001/* 002 * Copyright (C) 2011 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 005 * in compliance with the License. You may obtain a copy of the License at 006 * 007 * http://www.apache.org/licenses/LICENSE-2.0 008 * 009 * Unless required by applicable law or agreed to in writing, software distributed under the License 010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express 011 * or implied. See the License for the specific language governing permissions and limitations under 012 * the License. 013 */ 014 015package com.google.common.math; 016 017import static com.google.common.base.Preconditions.checkArgument; 018import static com.google.common.base.Preconditions.checkNotNull; 019import static com.google.common.math.MathPreconditions.checkNoOverflow; 020import static com.google.common.math.MathPreconditions.checkNonNegative; 021import static com.google.common.math.MathPreconditions.checkPositive; 022import static com.google.common.math.MathPreconditions.checkRoundingUnnecessary; 023import static java.lang.Math.abs; 024import static java.lang.Math.min; 025import static java.math.RoundingMode.HALF_EVEN; 026import static java.math.RoundingMode.HALF_UP; 027 028import com.google.common.annotations.Beta; 029import com.google.common.annotations.GwtCompatible; 030import com.google.common.annotations.GwtIncompatible; 031import com.google.common.annotations.VisibleForTesting; 032import com.google.common.primitives.Longs; 033import com.google.common.primitives.UnsignedLongs; 034import java.math.BigInteger; 035import java.math.RoundingMode; 036 037/** 038 * A class for arithmetic on values of type {@code long}. Where possible, methods are defined and 039 * named analogously to their {@code BigInteger} counterparts. 040 * 041 * <p>The implementations of many methods in this class are based on material from Henry S. Warren, 042 * Jr.'s <i>Hacker's Delight</i>, (Addison Wesley, 2002). 043 * 044 * <p>Similar functionality for {@code int} and for {@link BigInteger} can be found in {@link 045 * IntMath} and {@link BigIntegerMath} respectively. For other common operations on {@code long} 046 * values, see {@link com.google.common.primitives.Longs}. 047 * 048 * @author Louis Wasserman 049 * @since 11.0 050 */ 051@GwtCompatible(emulated = true) 052@ElementTypesAreNonnullByDefault 053public final class LongMath { 054 // NOTE: Whenever both tests are cheap and functional, it's faster to use &, | instead of &&, || 055 056 @VisibleForTesting static final long MAX_SIGNED_POWER_OF_TWO = 1L << (Long.SIZE - 2); 057 058 /** 059 * Returns the smallest power of two greater than or equal to {@code x}. This is equivalent to 060 * {@code checkedPow(2, log2(x, CEILING))}. 061 * 062 * @throws IllegalArgumentException if {@code x <= 0} 063 * @throws ArithmeticException of the next-higher power of two is not representable as a {@code 064 * long}, i.e. when {@code x > 2^62} 065 * @since 20.0 066 */ 067 @Beta 068 public static long ceilingPowerOfTwo(long x) { 069 checkPositive("x", x); 070 if (x > MAX_SIGNED_POWER_OF_TWO) { 071 throw new ArithmeticException("ceilingPowerOfTwo(" + x + ") is not representable as a long"); 072 } 073 return 1L << -Long.numberOfLeadingZeros(x - 1); 074 } 075 076 /** 077 * Returns the largest power of two less than or equal to {@code x}. This is equivalent to {@code 078 * checkedPow(2, log2(x, FLOOR))}. 079 * 080 * @throws IllegalArgumentException if {@code x <= 0} 081 * @since 20.0 082 */ 083 @Beta 084 public static long floorPowerOfTwo(long x) { 085 checkPositive("x", x); 086 087 // Long.highestOneBit was buggy on GWT. We've fixed it, but I'm not certain when the fix will 088 // be released. 089 return 1L << ((Long.SIZE - 1) - Long.numberOfLeadingZeros(x)); 090 } 091 092 /** 093 * Returns {@code true} if {@code x} represents a power of two. 094 * 095 * <p>This differs from {@code Long.bitCount(x) == 1}, because {@code 096 * Long.bitCount(Long.MIN_VALUE) == 1}, but {@link Long#MIN_VALUE} is not a power of two. 097 */ 098 public static boolean isPowerOfTwo(long x) { 099 return x > 0 & (x & (x - 1)) == 0; 100 } 101 102 /** 103 * Returns 1 if {@code x < y} as unsigned longs, and 0 otherwise. Assumes that x - y fits into a 104 * signed long. The implementation is branch-free, and benchmarks suggest it is measurably faster 105 * than the straightforward ternary expression. 106 */ 107 @VisibleForTesting 108 static int lessThanBranchFree(long x, long y) { 109 // Returns the sign bit of x - y. 110 return (int) (~~(x - y) >>> (Long.SIZE - 1)); 111 } 112 113 /** 114 * Returns the base-2 logarithm of {@code x}, rounded according to the specified rounding mode. 115 * 116 * @throws IllegalArgumentException if {@code x <= 0} 117 * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and {@code x} 118 * is not a power of two 119 */ 120 @SuppressWarnings("fallthrough") 121 // TODO(kevinb): remove after this warning is disabled globally 122 public static int log2(long x, RoundingMode mode) { 123 checkPositive("x", x); 124 switch (mode) { 125 case UNNECESSARY: 126 checkRoundingUnnecessary(isPowerOfTwo(x)); 127 // fall through 128 case DOWN: 129 case FLOOR: 130 return (Long.SIZE - 1) - Long.numberOfLeadingZeros(x); 131 132 case UP: 133 case CEILING: 134 return Long.SIZE - Long.numberOfLeadingZeros(x - 1); 135 136 case HALF_DOWN: 137 case HALF_UP: 138 case HALF_EVEN: 139 // Since sqrt(2) is irrational, log2(x) - logFloor cannot be exactly 0.5 140 int leadingZeros = Long.numberOfLeadingZeros(x); 