001/* 002 * Copyright (C) 2011 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 005 * in compliance with the License. You may obtain a copy of the License at 006 * 007 * http://www.apache.org/licenses/LICENSE-2.0 008 * 009 * Unless required by applicable law or agreed to in writing, software distributed under the License 010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express 011 * or implied. See the License for the specific language governing permissions and limitations under 012 * the License. 013 */ 014 015package com.google.common.math; 016 017import static com.google.common.base.Preconditions.checkArgument; 018import static com.google.common.math.DoubleUtils.IMPLICIT_BIT; 019import static com.google.common.math.DoubleUtils.SIGNIFICAND_BITS; 020import static com.google.common.math.DoubleUtils.getSignificand; 021import static com.google.common.math.DoubleUtils.isFinite; 022import static com.google.common.math.DoubleUtils.isNormal; 023import static com.google.common.math.DoubleUtils.scaleNormalize; 024import static com.google.common.math.MathPreconditions.checkInRangeForRoundingInputs; 025import static com.google.common.math.MathPreconditions.checkNonNegative; 026import static com.google.common.math.MathPreconditions.checkRoundingUnnecessary; 027import static java.lang.Math.abs; 028import static java.lang.Math.copySign; 029import static java.lang.Math.getExponent; 030import static java.lang.Math.log; 031import static java.lang.Math.rint; 032 033import com.google.common.annotations.GwtCompatible; 034import com.google.common.annotations.GwtIncompatible; 035import com.google.common.annotations.VisibleForTesting; 036import com.google.errorprone.annotations.CanIgnoreReturnValue; 037import java.math.BigInteger; 038import java.math.RoundingMode; 039import java.util.Iterator; 040 041/** 042 * A class for arithmetic on doubles that is not covered by {@link java.lang.Math}. 043 * 044 * @author Louis Wasserman 045 * @since 11.0 046 */ 047@GwtCompatible(emulated = true) 048public final class DoubleMath { 049 /* 050 * This method returns a value y such that rounding y DOWN (towards zero) gives the same result as 051 * rounding x according to the specified mode. 052 */ 053 @GwtIncompatible // #isMathematicalInteger, com.google.common.math.DoubleUtils 054 static double roundIntermediate(double x, RoundingMode mode) { 055 if (!isFinite(x)) { 056 throw new ArithmeticException("input is infinite or NaN"); 057 } 058 switch (mode) { 059 case UNNECESSARY: 060 checkRoundingUnnecessary(isMathematicalInteger(x)); 061 return x; 062 063 case FLOOR: 064 if (x >= 0.0 || isMathematicalInteger(x)) { 065 return x; 066 } else { 067 return (long) x - 1; 068 } 069 070 case CEILING: 071 if (x <= 0.0 || isMathematicalInteger(x)) { 072 return x; 073 } else { 074 return (long) x + 1; 075 } 076 077 case DOWN: 078 return x; 079 080 case UP: 081 if (isMathematicalInteger(x)) { 082 return x; 083 } else { 084 return (long) x + (x > 0 ? 1 : -1); 085 } 086 087 case HALF_EVEN: 088 return rint(x); 089 090 case HALF_UP: 091 { 092 double z = rint(x); 093 if (abs(x - z) == 0.5) { 094 return x + copySign(0.5, x); 095 } else { 096 return z; 097 } 098 } 099 100 case HALF_DOWN: 101 { 102 double z = rint(x); 103 if (abs(x - z) == 0.5) { 104 return x; 105 } else { 106 return z; 107 } 108 } 109 } 110 throw new AssertionError(); 111 } 112 113 /** 114 * Returns the {@code int} value that is equal to {@code x} rounded with the specified rounding 115 * mode, if possible. 