001 /* 002 * Copyright (C) 2007 Google Inc. 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017 package com.google.common.collect; 018 019 import static com.google.common.base.Preconditions.checkArgument; 020 import static com.google.common.base.Preconditions.checkNotNull; 021 022 import com.google.common.annotations.Beta; 023 import com.google.common.annotations.GwtCompatible; 024 import com.google.common.annotations.VisibleForTesting; 025 import com.google.common.base.Function; 026 027 import java.util.Arrays; 028 import java.util.Collections; 029 import java.util.Comparator; 030 import java.util.HashSet; 031 import java.util.Iterator; 032 import java.util.List; 033 import java.util.Map; 034 import java.util.NoSuchElementException; 035 import java.util.SortedMap; 036 import java.util.SortedSet; 037 import java.util.concurrent.atomic.AtomicInteger; 038 039 import javax.annotation.Nullable; 040 041 /** 042 * A comparator with added methods to support common functions. For example: 043 * <pre> {@code 044 * 045 * if (Ordering.from(comparator).reverse().isOrdered(list)) { ... }}</pre> 046 * 047 * The {@link #from(Comparator)} method returns the equivalent {@code Ordering} 048 * instance for a pre-existing comparator. You can also skip the comparator step 049 * and extend {@code Ordering} directly: <pre> {@code 050 * 051 * Ordering<String> byLengthOrdering = new Ordering<String>() { 052 * public int compare(String left, String right) { 053 * return Ints.compare(left.length(), right.length()); 054 * } 055 * };}</pre> 056 * 057 * Except as noted, the orderings returned by the factory methods of this 058 * class are serializable if and only if the provided instances that back them 059 * are. For example, if {@code ordering} and {@code function} can themselves be 060 * serialized, then {@code ordering.onResultOf(function)} can as well. 061 * 062 * @author Jesse Wilson 063 * @author Kevin Bourrillion 064 * @since 2 (imported from Google Collections Library) 065 */ 066 @GwtCompatible 067 public abstract class Ordering<T> implements Comparator<T> { 068 // Static factories 069 070 /** 071 * Returns a serializable ordering that uses the natural order of the values. 072 * The ordering throws a {@link NullPointerException} when passed a null 073 * parameter. 074 * 075 * <p>The type specification is {@code <C extends Comparable>}, instead of 076 * the technically correct {@code <C extends Comparable<? super C>>}, to 077 * support legacy types from before Java 5. 078 */ 079 @GwtCompatible(serializable = true) 080 @SuppressWarnings("unchecked") // TODO(kevinb): the right way to explain this?? 081 public static <C extends Comparable> Ordering<C> natural() { 082 return (Ordering) NaturalOrdering.INSTANCE; 083 } 084 085 /** 086 * Returns an ordering for a pre-existing {@code comparator}. Note 087 * that if the comparator is not pre-existing, and you don't require 088 * serialization, you can subclass {@code Ordering} and implement its 089 * {@link #compare(Object, Object) compare} method instead. 090 * 091 * @param comparator the comparator that defines the order 092 */ 093 @GwtCompatible(serializable = true) 094 public static <T> Ordering<T> from(Comparator<T> comparator) { 095 return (comparator instanceof Ordering) 096 ? (Ordering<T>) comparator 097 : new ComparatorOrdering<T>(comparator); 098 } 099 100 /** 101 * Simply returns its argument. 102 * 103 * @deprecated no need to use this 104 */ 105 @GwtCompatible(serializable = true) 106 @Deprecated public static <T> Ordering<T> from(Ordering<T> ordering) { 107 return checkNotNull(ordering); 108 } 109 110 /** 111 * Returns an ordering that compares objects according to the order in 112 * which they appear in the given list. Only objects present in the list 113 * (according to {@link Object#equals}) may be compared. This comparator 114 * imposes a "partial ordering" over the type {@code T}. Subsequent changes 115 * to the {@code valuesInOrder} list will have no effect on the returned 116 * comparator. Null values in the list are not supported. 117 * 118 * <p>The returned comparator throws an {@link ClassCastException} when it 119 * receives an input parameter that isn't among the provided values. 120 * 121 * <p>The generated comparator is serializable if all the provided values are 122 * serializable. 123 * 124 * @param valuesInOrder the values that the returned comparator will be able 125 * to compare, in the order the comparator should induce 126 * @return the comparator described above 127 * @throws NullPointerException if any of the provided values is null 128 * @throws IllegalArgumentException if {@code valuesInOrder} contains any 129 * duplicate values (according to {@link Object#equals}) 130 */ 131 @GwtCompatible(serializable = true) 132 public static <T> Ordering<T> explicit(List<T> valuesInOrder) { 133 return new ExplicitOrdering<T>(valuesInOrder); 134 } 135 136 /** 137 * Returns an ordering that compares objects according to the order in 138 * which they are given to this method. Only objects present in the argument 139 * list (according to {@link Object#equals}) may be compared. This comparator 140 * imposes a "partial ordering" over the type {@code T}. Null values in the 141 * argument list are not supported. 