141 long cmp = MAX_POWER_OF_SQRT2_UNSIGNED >>> leadingZeros; 142 // floor(2^(logFloor + 0.5)) 143 int logFloor = (Long.SIZE - 1) - leadingZeros; 144 return logFloor + lessThanBranchFree(cmp, x); 145 146 default: 147 throw new AssertionError("impossible"); 148 } 149 } 150 151 /** The biggest half power of two that fits into an unsigned long */ 152 @VisibleForTesting static final long MAX_POWER_OF_SQRT2_UNSIGNED = 0xB504F333F9DE6484L; 153 154 /** 155 * Returns the base-10 logarithm of {@code x}, rounded according to the specified rounding mode. 156 * 157 * @throws IllegalArgumentException if {@code x <= 0} 158 * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and {@code x} 159 * is not a power of ten 160 */ 161 @GwtIncompatible // TODO 162 @SuppressWarnings("fallthrough") 163 // TODO(kevinb): remove after this warning is disabled globally 164 public static int log10(long x, RoundingMode mode) { 165 checkPositive("x", x); 166 int logFloor = log10Floor(x); 167 long floorPow = powersOf10[logFloor]; 168 switch (mode) { 169 case UNNECESSARY: 170 checkRoundingUnnecessary(x == floorPow); 171 // fall through 172 case FLOOR: 173 case DOWN: 174 return logFloor; 175 case CEILING: 176 case UP: 177 return logFloor + lessThanBranchFree(floorPow, x); 178 case HALF_DOWN: 179 case HALF_UP: 180 case HALF_EVEN: 181 // sqrt(10) is irrational, so log10(x)-logFloor is never exactly 0.5 182 return logFloor + lessThanBranchFree(halfPowersOf10[logFloor], x); 183 default: 184 throw new AssertionError(); 185 } 186 } 187 188 @GwtIncompatible // TODO 189 static int log10Floor(long x) { 190 /* 191 * Based on Hacker's Delight Fig. 11-5, the two-table-lookup, branch-free implementation. 192 * 193 * The key idea is that based on the number of leading zeros (equivalently, floor(log2(x))), we 194 * can narrow the possible floor(log10(x)) values to two. For example, if floor(log2(x)) is 6, 195 * then 64 <= x < 128, so floor(log10(x)) is either 1 or 2. 196 */ 197 int y = maxLog10ForLeadingZeros[Long.numberOfLeadingZeros(x)]; 198 /* 199 * y is the higher of the two possible values of floor(log10(x)). If x < 10^y, then we want the 200 * lower of the two possible values, or y - 1, otherwise, we want y. 201 */ 202 return y - lessThanBranchFree(x, powersOf10[y]); 203 } 204 205 // maxLog10ForLeadingZeros[i] == floor(log10(2^(Long.SIZE - i))) 206 @VisibleForTesting 207 static final byte[] maxLog10ForLeadingZeros = { 208 19, 18, 18, 18, 18, 17, 17, 17, 16, 16, 16, 15, 15, 15, 15, 14, 14, 14, 13, 13, 13, 12, 12, 12, 209 12, 11, 11, 11, 10, 10, 10, 9, 9, 9, 9, 8, 8, 8, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 4, 4, 4, 3, 3, 3, 210 3, 2, 2, 2, 1, 1, 1, 0, 0, 0 211 }; 212 213 @GwtIncompatible // TODO 214 @VisibleForTesting 215 static final long[] powersOf10 = { 216 1L, 217 10L, 218 100L, 219 1000L, 220 10000L, 221 100000L, 222 1000000L, 223 10000000L, 224 100000000L, 225 1000000000L, 226 10000000000L, 227 100000000000L, 228 1000000000000L, 229 10000000000000L, 230 100000000000000L, 231 1000000000000000L, 232 10000000000000000L, 233 100000000000000000L, 234 1000000000000000000L 235 }; 236 237 // halfPowersOf10[i] = largest long less than 10^(i + 0.5) 238 @GwtIncompatible // TODO 239 @VisibleForTesting 240 static final long[] halfPowersOf10 = { 241 3L, 242 31L, 243 316L, 244 3162L, 245 31622L, 246 316227L, 247 3162277L, 248 31622776L, 249 316227766L, 250 3162277660L, 251 31622776601L, 252 316227766016L, 253 3162277660168L, 254 31622776601683L, 255 316227766016837L, 256 3162277660168379L, 257 31622776601683793L, 258 316227766016837933L, 259 3162277660168379331L 260 }; 261 262 /** 263 * Returns {@code b} to the {@code k}th power. Even if the result overflows, it will be equal to 264 * {@code BigInteger.valueOf(b).pow(k).longValue()}. This implementation runs in {@code O(log k)} 265 * time. 266 * 267 * @throws IllegalArgumentException if {@code k < 0} 268 */ 269 @GwtIncompatible // TODO 270 public static long pow(long b, int k) { 271 checkNonNegative("exponent", k); 272 if (-2 <= b && b <= 2) { 273 switch ((int) b) { 274 case 0: 275 return (k == 0) ? 1 : 0; 276 case 1: 277 return 1; 278 case (-1): 279 return ((k & 1) == 0) ? 1 : -1; 280 case 2: 281 return (k < Long.SIZE) ? 1L << k : 0; 282 case (-2): 283 if (k < Long.SIZE) { 284 return ((k & 1) == 0) ? 1L << k : -(1L << k); 285 } else { 286 return 0; 287 } 288 default: 289 throw new AssertionError(); 290 } 291 } 292 for (long accum = 1; ; k >>= 1) { 293 switch (k) { 294 case 0: 295 return accum; 296 case 1: 297 return accum * b; 298 default: 299 accum *= ((k & 1) == 0) ? 1 : b; 300 b *= b; 301 } 302 } 303 } 304 305 /** 306 * Returns the square root of {@code x}, rounded with the specified rounding mode. 307 * 308 * @throws IllegalArgumentException if {@code x < 0} 309 * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and {@code 310 * sqrt(x)} is not an integer 311 */ 312 @GwtIncompatible // TODO 313 @SuppressWarnings("fallthrough") 314 public static long sqrt(long x, RoundingMode mode) { 315 checkNonNegative("x", x); 316 if (fitsInInt(x)) { 317 return IntMath.sqrt((int) x, mode); 318 } 319 /* 320 * Let k be the true value of floor(sqrt(x)), so that 321 * 322 * k * k <= x < (k + 1) * (k + 1) 323 * (double) (k * k) <= (double) x <= (double) ((k + 1) * (k + 1)) 324 * since casting to double is nondecreasing. 325 * Note that the right-hand inequality is no longer strict. 326 * Math.sqrt(k * k) <= Math.sqrt(x) <= Math.sqrt((k + 1) * (k + 1)) 327 * since Math.sqrt is monotonic. 