116 * 117 * @throws ArithmeticException if 118 * <ul> 119 * <li>{@code x} is infinite or NaN 120 * <li>{@code x}, after being rounded to a mathematical integer using the specified rounding 121 * mode, is either less than {@code Integer.MIN_VALUE} or greater than {@code 122 * Integer.MAX_VALUE} 123 * <li>{@code x} is not a mathematical integer and {@code mode} is {@link 124 * RoundingMode#UNNECESSARY} 125 * </ul> 126 */ 127 @GwtIncompatible // #roundIntermediate 128 // Whenever both tests are cheap and functional, it's faster to use &, | instead of &&, || 129 @SuppressWarnings("ShortCircuitBoolean") 130 public static int roundToInt(double x, RoundingMode mode) { 131 double z = roundIntermediate(x, mode); 132 checkInRangeForRoundingInputs( 133 z > MIN_INT_AS_DOUBLE - 1.0 & z < MAX_INT_AS_DOUBLE + 1.0, x, mode); 134 return (int) z; 135 } 136 137 private static final double MIN_INT_AS_DOUBLE = -0x1p31; 138 private static final double MAX_INT_AS_DOUBLE = 0x1p31 - 1.0; 139 140 /** 141 * Returns the {@code long} value that is equal to {@code x} rounded with the specified rounding 142 * mode, if possible. 143 * 144 * @throws ArithmeticException if 145 * <ul> 146 * <li>{@code x} is infinite or NaN 147 * <li>{@code x}, after being rounded to a mathematical integer using the specified rounding 148 * mode, is either less than {@code Long.MIN_VALUE} or greater than {@code 149 * Long.MAX_VALUE} 150 * <li>{@code x} is not a mathematical integer and {@code mode} is {@link 151 * RoundingMode#UNNECESSARY} 152 * </ul> 153 */ 154 @GwtIncompatible // #roundIntermediate 155 // Whenever both tests are cheap and functional, it's faster to use &, | instead of &&, || 156 @SuppressWarnings("ShortCircuitBoolean") 157 public static long roundToLong(double x, RoundingMode mode) { 158 double z = roundIntermediate(x, mode); 159 checkInRangeForRoundingInputs( 160 MIN_LONG_AS_DOUBLE - z < 1.0 & z < MAX_LONG_AS_DOUBLE_PLUS_ONE, x, mode); 161 return (long) z; 162 } 163 164 private static final double MIN_LONG_AS_DOUBLE = -0x1p63; 165 /* 166 * We cannot store Long.MAX_VALUE as a double without losing precision. Instead, we store 167 * Long.MAX_VALUE + 1 == -Long.MIN_VALUE, and then offset all comparisons by 1. 168 */ 169 private static final double MAX_LONG_AS_DOUBLE_PLUS_ONE = 0x1p63; 170 171 /** 172 * Returns the {@code BigInteger} value that is equal to {@code x} rounded with the specified 173 * rounding mode, if possible. 174 * 175 * @throws ArithmeticException if 176 * <ul> 177 * <li>{@code x} is infinite or NaN 178 * <li>{@code x} is not a mathematical integer and {@code mode} is {@link 179 * RoundingMode#UNNECESSARY} 180 * </ul> 181 */ 182 // #roundIntermediate, java.lang.Math.getExponent, com.google.common.math.DoubleUtils 183 @GwtIncompatible 184 // Whenever both tests are cheap and functional, it's faster to use &, | instead of &&, || 185 @SuppressWarnings("ShortCircuitBoolean") 186 public static BigInteger roundToBigInteger(double x, RoundingMode mode) { 187 x = roundIntermediate(x, mode); 188 if (MIN_LONG_AS_DOUBLE - x < 1.0 & x < MAX_LONG_AS_DOUBLE_PLUS_ONE) { 189 return BigInteger.valueOf((long) x); 190 } 191 int exponent = getExponent(x); 192 long significand = getSignificand(x); 193 BigInteger result = BigInteger.valueOf(significand).shiftLeft(exponent - SIGNIFICAND_BITS); 194 return (x < 0) ? result.negate() : result; 195 } 196 197 /** 198 * Returns {@code true} if {@code x} is exactly equal to {@code 2^k} for some finite integer 199 * {@code k}. 200 */ 201 @GwtIncompatible // com.google.common.math.DoubleUtils 202 public static boolean isPowerOfTwo(double x) { 203 if (x > 0.0 && isFinite(x)) { 204 long significand = getSignificand(x); 205 return (significand & (significand - 1)) == 0; 206 } 207 return false; 208 } 209 210 /** 211 * Returns the base 2 logarithm of a double value. 212 * 213 * <p>Special cases: 214 * 215 * <ul> 216 * <li>If {@code x} is NaN or less than zero, the result is NaN. 217 * <li>If {@code x} is positive infinity, the result is positive infinity. 218 * <li>If {@code x} is positive or negative zero, the result is negative infinity. 219 * </ul> 220 * 221 * <p>The computed result is within 1 ulp of the exact result. 222 * 223 * <p>If the result of this method will be immediately rounded to an {@code int}, {@link 224 * #log2(double, RoundingMode)} is faster. 