convert to a string. 184 * @param radix the radix to use while working with {@code x} 185 * @throws IllegalArgumentException if {@code radix} is not between {@link Character#MIN_RADIX} 186 * and {@link Character#MAX_RADIX}. 187 * @since 13.0 188 */ 189 public static String toString(byte x, int radix) { 190 checkArgument( 191 radix >= Character.MIN_RADIX && radix <= Character.MAX_RADIX, 192 "radix (%s) must be between Character.MIN_RADIX and Character.MAX_RADIX", 193 radix); 194 // Benchmarks indicate this is probably not worth optimizing. 195 return Integer.toString(toInt(x), radix); 196 } 197 198 /** 199 * Returns the unsigned {@code byte} value represented by the given decimal string. 200 * 201 * @throws NumberFormatException if the string does not contain a valid unsigned {@code byte} 202 * value 203 * @throws NullPointerException if {@code string} is null (in contrast to {@link 204 * Byte#parseByte(String)}) 205 * @since 13.0 206 */ 207 @CanIgnoreReturnValue 208 public static byte parseUnsignedByte(String string) { 209 return parseUnsignedByte(string, 10); 210 } 211 212 /** 213 * Returns the unsigned {@code byte} value represented by a string with the given radix. 214 * 215 * @param string the string containing the unsigned {@code byte} representation to be parsed. 216 * @param radix the radix to use while parsing {@code string} 217 * @throws NumberFormatException if the string does not contain a valid unsigned {@code byte} with 218 * the given radix, or if {@code radix} is not between {@link Character#MIN_RADIX} and {@link 219 * Character#MAX_RADIX}. 220 * @throws NullPointerException if {@code string} is null (in contrast to {@link 221 * Byte#parseByte(String)}) 222 * @since 13.0 223 */ 224 @CanIgnoreReturnValue 225 public static byte parseUnsignedByte(String string, int radix) { 226 int parse = Integer.parseInt(checkNotNull(string), radix); 227 // We need to throw a NumberFormatException, so we have to duplicate checkedCast. =( 228 if (parse >> Byte.SIZE == 0) { 229 return (byte) parse; 230 } else { 231 throw new NumberFormatException("out of range: " + parse); 232 } 233 } 234 235 /** 236 * Returns a string containing the supplied {@code byte} values separated by {@code separator}. 237 * For example, {@code join(":", (byte) 1, (byte) 2, (byte) 255)} returns the string {@code 238 * "1:2:255"}. 239 * 240 * @param separator the text that should appear between consecutive values in the resulting string 241 * (but not at the start or end) 242 * @param array an array of {@code byte} values, possibly empty 243 */ 244 public static String join(String separator, byte... array) { 245 checkNotNull(separator); 246 if (array.length == 0) { 247 return ""; 248 } 249 250 // For pre-sizing a builder, just get the right order of magnitude 251 StringBuilder builder = new StringBuilder(array.length * (3 + separator.length())); 252 builder.append(toInt(array[0])); 253 for (int i = 1; i < array.length; i++) { 254 builder.append(separator).append(toString(array[i])); 255 } 256 return builder.toString(); 257 } 258 259 /** 260 * Returns a comparator that compares two {@code byte} arrays <a 261 * href="http://en.wikipedia.org/wiki/Lexicographical_order">lexicographically</a>. That is, it 262 * compares, using {@link #compare(byte, byte)}), the first pair of values that follow any common 263 * prefix, or when one array is a prefix of the other, treats the shorter array as the lesser. For 264 * example, {@code [] < [0x01] < [0x01, 0x7F] < [0x01, 0x80] < [0x02]}. Values are treated as 265 * unsigned. 266 * 267 * <p>The returned comparator is inconsistent with {@link Object#equals(Object)} (since arrays 268 * support only identity equality), but it is consistent with {@link 269 * java.util.Arrays#equals(byte[], byte[])}. 270 * 271 * <p><b>Java 9+ users:</b> Use {@link Arrays#compareUnsigned(byte[], byte[]) 272 * Arrays::compareUnsigned}. 