328 * (long) Math.sqrt(k * k) <= (long) Math.sqrt(x) <= (long) Math.sqrt((k + 1) * (k + 1)) 329 * since casting to long is monotonic 330 * k <= (long) Math.sqrt(x) <= k + 1 331 * since (long) Math.sqrt(k * k) == k, as checked exhaustively in 332 * {@link LongMathTest#testSqrtOfPerfectSquareAsDoubleIsPerfect} 333 */ 334 long guess = (long) Math.sqrt(x); 335 // Note: guess is always <= FLOOR_SQRT_MAX_LONG. 336 long guessSquared = guess * guess; 337 // Note (2013-2-26): benchmarks indicate that, inscrutably enough, using if statements is 338 // faster here than using lessThanBranchFree. 339 switch (mode) { 340 case UNNECESSARY: 341 checkRoundingUnnecessary(guessSquared == x); 342 return guess; 343 case FLOOR: 344 case DOWN: 345 if (x < guessSquared) { 346 return guess - 1; 347 } 348 return guess; 349 case CEILING: 350 case UP: 351 if (x > guessSquared) { 352 return guess + 1; 353 } 354 return guess; 355 case HALF_DOWN: 356 case HALF_UP: 357 case HALF_EVEN: 358 long sqrtFloor = guess - ((x < guessSquared) ? 1 : 0); 359 long halfSquare = sqrtFloor * sqrtFloor + sqrtFloor; 360 /* 361 * We wish to test whether or not x <= (sqrtFloor + 0.5)^2 = halfSquare + 0.25. Since both x 362 * and halfSquare are integers, this is equivalent to testing whether or not x <= 363 * halfSquare. (We have to deal with overflow, though.) 364 * 365 * If we treat halfSquare as an unsigned long, we know that 366 * sqrtFloor^2 <= x < (sqrtFloor + 1)^2 367 * halfSquare - sqrtFloor <= x < halfSquare + sqrtFloor + 1 368 * so |x - halfSquare| <= sqrtFloor. Therefore, it's safe to treat x - halfSquare as a 369 * signed long, so lessThanBranchFree is safe for use. 370 */ 371 return sqrtFloor + lessThanBranchFree(halfSquare, x); 372 default: 373 throw new AssertionError(); 374 } 375 } 376 377 /** 378 * Returns the result of dividing {@code p} by {@code q}, rounding using the specified {@code 379 * RoundingMode}. 380 * 381 * @throws ArithmeticException if {@code q == 0}, or if {@code mode == UNNECESSARY} and {@code a} 382 * is not an integer multiple of {@code b} 383 */ 384 @GwtIncompatible // TODO 385 @SuppressWarnings("fallthrough") 386 public static long divide(long p, long q, RoundingMode mode) { 387 checkNotNull(mode); 388 long div = p / q; // throws if q == 0 389 long rem = p - q * div; // equals p % q 390 391 if (rem == 0) { 392 return div; 393 } 394 395 /* 396 * Normal Java division rounds towards 0, consistently with RoundingMode.DOWN. We just have to 397 * deal with the cases where rounding towards 0 is wrong, which typically depends on the sign of 398 * p / q. 399 * 400 * signum is 1 if p and q are both nonnegative or both negative, and -1 otherwise. 401 */ 402 int signum = 1 | (int) ((p ^ q) >> (Long.SIZE - 1)); 403 boolean increment; 404 switch (mode) { 405 case UNNECESSARY: 406 checkRoundingUnnecessary(rem == 0); 407 // fall through 408 case DOWN: 409 increment = false; 410 break; 411 case UP: 412 increment = true; 413 break; 414 case CEILING: 415 increment = signum > 0; 416 break; 417 case FLOOR: 418 increment = signum < 0; 419 break; 420 case HALF_EVEN: 421 case HALF_DOWN: 422 case HALF_UP: 423 long absRem = abs(rem); 424 long cmpRemToHalfDivisor = absRem - (abs(q) - absRem); 425 // subtracting two nonnegative longs can't overflow 426 // cmpRemToHalfDivisor has the same sign as compare(abs(rem), abs(q) / 2). 427 if (cmpRemToHalfDivisor == 0) { // exactly on the half mark 428 increment = (mode == HALF_UP || (mode == HALF_EVEN && (div & 1) != 0)); 429 } else { 430 increment = cmpRemToHalfDivisor > 0; // closer to the UP value 431 } 432 break; 433 default: 434 throw new AssertionError(); 435 } 436 return increment ? div + signum : div; 437 } 438 439 /** 440 * Returns {@code x mod m}, a non-negative value less than {@code m}. This differs from {@code x % 441 * m}, which might be negative. 442 * 443 * <p>For example: 444 * 445 * <pre>{@code 446 * mod(7, 4) == 3 447 * mod(-7, 4) == 1 448 * mod(-1, 4) == 3 449 * mod(-8, 4) == 0 450 * mod(8, 4) == 0 451 * }</pre> 452 * 453 * @throws ArithmeticException if {@code m <= 0} 454 * @see <a href="http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.17.3"> 455 * Remainder Operator</a> 456 */ 457 @GwtIncompatible // TODO 458 public static int mod(long x, int m) { 459 // Cast is safe because the result is guaranteed in the range [0, m) 460 return (int) mod(x, (long) m); 461 } 462 463 /** 464 * Returns {@code x mod m}, a non-negative value less than {@code m}. This differs from {@code x % 465 * m}, which might be negative. 466 * 467 * <p>For example: 468 * 469 * <pre>{@code 470 * mod(7, 4) == 3 471 * mod(-7, 4) == 1 472 * mod(-1, 4) == 3 473 * mod(-8, 4) == 0 474 * mod(8, 4) == 0 475 * }</pre> 476 * 477 * @throws ArithmeticException if {@code m <= 0} 478 * @see <a href="http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.17.3"> 479 * Remainder Operator</a> 480 */ 481 @GwtIncompatible // TODO 482 public static long mod(long x, long m) { 483 if (m <= 0) { 484 throw new ArithmeticException("Modulus must be positive"); 485 } 486 long result = x % m; 487 return (result >= 0) ? result : result + m; 488 } 489 490 /** 491 * Returns the greatest common divisor of {@code a, b}. Returns {@code 0} if {@code a == 0 && b == 492 * 0}. 