225 */ 226 public static double log2(double x) { 227 return log(x) / LN_2; // surprisingly within 1 ulp according to tests 228 } 229 230 /** 231 * Returns the base 2 logarithm of a double value, rounded with the specified rounding mode to an 232 * {@code int}. 233 * 234 * <p>Regardless of the rounding mode, this is faster than {@code (int) log2(x)}. 235 * 236 * @throws IllegalArgumentException if {@code x <= 0.0}, {@code x} is NaN, or {@code x} is 237 * infinite 238 */ 239 @GwtIncompatible // java.lang.Math.getExponent, com.google.common.math.DoubleUtils 240 // Whenever both tests are cheap and functional, it's faster to use &, | instead of &&, || 241 @SuppressWarnings({"fallthrough", "ShortCircuitBoolean"}) 242 public static int log2(double x, RoundingMode mode) { 243 checkArgument(x > 0.0 && isFinite(x), "x must be positive and finite"); 244 int exponent = getExponent(x); 245 if (!isNormal(x)) { 246 return log2(x * IMPLICIT_BIT, mode) - SIGNIFICAND_BITS; 247 // Do the calculation on a normal value. 248 } 249 // x is positive, finite, and normal 250 boolean increment; 251 switch (mode) { 252 case UNNECESSARY: 253 checkRoundingUnnecessary(isPowerOfTwo(x)); 254 // fall through 255 case FLOOR: 256 increment = false; 257 break; 258 case CEILING: 259 increment = !isPowerOfTwo(x); 260 break; 261 case DOWN: 262 increment = exponent < 0 & !isPowerOfTwo(x); 263 break; 264 case UP: 265 increment = exponent >= 0 & !isPowerOfTwo(x); 266 break; 267 case HALF_DOWN: 268 case HALF_EVEN: 269 case HALF_UP: 270 double xScaled = scaleNormalize(x); 271 // sqrt(2) is irrational, and the spec is relative to the "exact numerical result," 272 // so log2(x) is never exactly exponent + 0.5. 273 increment = (xScaled * xScaled) > 2.0; 274 break; 275 default: 276 throw new AssertionError(); 277 } 278 return increment ? exponent + 1 : exponent; 279 } 280 281 private static final double LN_2 = log(2); 282 283 /** 284 * Returns {@code true} if {@code x} represents a mathematical integer. 285 * 286 * <p>This is equivalent to, but not necessarily implemented as, the expression {@code 287 * !Double.isNaN(x) && !Double.isInfinite(x) && x == Math.rint(x)}. 288 */ 289 @GwtIncompatible // java.lang.Math.getExponent, com.google.common.math.DoubleUtils 290 public static boolean isMathematicalInteger(double x) { 291 return isFinite(x) 292 && (x == 0.0 293 || SIGNIFICAND_BITS - Long.numberOfTrailingZeros(getSignificand(x)) <= getExponent(x)); 294 } 295 296 /** 297 * Returns {@code n!}, that is, the product of the first {@code n} positive integers, {@code 1} if 298 * {@code n == 0}, or {@code n!}, or {@link Double#POSITIVE_INFINITY} if {@code n! > 299 * Double.MAX_VALUE}. 300 * 301 * <p>The result is within 1 ulp of the true value. 302 * 303 * @throws IllegalArgumentException if {@code n < 0} 304 */ 305 public static double factorial(int n) { 306 checkNonNegative("n", n); 307 if (n > MAX_FACTORIAL) { 308 return Double.POSITIVE_INFINITY; 309 } else { 310 // Multiplying the last (n & 0xf) values into their own accumulator gives a more accurate 311 // result than multiplying by everySixteenthFactorial[n >> 4] directly. 312 double accum = 1.0; 313 for (int i = 1 + (n & ~0xf); i <= n; i++) { 314 accum *= i; 315 } 316 return accum * everySixteenthFactorial[n >> 4]; 317 } 318 } 319 320 @VisibleForTesting static final int MAX_FACTORIAL = 170; 321 322 @VisibleForTesting 323 static final double[] everySixteenthFactorial = { 324 0x1.0p0, 325 0x1.30777758p44, 326 0x1.956ad0aae33a4p117, 327 0x1.ee69a78d72cb6p202, 328 0x1.fe478ee34844ap295, 329 0x1.c619094edabffp394, 330 0x1.3638dd7bd6347p498, 331 0x1.7cac197cfe503p605, 332 0x1.1e5dfc140e1e5p716, 333 0x1.8ce85fadb707ep829, 334 0x1.95d5f3d928edep945 335 }; 336 337 /** 338 * Returns {@code true} if {@code a} and {@code b} are within {@code tolerance} of each other. 339 * 340 * <p>Technically speaking, this is equivalent to {@code Math.abs(a - b) <= tolerance || 341 * Double.valueOf(a).equals(Double.valueOf(b))}. 