273 * 274 * @since 2.0 275 */ 276 public static Comparator<byte[]> lexicographicalComparator() { 277 return LexicographicalComparatorHolder.BEST_COMPARATOR; 278 } 279 280 @VisibleForTesting 281 static Comparator<byte[]> lexicographicalComparatorJavaImpl() { 282 return LexicographicalComparatorHolder.PureJavaComparator.INSTANCE; 283 } 284 285 /** 286 * Provides a lexicographical comparator implementation; either a Java implementation or a faster 287 * implementation based on {@link Unsafe}. 288 * 289 * <p>Uses reflection to gracefully fall back to the Java implementation if {@code Unsafe} isn't 290 * available. 291 */ 292 @VisibleForTesting 293 static class LexicographicalComparatorHolder { 294 static final String UNSAFE_COMPARATOR_NAME = 295 LexicographicalComparatorHolder.class.getName() + "$UnsafeComparator"; 296 297 static final Comparator<byte[]> BEST_COMPARATOR = getBestComparator(); 298 299 @SuppressWarnings("SunApi") // b/345822163 300 @VisibleForTesting 301 enum UnsafeComparator implements Comparator<byte[]> { 302 INSTANCE; 303 304 static final boolean BIG_ENDIAN = ByteOrder.nativeOrder().equals(ByteOrder.BIG_ENDIAN); 305 306 /* 307 * The following static final fields exist for performance reasons. 308 * 309 * In UnsignedBytesBenchmark, accessing the following objects via static final fields is the 310 * fastest (more than twice as fast as the Java implementation, vs ~1.5x with non-final static 311 * fields, on x86_32) under the Hotspot server compiler. The reason is obviously that the 312 * non-final fields need to be reloaded inside the loop. 313 * 314 * And, no, defining (final or not) local variables out of the loop still isn't as good 315 * because the null check on the theUnsafe object remains inside the loop and 316 * BYTE_ARRAY_BASE_OFFSET doesn't get constant-folded. 317 * 318 * The compiler can treat static final fields as compile-time constants and can constant-fold 319 * them while (final or not) local variables are run time values. 320 */ 321 322 static final Unsafe theUnsafe = getUnsafe(); 323 324 /** The offset to the first element in a byte array. */ 325 static final int BYTE_ARRAY_BASE_OFFSET = theUnsafe.arrayBaseOffset(byte[].class); 326 327 static { 328 // fall back to the safer pure java implementation unless we're in 329 // a 64-bit JVM with an 8-byte aligned field offset. 330 if (!(Objects.equals(System.getProperty("sun.arch.data.model"), "64") 331 && (BYTE_ARRAY_BASE_OFFSET % 8) == 0 332 // sanity check - this should never fail 333 && theUnsafe.arrayIndexScale(byte[].class) == 1)) { 334 throw new Error(); // force fallback to PureJavaComparator 335 } 336 } 337 338 /** 339 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package. Replace with a simple 340 * call to Unsafe.getUnsafe when integrating into a jdk. 341 * 342 * @return a sun.misc.Unsafe 343 */ 344 private static Unsafe getUnsafe() { 345 try { 346 return Unsafe.getUnsafe(); 347 } catch (SecurityException e) { 348 // that's okay; try reflection instead 349 } 350 try { 351 return doPrivileged( 352 (PrivilegedExceptionAction<Unsafe>) 353 () -> { 354 Class<Unsafe> k = Unsafe.class; 355 for (Field f : k.getDeclaredFields()) { 356 f.setAccessible(true); 357 Object x = f.get(null); 358 if (k.isInstance(x)) { 359 return k.cast(x); 360 } 361 } 362 throw new NoSuchFieldError("the Unsafe"); 363 }); 364 } catch (PrivilegedActionException e) { 365 throw new RuntimeException("Could not initialize intrinsics", e.getCause()); 366 } 367 } 368 369 @Override 370 // Long.compareUnsigned is available under Android, which is what we really care about. 371 @SuppressWarnings("Java7ApiChecker") 372 public int compare(byte[] left, byte[] right) { 373 int stride = 8; 374 int minLength = Math.min(left.length, right.length); 375 int strideLimit = minLength & ~(stride - 1); 376 int i; 377 378 /* 379 * Compare 8 bytes at a time. Benchmarking on x86 shows a stride of 8 bytes is no slower 380 * than 4 bytes even on 32-bit. On the other hand, it is substantially faster on 64-bit. 381 */ 382 for (i = 0; i < strideLimit; i += stride) { 383 long lw = theUnsafe.getLong(left, BYTE_ARRAY_BASE_OFFSET + (long) i); 384 long rw = theUnsafe.getLong(right, BYTE_ARRAY_BASE_OFFSET + (long) i); 385 if (lw != rw) { 