493 * 494 * @throws IllegalArgumentException if {@code a < 0} or {@code b < 0} 495 */ 496 public static long gcd(long a, long b) { 497 /* 498 * The reason we require both arguments to be >= 0 is because otherwise, what do you return on 499 * gcd(0, Long.MIN_VALUE)? BigInteger.gcd would return positive 2^63, but positive 2^63 isn't an 500 * int. 501 */ 502 checkNonNegative("a", a); 503 checkNonNegative("b", b); 504 if (a == 0) { 505 // 0 % b == 0, so b divides a, but the converse doesn't hold. 506 // BigInteger.gcd is consistent with this decision. 507 return b; 508 } else if (b == 0) { 509 return a; // similar logic 510 } 511 /* 512 * Uses the binary GCD algorithm; see http://en.wikipedia.org/wiki/Binary_GCD_algorithm. This is 513 * >60% faster than the Euclidean algorithm in benchmarks. 514 */ 515 int aTwos = Long.numberOfTrailingZeros(a); 516 a >>= aTwos; // divide out all 2s 517 int bTwos = Long.numberOfTrailingZeros(b); 518 b >>= bTwos; // divide out all 2s 519 while (a != b) { // both a, b are odd 520 // The key to the binary GCD algorithm is as follows: 521 // Both a and b are odd. Assume a > b; then gcd(a - b, b) = gcd(a, b). 522 // But in gcd(a - b, b), a - b is even and b is odd, so we can divide out powers of two. 523 524 // We bend over backwards to avoid branching, adapting a technique from 525 // http://graphics.stanford.edu/~seander/bithacks.html#IntegerMinOrMax 526 527 long delta = a - b; // can't overflow, since a and b are nonnegative 528 529 long minDeltaOrZero = delta & (delta >> (Long.SIZE - 1)); 530 // equivalent to Math.min(delta, 0) 531 532 a = delta - minDeltaOrZero - minDeltaOrZero; // sets a to Math.abs(a - b) 533 // a is now nonnegative and even 534 535 b += minDeltaOrZero; // sets b to min(old a, b) 536 a >>= Long.numberOfTrailingZeros(a); // divide out all 2s, since 2 doesn't divide b 537 } 538 return a << min(aTwos, bTwos); 539 } 540 541 /** 542 * Returns the sum of {@code a} and {@code b}, provided it does not overflow. 543 * 544 * @throws ArithmeticException if {@code a + b} overflows in signed {@code long} arithmetic 545 */ 546 public static long checkedAdd(long a, long b) { 547 long result = a + b; 548 checkNoOverflow((a ^ b) < 0 | (a ^ result) >= 0, "checkedAdd", a, b); 549 return result; 550 } 551 552 /** 553 * Returns the difference of {@code a} and {@code b}, provided it does not overflow. 554 * 555 * @throws ArithmeticException if {@code a - b} overflows in signed {@code long} arithmetic 556 */ 557 @GwtIncompatible // TODO 558 public static long checkedSubtract(long a, long b) { 559 long result = a - b; 560 checkNoOverflow((a ^ b) >= 0 | (a ^ result) >= 0, "checkedSubtract", a, b); 561 return result; 562 } 563 564 /** 565 * Returns the product of {@code a} and {@code b}, provided it does not overflow. 566 * 567 * @throws ArithmeticException if {@code a * b} overflows in signed {@code long} arithmetic 568 */ 569 public static long checkedMultiply(long a, long b) { 570 // Hacker's Delight, Section 2-12 571 int leadingZeros = 572 Long.numberOfLeadingZeros(a) 573 + Long.numberOfLeadingZeros(~a) 574 + Long.numberOfLeadingZeros(b) 575 + Long.numberOfLeadingZeros(~b); 576 /* 577 * If leadingZeros > Long.SIZE + 1 it's definitely fine, if it's < Long.SIZE it's definitely 578 * bad. We do the leadingZeros check to avoid the division below if at all possible. 579 * 580 * Otherwise, if b == Long.MIN_VALUE, then the only allowed values of a are 0 and 1. We take 581 * care of all a < 0 with their own check, because in particular, the case a == -1 will 582 * incorrectly pass the division check below. 583 * 584 * In all other cases, we check that either a is 0 or the result is consistent with division. 585 */ 586 if (leadingZeros > Long.SIZE + 1) { 587 return a * b; 588 } 589 checkNoOverflow(leadingZeros >= Long.SIZE, "checkedMultiply", a, b); 590 checkNoOverflow(a >= 0 | b != Long.MIN_VALUE, "checkedMultiply", a, b); 591 long result = a * b; 592 checkNoOverflow(a == 0 || result / a == b, "checkedMultiply", a, b); 593 return result; 594 } 595 596 /** 597 * Returns the {@code b} to the {@code k}th power, provided it does not overflow. 598 * 599 * @throws ArithmeticException if {@code b} to the {@code k}th power overflows in signed {@code 600 * long} arithmetic 601 */ 602 @GwtIncompatible // TODO 603 public static long checkedPow(long b, int k) { 604 checkNonNegative("exponent", k); 605 if (b >= -2 & b <= 2) { 606 switch ((int) b) { 607 case 0: 608 return (k == 0) ? 1 : 0; 609 case 1: 610 return 1; 611 case (-1): 612 return ((k & 1) == 0) ? 1 : -1; 613 case 2: 614 checkNoOverflow(k < Long.SIZE - 1, "checkedPow", b, k); 615 return 1L << k; 616 case (-2): 617 checkNoOverflow(k < Long.SIZE, "checkedPow", b, k); 618 return ((k & 1) == 0) ? (1L << k) : (-1L << k); 619 default: 620 throw new AssertionError(); 621 } 622 } 623 long accum = 1; 624 while (true) { 625 switch (k) { 626 case 0: 627 return accum; 628 case 1: 629 return checkedMultiply(accum, b); 630 default: 631 if ((k & 1) != 0) { 632 accum = checkedMultiply(accum, b); 633 } 634 k >>= 1; 635 if (k > 0) { 636 checkNoOverflow( 637 -FLOOR_SQRT_MAX_LONG <= b && b <= FLOOR_SQRT_MAX_LONG, "checkedPow", b, k); 638 b *= b; 639 } 640 } 641 } 642 } 643 644 /** 645 * Returns the sum of {@code a} and {@code b} unless it would overflow or underflow in which case 646 * {@code Long.MAX_VALUE} or {@code Long.MIN_VALUE} is returned, respectively. 647 * 648 * @since 20.0 649 */ 650 @Beta 651 public static long saturatedAdd(long a, long b) { 652 long naiveSum = a + b; 653 if ((a ^ b) < 0 | (a ^ naiveSum) >= 0) { 654 // If a and b have different signs or a has the same sign as the result then there was no 655 // overflow, return. 