342 * 343 * <p>Notable special cases include: 344 * 345 * <ul> 346 * <li>All NaNs are fuzzily equal. 347 * <li>If {@code a == b}, then {@code a} and {@code b} are always fuzzily equal. 348 * <li>Positive and negative zero are always fuzzily equal. 349 * <li>If {@code tolerance} is zero, and neither {@code a} nor {@code b} is NaN, then {@code a} 350 * and {@code b} are fuzzily equal if and only if {@code a == b}. 351 * <li>With {@link Double#POSITIVE_INFINITY} tolerance, all non-NaN values are fuzzily equal. 352 * <li>With finite tolerance, {@code Double.POSITIVE_INFINITY} and {@code 353 * Double.NEGATIVE_INFINITY} are fuzzily equal only to themselves. 354 * </ul> 355 * 356 * <p>This is reflexive and symmetric, but <em>not</em> transitive, so it is <em>not</em> an 357 * equivalence relation and <em>not</em> suitable for use in {@link Object#equals} 358 * implementations. 359 * 360 * @throws IllegalArgumentException if {@code tolerance} is {@code < 0} or NaN 361 * @since 13.0 362 */ 363 public static boolean fuzzyEquals(double a, double b, double tolerance) { 364 MathPreconditions.checkNonNegative("tolerance", tolerance); 365 return Math.copySign(a - b, 1.0) <= tolerance 366 // copySign(x, 1.0) is a branch-free version of abs(x), but with different NaN semantics 367 || (a == b) // needed to ensure that infinities equal themselves 368 || (Double.isNaN(a) && Double.isNaN(b)); 369 } 370 371 /** 372 * Compares {@code a} and {@code b} "fuzzily," with a tolerance for nearly-equal values. 373 * 374 * <p>This method is equivalent to {@code fuzzyEquals(a, b, tolerance) ? 0 : Double.compare(a, 375 * b)}. In particular, like {@link Double#compare(double, double)}, it treats all NaN values as 376 * equal and greater than all other values (including {@link Double#POSITIVE_INFINITY}). 377 * 378 * <p>This is <em>not</em> a total ordering and is <em>not</em> suitable for use in {@link 379 * Comparable#compareTo} implementations. In particular, it is not transitive. 380 * 381 * @throws IllegalArgumentException if {@code tolerance} is {@code < 0} or NaN 382 * @since 13.0 383 */ 384 public static int fuzzyCompare(double a, double b, double tolerance) { 385 if (fuzzyEquals(a, b, tolerance)) { 386 return 0; 387 } else if (a < b) { 388 return -1; 389 } else if (a > b) { 390 return 1; 391 } else { 392 return Boolean.compare(Double.isNaN(a), Double.isNaN(b)); 393 } 394 } 395 396 /** 397 * Returns the <a href="http://en.wikipedia.org/wiki/Arithmetic_mean">arithmetic mean</a> of 398 * {@code values}. 399 * 400 * <p>If these values are a sample drawn from a population, this is also an unbiased estimator of 401 * the arithmetic mean of the population. 402 * 403 * @param values a nonempty series of values 404 * @throws IllegalArgumentException if {@code values} is empty or contains any non-finite value 405 * @deprecated Use {@link Stats#meanOf} instead, noting the less strict handling of non-finite 406 * values. 407 */ 408 @Deprecated 409 // com.google.common.math.DoubleUtils 410 @GwtIncompatible 411 public static double mean(double... values) { 412 checkArgument(values.length > 0, "Cannot take mean of 0 values"); 413 long count = 1; 414 double mean = checkFinite(values[0]); 415 for (int index = 1; index < values.length; ++index) { 416 checkFinite(values[index]); 417 count++; 418 // Art of Computer Programming vol. 2, Knuth, 4.2.2, (15) 419 mean += (values[index] - mean) / count; 420 } 421 return mean; 422 } 423 424 /** 425 * Returns the <a href="http://en.wikipedia.org/wiki/Arithmetic_mean">arithmetic mean</a> of 426 * {@code values}. 427 * 428 * <p>If these values are a sample drawn from a population, this is also an unbiased estimator of 429 * the arithmetic mean of the population. 430 * 431 * @param values a nonempty series of values 432 * @throws IllegalArgumentException if {@code values} is empty 433 * @deprecated Use {@link Stats#meanOf} instead, noting the less strict handling of non-finite 434 * values. 