386 if (BIG_ENDIAN) { 387 return Long.compareUnsigned(lw, rw); 388 } 389 390 /* 391 * We want to compare only the first index where left[index] != right[index]. This 392 * corresponds to the least significant nonzero byte in lw ^ rw, since lw and rw are 393 * little-endian. Long.numberOfTrailingZeros(diff) tells us the least significant 394 * nonzero bit, and zeroing out the first three bits of L.nTZ gives us the shift to get 395 * that least significant nonzero byte. 396 */ 397 int n = Long.numberOfTrailingZeros(lw ^ rw) & ~0x7; 398 return ((int) ((lw >>> n) & UNSIGNED_MASK)) - ((int) ((rw >>> n) & UNSIGNED_MASK)); 399 } 400 } 401 402 // The epilogue to cover the last (minLength % stride) elements. 403 for (; i < minLength; i++) { 404 int result = UnsignedBytes.compare(left[i], right[i]); 405 if (result != 0) { 406 return result; 407 } 408 } 409 return left.length - right.length; 410 } 411 412 @Override 413 public String toString() { 414 return "UnsignedBytes.lexicographicalComparator() (sun.misc.Unsafe version)"; 415 } 416 } 417 418 enum PureJavaComparator implements Comparator<byte[]> { 419 INSTANCE; 420 421 @Override 422 public int compare(byte[] left, byte[] right) { 423 int minLength = Math.min(left.length, right.length); 424 for (int i = 0; i < minLength; i++) { 425 int result = UnsignedBytes.compare(left[i], right[i]); 426 if (result != 0) { 427 return result; 428 } 429 } 430 return left.length - right.length; 431 } 432 433 @Override 434 public String toString() { 435 return "UnsignedBytes.lexicographicalComparator() (pure Java version)"; 436 } 437 } 438 439 /** 440 * Returns the Unsafe-using Comparator, or falls back to the pure-Java implementation if unable 441 * to do so. 442 */ 443 static Comparator<byte[]> getBestComparator() { 444 try { 445 Class<?> theClass = Class.forName(UNSAFE_COMPARATOR_NAME); 446 447 // requireNonNull is safe because the class is an enum. 448 Object[] constants = requireNonNull(theClass.getEnumConstants()); 449 450 // yes, UnsafeComparator does implement Comparator<byte[]> 451 @SuppressWarnings("unchecked") 452 Comparator<byte[]> comparator = (Comparator<byte[]>) constants[0]; 453 return comparator; 454 } catch (Throwable t) { // ensure we really catch *everything* 455 return lexicographicalComparatorJavaImpl(); 456 } 457 } 458 } 459 460 private static byte flip(byte b) { 461 return (byte) (b ^ 0x80); 462 } 463 464 /** 465 * Sorts the array, treating its elements as unsigned bytes. 466 * 467 * @since 23.1 468 */ 469 public static void sort(byte[] array) { 470 checkNotNull(array); 471 sort(array, 0, array.length); 472 } 473 474 /** 475 * Sorts the array between {@code fromIndex} inclusive and {@code toIndex} exclusive, treating its 476 * elements as unsigned bytes. 477 * 478 * @since 23.1 479 */ 480 public static void sort(byte[] array, int fromIndex, int toIndex) { 481 checkNotNull(array); 482 checkPositionIndexes(fromIndex, toIndex, array.length); 483 for (int i = fromIndex; i < toIndex; i++) { 484 array[i] = flip(array[i]); 485 } 486 Arrays.sort(array, fromIndex, toIndex); 487 for (int i = fromIndex; i < toIndex; i++) { 488 array[i] = flip(array[i]); 489 } 490 } 491 492 /** 493 * Sorts the elements of {@code array} in descending order, interpreting them as unsigned 8-bit 494 * integers. 495 * 496 * @since 23.1 497 */ 498 public static void sortDescending(byte[] array) { 499 checkNotNull(array); 500 sortDescending(array, 0, array.length); 501 } 502 503 /** 504 * Sorts the elements of {@code array} between {@code fromIndex} inclusive and {@code toIndex} 505 * exclusive in descending order, interpreting them as unsigned 8-bit integers. 506 * 507 * @since 23.1 508 */ 509 public static void sortDescending(byte[] array, int fromIndex, int toIndex) { 510 checkNotNull(array); 511 checkPositionIndexes(fromIndex, toIndex, array.length); 512 for (int i = fromIndex; i < toIndex; i++) { 513 array[i] ^= Byte.MAX_VALUE; 514 } 515 Arrays.sort(array, fromIndex, toIndex); 516 for (int i = fromIndex; i < toIndex; i++) { 517 array[i] ^= Byte.MAX_VALUE; 518 } 519 } 520}