656 return naiveSum; 657 } 658 // we did over/under flow, if the sign is negative we should return MAX otherwise MIN 659 return Long.MAX_VALUE + ((naiveSum >>> (Long.SIZE - 1)) ^ 1); 660 } 661 662 /** 663 * Returns the difference of {@code a} and {@code b} unless it would overflow or underflow in 664 * which case {@code Long.MAX_VALUE} or {@code Long.MIN_VALUE} is returned, respectively. 665 * 666 * @since 20.0 667 */ 668 @Beta 669 public static long saturatedSubtract(long a, long b) { 670 long naiveDifference = a - b; 671 if ((a ^ b) >= 0 | (a ^ naiveDifference) >= 0) { 672 // If a and b have the same signs or a has the same sign as the result then there was no 673 // overflow, return. 674 return naiveDifference; 675 } 676 // we did over/under flow 677 return Long.MAX_VALUE + ((naiveDifference >>> (Long.SIZE - 1)) ^ 1); 678 } 679 680 /** 681 * Returns the product of {@code a} and {@code b} unless it would overflow or underflow in which 682 * case {@code Long.MAX_VALUE} or {@code Long.MIN_VALUE} is returned, respectively. 683 * 684 * @since 20.0 685 */ 686 @Beta 687 public static long saturatedMultiply(long a, long b) { 688 // see checkedMultiply for explanation 689 int leadingZeros = 690 Long.numberOfLeadingZeros(a) 691 + Long.numberOfLeadingZeros(~a) 692 + Long.numberOfLeadingZeros(b) 693 + Long.numberOfLeadingZeros(~b); 694 if (leadingZeros > Long.SIZE + 1) { 695 return a * b; 696 } 697 // the return value if we will overflow (which we calculate by overflowing a long :) ) 698 long limit = Long.MAX_VALUE + ((a ^ b) >>> (Long.SIZE - 1)); 699 if (leadingZeros < Long.SIZE | (a < 0 & b == Long.MIN_VALUE)) { 700 // overflow 701 return limit; 702 } 703 long result = a * b; 704 if (a == 0 || result / a == b) { 705 return result; 706 } 707 return limit; 708 } 709 710 /** 711 * Returns the {@code b} to the {@code k}th power, unless it would overflow or underflow in which 712 * case {@code Long.MAX_VALUE} or {@code Long.MIN_VALUE} is returned, respectively. 713 * 714 * @since 20.0 715 */ 716 @Beta 717 public static long saturatedPow(long b, int k) { 718 checkNonNegative("exponent", k); 719 if (b >= -2 & b <= 2) { 720 switch ((int) b) { 721 case 0: 722 return (k == 0) ? 1 : 0; 723 case 1: 724 return 1; 725 case (-1): 726 return ((k & 1) == 0) ? 1 : -1; 727 case 2: 728 if (k >= Long.SIZE - 1) { 729 return Long.MAX_VALUE; 730 } 731 return 1L << k; 732 case (-2): 733 if (k >= Long.SIZE) { 734 return Long.MAX_VALUE + (k & 1); 735 } 736 return ((k & 1) == 0) ? (1L << k) : (-1L << k); 737 default: 738 throw new AssertionError(); 739 } 740 } 741 long accum = 1; 742 // if b is negative and k is odd then the limit is MIN otherwise the limit is MAX 743 long limit = Long.MAX_VALUE + ((b >>> Long.SIZE - 1) & (k & 1)); 744 while (true) { 745 switch (k) { 746 case 0: 747 return accum; 748 case 1: 749 return saturatedMultiply(accum, b); 750 default: 751 if ((k & 1) != 0) { 752 accum = saturatedMultiply(accum, b); 753 } 754 k >>= 1; 755 if (k > 0) { 756 if (-FLOOR_SQRT_MAX_LONG > b | b > FLOOR_SQRT_MAX_LONG) { 757 return limit; 758 } 759 b *= b; 760 } 761 } 762 } 763 } 764 765 @VisibleForTesting static final long FLOOR_SQRT_MAX_LONG = 3037000499L; 766 767 /** 768 * Returns {@code n!}, that is, the product of the first {@code n} positive integers, {@code 1} if 769 * {@code n == 0}, or {@link Long#MAX_VALUE} if the result does not fit in a {@code long}. 770 * 771 * @throws IllegalArgumentException if {@code n < 0} 772 */ 773 @GwtIncompatible // TODO 774 public static long factorial(int n) { 775 checkNonNegative("n", n); 776 return (n < factorials.length) ? factorials[n] : Long.MAX_VALUE; 777 } 778 779 static final long[] factorials = { 780 1L, 781 1L, 782 1L * 2, 783 1L * 2 * 3, 784 1L * 2 * 3 * 4, 785 1L * 2 * 3 * 4 * 5, 786 1L * 2 * 3 * 4 * 5 * 6, 787 1L * 2 * 3 * 4 * 5 * 6 * 7, 788 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8, 789 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9, 790 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10, 791 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11, 792 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12, 793 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13, 794 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14, 795 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15, 796 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16, 797 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17, 798 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 18, 799 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 18 * 19, 800 1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 18 * 19 * 20 801 }; 802 803 /** 804 * Returns {@code n} choose {@code k}, also known as the binomial coefficient of {@code n} and 805 * {@code k}, or {@link Long#MAX_VALUE} if the result does not fit in a {@code long}. 806 * 807 * @throws IllegalArgumentException if {@code n < 0}, {@code k < 0}, or {@code k > n} 808 */ 809 public static long binomial(int n, int k) { 810 checkNonNegative("n", n); 811 checkNonNegative("k", k); 812 checkArgument(k <= n, "k (%s) > n (%s)", k, n); 813 if (k > (n >> 1)) { 814 k = n - k; 815 } 816 switch (k) { 817 case 0: 818 return 1; 819 case 1: 820 return n; 821 default: 822 if (n < factorials.length) { 823 return factorials[n] / (factorials[k] * factorials[n - k]); 824 } else if (k >= biggestBinomials.length || n > biggestBinomials[k]) { 825 return Long.MAX_VALUE; 826 } else if (k < biggestSimpleBinomials.length && n <= biggestSimpleBinomials[k]) { 827 // guaranteed not to overflow 828 long result = n--; 829 for (int i = 2; i <= k; n--, i++) { 830 result *= n; 831 result /= i; 832 } 833 return result; 834 } else { 835 int nBits = LongMath.log2(n, RoundingMode.CEILING); 836 837 long result = 1; 838 long numerator = n--; 839 long denominator = 1; 840 841 int numeratorBits = nBits; 842 // This is an upper bound on log2(numerator, ceiling). 