001 /* 002 * Copyright (C) 2009 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017 package com.google.common.primitives; 018 019 import static com.google.common.base.Preconditions.checkArgument; 020 import static com.google.common.base.Preconditions.checkNotNull; 021 022 import com.google.common.annotations.VisibleForTesting; 023 024 import sun.misc.Unsafe; 025 026 import java.lang.reflect.Field; 027 import java.nio.ByteOrder; 028 import java.security.AccessController; 029 import java.security.PrivilegedAction; 030 import java.util.Comparator; 031 032 /** 033 * Static utility methods pertaining to {@code byte} primitives that interpret 034 * values as <i>unsigned</i> (that is, any negative value {@code b} is treated 035 * as the positive value {@code 256 + b}). The corresponding methods that treat 036 * the values as signed are found in {@link SignedBytes}, and the methods for 037 * which signedness is not an issue are in {@link Bytes}. 038 * 039 * @author Kevin Bourrillion 040 * @author Martin Buchholz 041 * @author Hiroshi Yamauchi 042 * @since 1 043 */ 044 public final class UnsignedBytes { 045 private UnsignedBytes() {} 046 047 /** 048 * Returns the value of the given byte as an integer, when treated as 049 * unsigned. That is, returns {@code value + 256} if {@code value} is 050 * negative; {@code value} itself otherwise. 051 * 052 * @since 6 053 */ 054 public static int toInt(byte value) { 055 return value & 0xFF; 056 } 057 058 /** 059 * Returns the {@code byte} value that, when treated as unsigned, is equal to 060 * {@code value}, if possible. 061 * 062 * @param value a value between 0 and 255 inclusive 063 * @return the {@code byte} value that, when treated as unsigned, equals 064 * {@code value} 065 * @throws IllegalArgumentException if {@code value} is negative or greater 066 * than 255 067 */ 068 public static byte checkedCast(long value) { 069 checkArgument(value >> 8 == 0, "out of range: %s", value); 070 return (byte) value; 071 } 072 073 /** 074 * Returns the {@code byte} value that, when treated as unsigned, is nearest 075 * in value to {@code value}. 076 * 077 * @param value any {@code long} value 078 * @return {@code (byte) 255} if {@code value >= 255}, {@code (byte) 0} if 079 * {@code value <= 0}, and {@code value} cast to {@code byte} otherwise 080 */ 081 public static byte saturatedCast(long value) { 082 if (value > 255) { 083 return (byte) 255; // -1 084 } 085 if (value < 0) { 086 return (byte) 0; 087 } 088 return (byte) value; 089 } 090 091 /** 092 * Compares the two specified {@code byte} values, treating them as unsigned 093 * values between 0 and 255 inclusive. For example, {@code (byte) -127} is 094 * considered greater than {@code (byte) 127} because it is seen as having 095 * the value of positive {@code 129}. 096 * 097 * @param a the first {@code byte} to compare 098 * @param b the second {@code byte} to compare 099 * @return a negative value if {@code a} is less than {@code b}; a positive 100 * value if {@code a} is greater than {@code b}; or zero if they are equal 101 */ 102 public static int compare(byte a, byte b) { 103 return toInt(a) - toInt(b); 104 } 105 106 /** 107 * Returns the least value present in {@code array}. 108 * 109 * @param array a <i>nonempty</i> array of {@code byte} values 110 * @return the value present in {@code array} that is less than or equal to 111 * every other value in the array 112 * @throws IllegalArgumentException if {@code array} is empty 113 */ 114 public static byte min(byte... array) { 115 checkArgument(array.length > 0); 116 int min = toInt(array[0]); 117 for (int i = 1; i < array.length; i++) { 118 int next = toInt(array[i]); 119 if (next < min) { 120 min = next; 121 } 122 } 123 return (byte) min; 124 } 125 126 /** 127 * Returns the greatest value present in {@code array}. 