435 */ 436 @Deprecated 437 public static double mean(int... values) { 438 checkArgument(values.length > 0, "Cannot take mean of 0 values"); 439 // The upper bound on the length of an array and the bounds on the int values mean that, in 440 // this case only, we can compute the sum as a long without risking overflow or loss of 441 // precision. So we do that, as it's slightly quicker than the Knuth algorithm. 442 long sum = 0; 443 for (int index = 0; index < values.length; ++index) { 444 sum += values[index]; 445 } 446 return (double) sum / values.length; 447 } 448 449 /** 450 * Returns the <a href="http://en.wikipedia.org/wiki/Arithmetic_mean">arithmetic mean</a> of 451 * {@code values}. 452 * 453 * <p>If these values are a sample drawn from a population, this is also an unbiased estimator of 454 * the arithmetic mean of the population. 455 * 456 * @param values a nonempty series of values, which will be converted to {@code double} values 457 * (this may cause loss of precision for longs of magnitude over 2^53 (slightly over 9e15)) 458 * @throws IllegalArgumentException if {@code values} is empty 459 * @deprecated Use {@link Stats#meanOf} instead, noting the less strict handling of non-finite 460 * values. 461 */ 462 @Deprecated 463 public static double mean(long... values) { 464 checkArgument(values.length > 0, "Cannot take mean of 0 values"); 465 long count = 1; 466 double mean = values[0]; 467 for (int index = 1; index < values.length; ++index) { 468 count++; 469 // Art of Computer Programming vol. 2, Knuth, 4.2.2, (15) 470 mean += (values[index] - mean) / count; 471 } 472 return mean; 473 } 474 475 /** 476 * Returns the <a href="http://en.wikipedia.org/wiki/Arithmetic_mean">arithmetic mean</a> of 477 * {@code values}. 478 * 479 * <p>If these values are a sample drawn from a population, this is also an unbiased estimator of 480 * the arithmetic mean of the population. 481 * 482 * @param values a nonempty series of values, which will be converted to {@code double} values 483 * (this may cause loss of precision) 484 * @throws IllegalArgumentException if {@code values} is empty or contains any non-finite value 485 * @deprecated Use {@link Stats#meanOf} instead, noting the less strict handling of non-finite 486 * values. 487 */ 488 @Deprecated 489 // com.google.common.math.DoubleUtils 490 @GwtIncompatible 491 public static double mean(Iterable<? extends Number> values) { 492 return mean(values.iterator()); 493 } 494 495 /** 496 * Returns the <a href="http://en.wikipedia.org/wiki/Arithmetic_mean">arithmetic mean</a> of 497 * {@code values}. 498 * 499 * <p>If these values are a sample drawn from a population, this is also an unbiased estimator of 500 * the arithmetic mean of the population. 501 * 502 * @param values a nonempty series of values, which will be converted to {@code double} values 503 * (this may cause loss of precision) 504 * @throws IllegalArgumentException if {@code values} is empty or contains any non-finite value 505 * @deprecated Use {@link Stats#meanOf} instead, noting the less strict handling of non-finite 506 * values. 507 */ 508 @Deprecated 509 // com.google.common.math.DoubleUtils 510 @GwtIncompatible 511 public static double mean(Iterator<? extends Number> values) { 512 checkArgument(values.hasNext(), "Cannot take mean of 0 values"); 513 long count = 1; 514 double mean = checkFinite(values.next().doubleValue()); 515 while (values.hasNext()) { 516 double value = checkFinite(values.next().doubleValue()); 517 count++; 518 // Art of Computer Programming vol. 2, Knuth, 4.2.2, (15) 519 mean += (value - mean) / count; 520 } 521 return mean; 522 } 523 524 @GwtIncompatible // com.google.common.math.DoubleUtils 525 @CanIgnoreReturnValue 526 private static double checkFinite(double argument) { 527 checkArgument(isFinite(argument)); 528 return argument; 529 } 530 531 private DoubleMath() {} 532}