843 844 /* 845 * We want to do this in long math for speed, but want to avoid overflow. We adapt the 846 * technique previously used by BigIntegerMath: maintain separate numerator and 847 * denominator accumulators, multiplying the fraction into result when near overflow. 848 */ 849 for (int i = 2; i <= k; i++, n--) { 850 if (numeratorBits + nBits < Long.SIZE - 1) { 851 // It's definitely safe to multiply into numerator and denominator. 852 numerator *= n; 853 denominator *= i; 854 numeratorBits += nBits; 855 } else { 856 // It might not be safe to multiply into numerator and denominator, 857 // so multiply (numerator / denominator) into result. 858 result = multiplyFraction(result, numerator, denominator); 859 numerator = n; 860 denominator = i; 861 numeratorBits = nBits; 862 } 863 } 864 return multiplyFraction(result, numerator, denominator); 865 } 866 } 867 } 868 869 /** Returns (x * numerator / denominator), which is assumed to come out to an integral value. */ 870 static long multiplyFraction(long x, long numerator, long denominator) { 871 if (x == 1) { 872 return numerator / denominator; 873 } 874 long commonDivisor = gcd(x, denominator); 875 x /= commonDivisor; 876 denominator /= commonDivisor; 877 // We know gcd(x, denominator) = 1, and x * numerator / denominator is exact, 878 // so denominator must be a divisor of numerator. 879 return x * (numerator / denominator); 880 } 881 882 /* 883 * binomial(biggestBinomials[k], k) fits in a long, but not binomial(biggestBinomials[k] + 1, k). 884 */ 885 static final int[] biggestBinomials = { 886 Integer.MAX_VALUE, 887 Integer.MAX_VALUE, 888 Integer.MAX_VALUE, 889 3810779, 890 121977, 891 16175, 892 4337, 893 1733, 894 887, 895 534, 896 361, 897 265, 898 206, 899 169, 900 143, 901 125, 902 111, 903 101, 904 94, 905 88, 906 83, 907 79, 908 76, 909 74, 910 72, 911 70, 912 69, 913 68, 914 67, 915 67, 916 66, 917 66, 918 66, 919 66 920 }; 921 922 /* 923 * binomial(biggestSimpleBinomials[k], k) doesn't need to use the slower GCD-based impl, but 924 * binomial(biggestSimpleBinomials[k] + 1, k) does. 925 */ 926 @VisibleForTesting 927 static final int[] biggestSimpleBinomials = { 928 Integer.MAX_VALUE, 929 Integer.MAX_VALUE, 930 Integer.MAX_VALUE, 931 2642246, 932 86251, 933 11724, 934 3218, 935 1313, 936 684, 937 419, 938 287, 939 214, 940 169, 941 139, 942 119, 943 105, 944 95, 945 87, 946 81, 947 76, 948 73, 949 70, 950 68, 951 66, 952 64, 953 63, 954 62, 955 62, 956 61, 957 61, 958 61 959 }; 960 // These values were generated by using checkedMultiply to see when the simple multiply/divide 961 // algorithm would lead to an overflow. 962 963 static boolean fitsInInt(long x) { 964 return (int) x == x; 965 } 966 967 /** 968 * Returns the arithmetic mean of {@code x} and {@code y}, rounded toward negative infinity. This 969 * method is resilient to overflow. 970 * 971 * @since 14.0 972 */ 973 public static long mean(long x, long y) { 974 // Efficient method for computing the arithmetic mean. 975 // The alternative (x + y) / 2 fails for large values. 976 // The alternative (x + y) >>> 1 fails for negative values. 977 return (x & y) + ((x ^ y) >> 1); 978 } 979 980 /* 981 * This bitmask is used as an optimization for cheaply testing for divisiblity by 2, 3, or 5. 982 * Each bit is set to 1 for all remainders that indicate divisibility by 2, 3, or 5, so 983 * 1, 7, 11, 13, 17, 19, 23, 29 are set to 0. 30 and up don't matter because they won't be hit. 984 */ 985 private static final int SIEVE_30 = 986 ~((1 << 1) | (1 << 7) | (1 << 11) | (1 << 13) | (1 << 17) | (1 << 19) | (1 << 23) 987 | (1 << 29)); 988 989 /** 990 * Returns {@code true} if {@code n} is a <a 991 * href="http://mathworld.wolfram.com/PrimeNumber.html">prime number</a>: an integer <i>greater 992 * than one</i> that cannot be factored into a product of <i>smaller</i> positive integers. 993 * Returns {@code false} if {@code n} is zero, one, or a composite number (one which <i>can</i> be 994 * factored into smaller positive integers). 995 * 996 * <p>To test larger numbers, use {@link BigInteger#isProbablePrime}. 997 * 998 * @throws IllegalArgumentException if {@code n} is negative 999 * @since 20.0 1000 */ 1001 @GwtIncompatible // TODO 1002 @Beta 1003 public static boolean isPrime(long n) { 1004 if (n < 2) { 1005 checkNonNegative("n", n); 1006 return false; 1007 } 1008 if (n < 66) { 1009 // Encode all primes less than 66 into mask without 0 and 1. 