128 * 129 * @param array a <i>nonempty</i> array of {@code byte} values 130 * @return the value present in {@code array} that is greater than or equal 131 * to every other value in the array 132 * @throws IllegalArgumentException if {@code array} is empty 133 */ 134 public static byte max(byte... array) { 135 checkArgument(array.length > 0); 136 int max = toInt(array[0]); 137 for (int i = 1; i < array.length; i++) { 138 int next = toInt(array[i]); 139 if (next > max) { 140 max = next; 141 } 142 } 143 return (byte) max; 144 } 145 146 /** 147 * Returns a string containing the supplied {@code byte} values separated by 148 * {@code separator}. For example, {@code join(":", (byte) 1, (byte) 2, 149 * (byte) 255)} returns the string {@code "1:2:255"}. 150 * 151 * @param separator the text that should appear between consecutive values in 152 * the resulting string (but not at the start or end) 153 * @param array an array of {@code byte} values, possibly empty 154 */ 155 public static String join(String separator, byte... array) { 156 checkNotNull(separator); 157 if (array.length == 0) { 158 return ""; 159 } 160 161 // For pre-sizing a builder, just get the right order of magnitude 162 StringBuilder builder = new StringBuilder(array.length * 5); 163 builder.append(toInt(array[0])); 164 for (int i = 1; i < array.length; i++) { 165 builder.append(separator).append(toInt(array[i])); 166 } 167 return builder.toString(); 168 } 169 170 /** 171 * Returns a comparator that compares two {@code byte} arrays 172 * lexicographically. That is, it compares, using {@link 173 * #compare(byte, byte)}), the first pair of values that follow any common 174 * prefix, or when one array is a prefix of the other, treats the shorter 175 * array as the lesser. For example, {@code [] < [0x01] < [0x01, 0x7F] < 176 * [0x01, 0x80] < [0x02]}. Values are treated as unsigned. 177 * 178 * <p>The returned comparator is inconsistent with {@link 179 * Object#equals(Object)} (since arrays support only identity equality), but 180 * it is consistent with {@link java.util.Arrays#equals(byte[], byte[])}. 181 * 182 * @see <a href="http://en.wikipedia.org/wiki/Lexicographical_order"> 183 * Lexicographical order article at Wikipedia</a> 184 * @since 2 185 */ 186 public static Comparator<byte[]> lexicographicalComparator() { 187 return LexicographicalComparatorHolder.BEST_COMPARATOR; 188 } 189 190 @VisibleForTesting 191 static Comparator<byte[]> lexicographicalComparatorJavaImpl() { 192 return LexicographicalComparatorHolder.PureJavaComparator.INSTANCE; 193 } 194 195 /** 196 * Provides a lexicographical comparator implementation; either a Java 197 * implementation or a faster implementation based on {@link Unsafe}. 198 * 199 * <p>Uses reflection to gracefully fall back to the Java implementation if 200 * {@code Unsafe} isn't available. 201 */ 202 @VisibleForTesting 203 static class LexicographicalComparatorHolder { 204 static final String UNSAFE_COMPARATOR_NAME = 205 LexicographicalComparatorHolder.class.getName() + "$UnsafeComparator"; 206 207 static final Comparator<byte[]> BEST_COMPARATOR = getBestComparator(); 208 209 @SuppressWarnings("unused") // only access this class via reflection! 210 enum UnsafeComparator implements Comparator<byte[]> { 211 INSTANCE; 212 213 static final boolean littleEndian = 214 ByteOrder.nativeOrder().equals(ByteOrder.LITTLE_ENDIAN); 215 216 /* 217 * The following static final fields exist for performance reasons. 218 * 219 * In UnsignedBytesBenchmark, accessing the following objects via static 220 * final fields is the fastest (more than twice as fast as the Java 221 * implementation, vs ~1.5x with non-final static fields, on x86_32) 222 * under the Hotspot server compiler. The reason is obviously that the 223 * non-final fields need to be reloaded inside the loop. 224 * 225 * And, no, defining (final or not) local variables out of the loop still 226 * isn't as good because the null check on the theUnsafe object remains 227 * inside the loop and BYTE_ARRAY_BASE_OFFSET doesn't get 228 * constant-folded. 229 * 230 * The compiler can treat static final fields as compile-time constants 231 * and can constant-fold them while (final or not) local variables are 232 * run time values. 233 */ 234 235 static final Unsafe theUnsafe; 236 237 /** The offset to the first element in a byte array. */ 238 static final int BYTE_ARRAY_BASE_OFFSET; 239 240 static { 241 theUnsafe = (Unsafe) AccessController.doPrivileged( 242 new PrivilegedAction<Object>() { 243 @Override 244 public Object run() { 245 try { 246 Field f = Unsafe.class.getDeclaredField("theUnsafe"); 247 f.setAccessible(true); 248 return f.get(null); 249 } catch (NoSuchFieldException e) { 250 // It doesn't matter what we throw; 251 // it's swallowed in getBestComparator(). 252 throw new Error(); 253 } catch (IllegalAccessException e) { 254 throw new Error(); 255 } 256 } 257 }); 258 259 BYTE_ARRAY_BASE_OFFSET = theUnsafe.arrayBaseOffset(byte[].class); 260 261 // sanity check - this should never fail 262 if (theUnsafe.arrayIndexScale(byte[].class) != 1) { 263 throw new AssertionError(); 264 } 265 } 266 267 /** 268 * Returns true if x1 is less than x2, when both values are treated as 269 * unsigned. 270 */ 271 // TODO(kevinb): Should be a common method in primitives.UnsignedLongs. 272 static boolean lessThanUnsigned(long x1, long x2) { 273 return (x1 + Long.MIN_VALUE) < (x2 + Long.MIN_VALUE); 274 } 275 276 @Override public int compare(byte[] left, byte[] right) { 277 int minLength = Math.min(left.length, right.length); 278 int minWords = minLength / Longs.BYTES; 279 280 /* 281 * Compare 8 bytes at a time. Benchmarking shows comparing 8 bytes at a 282 * time is no slower than comparing 4 bytes at a time even on 32-bit. 283 * On the other hand, it is substantially faster on 64-bit. 284 */ 285 for (int i = 0; i < minWords * Longs.BYTES; i += Longs.BYTES) { 286 long lw = theUnsafe.getLong(left, BYTE_ARRAY_BASE_OFFSET + (long) i); 287 long rw = theUnsafe.getLong(right, BYTE_ARRAY_BASE_OFFSET + (long) i); 288 long diff = lw ^ rw; 289 290 if (diff != 0) { 291 if (!littleEndian) { 292 return lessThanUnsigned(lw, rw) ? -1 : 1; 293 } 294 295 // Use binary search 296 int n = 0; 297 int y; 298 int x = (int) diff; 299 if (x == 0) { 300 x = (int) (diff >>> 32); 301 n = 32; 302 } 303 304 y = x << 16; 305 if (y == 0) { 306 n += 16; 307 } else { 308 x = y; 309 } 310 311 y = x << 8; 312 if (y == 0) { 313 n += 8; 314 } 315 return (int) (((lw >>> n) & 0xFFL) - ((rw >>> n) & 0xFFL)); 316 } 317 } 318 319 // The epilogue to cover the last (minLength % 8) elements. 320 for (int i = minWords * Longs.BYTES; i < minLength; i++) { 321 int result = UnsignedBytes.compare(left[i], right[i]); 322 if (result != 0) { 323 return result; 324 } 325 } 326 return left.length - right.length; 327 } 328 } 329 330 enum PureJavaComparator implements Comparator<byte[]> { 331 INSTANCE; 332 333 @Override public int compare(byte[] left, byte[] right) { 334 int minLength = Math.min(left.length, right.length); 335 for (int i = 0; i < minLength; i++) { 336 int result = UnsignedBytes.compare(left[i], right[i]); 337 if (result != 0) { 338 return result; 339 } 340 } 341 return left.length - right.length; 342 } 343 } 344 345 /** 346 * Returns the Unsafe-using Comparator, or falls back to the pure-Java 347 * implementation if unable to do so. 348 */ 349 static Comparator<byte[]> getBestComparator() { 350 try { 351 Class<?> theClass = Class.forName(UNSAFE_COMPARATOR_NAME); 352 353 // yes, UnsafeComparator does implement Comparator<byte[]> 354 @SuppressWarnings("unchecked") 355 Comparator<byte[]> comparator = 356 (Comparator<byte[]>) theClass.getEnumConstants()[0]; 357 return comparator; 358 } catch (Throwable t) { // ensure we really catch *everything* 359 return lexicographicalComparatorJavaImpl(); 360 } 361 } 362 } 363 }