1010 long mask = 1011 (1L << (2 - 2)) 1012 | (1L << (3 - 2)) 1013 | (1L << (5 - 2)) 1014 | (1L << (7 - 2)) 1015 | (1L << (11 - 2)) 1016 | (1L << (13 - 2)) 1017 | (1L << (17 - 2)) 1018 | (1L << (19 - 2)) 1019 | (1L << (23 - 2)) 1020 | (1L << (29 - 2)) 1021 | (1L << (31 - 2)) 1022 | (1L << (37 - 2)) 1023 | (1L << (41 - 2)) 1024 | (1L << (43 - 2)) 1025 | (1L << (47 - 2)) 1026 | (1L << (53 - 2)) 1027 | (1L << (59 - 2)) 1028 | (1L << (61 - 2)); 1029 // Look up n within the mask. 1030 return ((mask >> ((int) n - 2)) & 1) != 0; 1031 } 1032 1033 if ((SIEVE_30 & (1 << (n % 30))) != 0) { 1034 return false; 1035 } 1036 if (n % 7 == 0 || n % 11 == 0 || n % 13 == 0) { 1037 return false; 1038 } 1039 if (n < 17 * 17) { 1040 return true; 1041 } 1042 1043 for (long[] baseSet : millerRabinBaseSets) { 1044 if (n <= baseSet[0]) { 1045 for (int i = 1; i < baseSet.length; i++) { 1046 if (!MillerRabinTester.test(baseSet[i], n)) { 1047 return false; 1048 } 1049 } 1050 return true; 1051 } 1052 } 1053 throw new AssertionError(); 1054 } 1055 1056 /* 1057 * If n <= millerRabinBases[i][0], then testing n against bases millerRabinBases[i][1..] suffices 1058 * to prove its primality. Values from miller-rabin.appspot.com. 1059 * 1060 * NOTE: We could get slightly better bases that would be treated as unsigned, but benchmarks 1061 * showed negligible performance improvements. 1062 */ 1063 private static final long[][] millerRabinBaseSets = { 1064 {291830, 126401071349994536L}, 1065 {885594168, 725270293939359937L, 3569819667048198375L}, 1066 {273919523040L, 15, 7363882082L, 992620450144556L}, 1067 {47636622961200L, 2, 2570940, 211991001, 3749873356L}, 1068 { 1069 7999252175582850L, 1070 2, 1071 4130806001517L, 1072 149795463772692060L, 1073 186635894390467037L, 1074 3967304179347715805L 1075 }, 1076 { 1077 585226005592931976L, 1078 2, 1079 123635709730000L, 1080 9233062284813009L, 1081 43835965440333360L, 1082 761179012939631437L, 1083 1263739024124850375L 1084 }, 1085 {Long.MAX_VALUE, 2, 325, 9375, 28178, 450775, 9780504, 1795265022} 1086 }; 1087 1088 private enum MillerRabinTester { 1089 /** Works for inputs ≤ FLOOR_SQRT_MAX_LONG. */ 1090 SMALL { 1091 @Override 1092 long mulMod(long a, long b, long m) { 1093 /* 1094 * lowasser, 2015-Feb-12: Benchmarks suggest that changing this to UnsignedLongs.remainder 1095 * and increasing the threshold to 2^32 doesn't pay for itself, and adding another enum 1096 * constant hurts performance further -- I suspect because bimorphic implementation is a 1097 * sweet spot for the JVM. 1098 */ 1099 return (a * b) % m; 1100 } 1101 1102 @Override 1103 long squareMod(long a, long m) { 1104 return (a * a) % m; 1105 } 1106 }, 1107 /** Works for all nonnegative signed longs. */ 1108 LARGE { 1109 /** Returns (a + b) mod m. Precondition: {@code 0 <= a}, {@code b < m < 2^63}. */ 1110 private long plusMod(long a, long b, long m) { 1111 return (a >= m - b) ? (a + b - m) : (a + b); 1112 } 1113 1114 /** Returns (a * 2^32) mod m. a may be any unsigned long. */ 1115 private long times2ToThe32Mod(long a, long m) { 1116 int remainingPowersOf2 = 32; 1117 do { 1118 int shift = Math.min(remainingPowersOf2, Long.numberOfLeadingZeros(a)); 1119 // shift is either the number of powers of 2 left to multiply a by, or the biggest shift 1120 // possible while keeping a in an unsigned long. 1121 a = UnsignedLongs.remainder(a << shift, m); 1122 remainingPowersOf2 -= shift; 1123 } while (remainingPowersOf2 > 0); 1124 return a; 1125 } 1126 1127 @Override 1128 long mulMod(long a, long b, long m) { 1129 long aHi = a >>> 32; // < 2^31 1130 long bHi = b >>> 32; // < 2^31 1131 long aLo = a & 0xFFFFFFFFL; // < 2^32 1132 long bLo = b & 0xFFFFFFFFL; // < 2^32 1133 1134 /* 1135 * a * b == aHi * bHi * 2^64 + (aHi * bLo + aLo * bHi) * 2^32 + aLo * bLo. 1136 * == (aHi * bHi * 2^32 + aHi * bLo + aLo * bHi) * 2^32 + aLo * bLo 1137 * 1138 * We carry out this computation in modular arithmetic. Since times2ToThe32Mod accepts any 1139 * unsigned long, we don't have to do a mod on every operation, only when intermediate 1140 * results can exceed 2^63. 1141 */ 1142 long result = times2ToThe32Mod(aHi * bHi /* < 2^62 */, m); // < m < 2^63 1143 result += aHi * bLo; // aHi * bLo < 2^63, result < 2^64 1144 if (result < 0) { 1145 result = UnsignedLongs.remainder(result, m); 1146 } 1147 // result < 2^63 again 1148 result += aLo * bHi; // aLo * bHi < 2^63, result < 2^64 1149 result = times2ToThe32Mod(result, m); // result < m < 2^63 1150 return plusMod(result, UnsignedLongs.remainder(aLo * bLo /* < 2^64 */, m), m); 1151 } 1152 1153 @Override 1154 long squareMod(long a, long m) { 1155 long aHi = a >>> 32; // < 2^31 1156 long aLo = a & 0xFFFFFFFFL; // < 2^32 1157 1158 /* 1159 * a^2 == aHi^2 * 2^64 + aHi * aLo * 2^33 + aLo^2 1160 * == (aHi^2 * 2^32 + aHi * aLo * 2) * 2^32 + aLo^2 1161 * We carry out this computation in modular arithmetic. Since times2ToThe32Mod accepts any 1162 * unsigned long, we don't have to do a mod on every operation, only when intermediate 1163 * results can exceed 2^63. 1164 */ 1165 long result = times2ToThe32Mod(aHi * aHi /* < 2^62 */, m); // < m < 2^63 1166 long hiLo = aHi * aLo * 2; 1167 if (hiLo < 0) { 1168 hiLo = UnsignedLongs.remainder(hiLo, m); 1169 } 1170 // hiLo < 2^63 1171 result += hiLo; // result < 2^64 1172 result = times2ToThe32Mod(result, m); // result < m < 2^63 1173 return plusMod(result, UnsignedLongs.remainder(aLo * aLo /* < 2^64 */, m), m); 1174 } 1175 }; 1176 1177 static boolean test(long base, long n) { 1178 // Since base will be considered % n, it's okay if base > FLOOR_SQRT_MAX_LONG, 1179 // so long as n <= FLOOR_SQRT_MAX_LONG. 1180 return ((n <= FLOOR_SQRT_MAX_LONG) ? SMALL : LARGE).testWitness(base, n); 1181 } 1182 1183 /** Returns a * b mod m. */ 1184 abstract long mulMod(long a, long b, long m); 1185 1186 /** Returns a^2 mod m. */ 1187 abstract long squareMod(long a, long m); 1188 1189 /** Returns a^p mod m. */ 1190 private long powMod(long a, long p, long m) { 1191 long res = 1; 1192 for (; p != 0; p >>= 1) { 1193 if ((p & 1) != 0) { 1194 res = mulMod(res, a, m); 1195 } 1196 a = squareMod(a, m); 1197 } 1198 return res; 1199 } 1200 1201 /** Returns true if n is a strong probable prime relative to the specified base. */ 1202 private boolean testWitness(long base, long n) { 1203 int r = Long.numberOfTrailingZeros(n - 1); 1204 long d = (n - 1) >> r; 1205 base %= n; 1206 if (base == 0) { 1207 return true; 1208 } 1209 // Calculate a := base^d mod n. 1210 long a = powMod(base, d, n); 1211 // n passes this test if 1212 // base^d = 1 (mod n) 1213 // or base^(2^j * d) = -1 (mod n) for some 0 <= j < r. 1214 if (a == 1) { 1215 return true; 1216 } 1217 int j = 0; 1218 while (a != n - 1) { 1219 if (++j == r) { 1220 return false; 1221 } 1222 a = squareMod(a, n); 1223 } 1224 return true; 1225 } 1226 } 1227 1228 /** 1229 * Returns {@code x}, rounded to a {@code double} with the specified rounding mode. If {@code x} 1230 * is precisely representable as a {@code double}, its {@code double} value will be returned; 1231 * otherwise, the rounding will choose between the two nearest representable values with {@code 1232 * mode}. 1233 * 1234 * <p>For the case of {@link RoundingMode#HALF_EVEN}, this implementation uses the IEEE 754 1235 * default rounding mode: if the two nearest representable values are equally near, the one with 1236 * the least significant bit zero is chosen. (In such cases, both of the nearest representable 1237 * values are even integers; this method returns the one that is a multiple of a greater power of 1238 * two.) 1239 * 1240 * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and {@code x} 1241 * is not precisely representable as a {@code double} 1242 * @since 30.0 1243 */ 1244 @SuppressWarnings("deprecation") 1245 @GwtIncompatible 1246 public static double roundToDouble(long x, RoundingMode mode) { 1247 // Logic adapted from ToDoubleRounder. 1248 double roundArbitrarily = (double) x; 1249 long roundArbitrarilyAsLong = (long) roundArbitrarily; 1250 int cmpXToRoundArbitrarily; 1251 1252 if (roundArbitrarilyAsLong == Long.MAX_VALUE) { 1253 /* 1254 * For most values, the conversion from roundArbitrarily to roundArbitrarilyAsLong is 1255 * lossless. In that case we can compare x to roundArbitrarily using Longs.compare(x, 1256 * roundArbitrarilyAsLong). The exception is for values where the conversion to double rounds 1257 * up to give roundArbitrarily equal to 2^63, so the conversion back to long overflows and 1258 * roundArbitrarilyAsLong is Long.MAX_VALUE. (This is the only way this condition can occur as 1259 * otherwise the conversion back to long pads with zero bits.) In this case we know that 1260 * roundArbitrarily > x. (This is important when x == Long.MAX_VALUE == 1261 * roundArbitrarilyAsLong.) 1262 */ 1263 cmpXToRoundArbitrarily = -1; 1264 } else { 1265 cmpXToRoundArbitrarily = Longs.compare(x, roundArbitrarilyAsLong); 1266 } 1267 1268 switch (mode) { 1269 case UNNECESSARY: 1270 checkRoundingUnnecessary(cmpXToRoundArbitrarily == 0); 1271 return roundArbitrarily; 1272 case FLOOR: 1273 return (cmpXToRoundArbitrarily >= 0) 1274 ? roundArbitrarily 1275 : DoubleUtils.nextDown(roundArbitrarily); 1276 case CEILING: 1277 return (cmpXToRoundArbitrarily <= 0) ? roundArbitrarily : Math.nextUp(roundArbitrarily); 1278 case DOWN: 1279 if (x >= 0) { 1280 return (cmpXToRoundArbitrarily >= 0) 1281 ? roundArbitrarily 1282 : DoubleUtils.nextDown(roundArbitrarily); 1283 } else { 1284 return (cmpXToRoundArbitrarily <= 0) ? roundArbitrarily : Math.nextUp(roundArbitrarily); 1285 } 1286 case UP: 1287 if (x >= 0) { 1288 return (cmpXToRoundArbitrarily <= 0) ? roundArbitrarily : Math.nextUp(roundArbitrarily); 1289 } else { 1290 return (cmpXToRoundArbitrarily >= 0) 1291 ? roundArbitrarily 1292 : DoubleUtils.nextDown(roundArbitrarily); 1293 } 1294 case HALF_DOWN: 1295 case HALF_UP: 1296 case HALF_EVEN: 1297 { 1298 long roundFloor; 1299 double roundFloorAsDouble; 1300 long roundCeiling; 1301 double roundCeilingAsDouble; 1302 1303 if (cmpXToRoundArbitrarily >= 0) { 1304 roundFloorAsDouble = roundArbitrarily; 1305 roundFloor = roundArbitrarilyAsLong; 1306 roundCeilingAsDouble = Math.nextUp(roundArbitrarily); 1307 roundCeiling = (long) Math.ceil(roundCeilingAsDouble); 1308 } else { 1309 roundCeilingAsDouble = roundArbitrarily; 1310 roundCeiling = roundArbitrarilyAsLong; 1311 roundFloorAsDouble = DoubleUtils.nextDown(roundArbitrarily); 1312 roundFloor = (long) Math.floor(roundFloorAsDouble); 1313 } 1314 1315 long deltaToFloor = x - roundFloor; 1316 long deltaToCeiling = roundCeiling - x; 1317 1318 if (roundCeiling == Long.MAX_VALUE) { 1319 // correct for Long.MAX_VALUE as discussed above: roundCeilingAsDouble must be 2^63, but 1320 // roundCeiling is 2^63-1. 1321 deltaToCeiling++; 1322 } 1323 1324 int diff = Longs.compare(deltaToFloor, deltaToCeiling); 1325 if (diff < 0) { // closer to floor 1326 return roundFloorAsDouble; 1327 } else if (diff > 0) { // closer to ceiling 1328 return roundCeilingAsDouble; 1329 } 1330 // halfway between the representable values; do the half-whatever logic 1331 switch (mode) { 1332 case HALF_EVEN: 1333 return ((DoubleUtils.getSignificand(roundFloorAsDouble) & 1L) == 0) 1334 ? roundFloorAsDouble 1335 : roundCeilingAsDouble; 1336 case HALF_DOWN: 1337 return (x >= 0) ? roundFloorAsDouble : roundCeilingAsDouble; 1338 case HALF_UP: 1339 return (x >= 0) ? roundCeilingAsDouble : roundFloorAsDouble; 1340 default: 1341 throw new AssertionError("impossible"); 1342 } 1343 } 1344 } 1345 throw new AssertionError("impossible"); 1346 } 1347 1348 private LongMath() {} 1349}