142 * 143 * <p>The returned comparator throws a {@link ClassCastException} when it 144 * receives an input parameter that isn't among the provided values. 145 * 146 * <p>The generated comparator is serializable if all the provided values are 147 * serializable. 148 * 149 * @param leastValue the value which the returned comparator should consider 150 * the "least" of all values 151 * @param remainingValuesInOrder the rest of the values that the returned 152 * comparator will be able to compare, in the order the comparator should 153 * follow 154 * @return the comparator described above 155 * @throws NullPointerException if any of the provided values is null 156 * @throws IllegalArgumentException if any duplicate values (according to 157 * {@link Object#equals(Object)}) are present among the method arguments 158 */ 159 @GwtCompatible(serializable = true) 160 public static <T> Ordering<T> explicit( 161 T leastValue, T... remainingValuesInOrder) { 162 return explicit(Lists.asList(leastValue, remainingValuesInOrder)); 163 } 164 165 /** 166 * Exception thrown by a {@link Ordering#explicit(List)} or {@link 167 * Ordering#explicit(Object, Object[])} comparator when comparing a value 168 * outside the set of values it can compare. Extending {@link 169 * ClassCastException} may seem odd, but it is required. 170 */ 171 // TODO(kevinb): make this public, document it right 172 @VisibleForTesting 173 static class IncomparableValueException extends ClassCastException { 174 final Object value; 175 176 IncomparableValueException(Object value) { 177 super("Cannot compare value: " + value); 178 this.value = value; 179 } 180 181 private static final long serialVersionUID = 0; 182 } 183 184 /** 185 * Returns an arbitrary ordering over all objects, for which {@code compare(a, 186 * b) == 0} implies {@code a == b} (identity equality). There is no meaning 187 * whatsoever to the order imposed, but it is constant for the life of the VM. 188 * 189 * <p>Because the ordering is identity-based, it is not "consistent with 190 * {@link Object#equals(Object)}" as defined by {@link Comparator}. Use 191 * caution when building a {@link SortedSet} or {@link SortedMap} from it, as 192 * the resulting collection will not behave exactly according to spec. 193 * 194 * <p>This ordering is not serializable, as its implementation relies on 195 * {@link System#identityHashCode(Object)}, so its behavior cannot be 196 * preserved across serialization. 197 * 198 * @since 2 199 */ 200 public static Ordering<Object> arbitrary() { 201 return ArbitraryOrderingHolder.ARBITRARY_ORDERING; 202 } 203 204 private static class ArbitraryOrderingHolder { 205 static final Ordering<Object> ARBITRARY_ORDERING = new ArbitraryOrdering(); 206 } 207 208 @VisibleForTesting static class ArbitraryOrdering extends Ordering<Object> { 209 private Map<Object, Integer> uids = 210 Platform.tryWeakKeys(new MapMaker()).makeComputingMap( 211 new Function<Object, Integer>() { 212 final AtomicInteger counter = new AtomicInteger(0); 213 public Integer apply(Object from) { 214 return counter.getAndIncrement(); 215 } 216 }); 217 218 @Override public int compare(Object left, Object right) { 219 if (left == right) { 220 return 0; 221 } 222 int leftCode = identityHashCode(left); 223 int rightCode = identityHashCode(right); 224 if (leftCode != rightCode) { 225 return leftCode < rightCode ? -1 : 1; 226 } 227 228 // identityHashCode collision (rare, but not as rare as you'd think) 229 int result = uids.get(left).compareTo(uids.get(right)); 230 if (result == 0) { 231 throw new AssertionError(); // extremely, extremely unlikely. 232 } 233 return result; 234 } 235 236 @Override public String toString() { 237 return "Ordering.arbitrary()"; 238 } 239 240 /* 241 * We need to be able to mock identityHashCode() calls for tests, because it 242 * can take 1-10 seconds to find colliding objects. Mocking frameworks that 243 * can do magic to mock static method calls still can't do so for a system 244 * class, so we need the indirection. In production, Hotspot should still 245 * recognize that the call is 1-morphic and should still be willing to 246 * inline it if necessary. 247 */ 248 int identityHashCode(Object object) { 249 return System.identityHashCode(object); 250 } 251 } 252 253 /** 254 * Returns an ordering that compares objects by the natural ordering of their 255 * string representations as returned by {@code toString()}. It does not 256 * support null values. 257 * 258 * <p>The comparator is serializable. 259 */ 260 @GwtCompatible(serializable = true) 261 public static Ordering<Object> usingToString() { 262 return UsingToStringOrdering.INSTANCE; 263 } 264 265 /** 266 * Returns an ordering which tries each given comparator in order until a 267 * non-zero result is found, returning that result, and returning zero only if 268 * all comparators return zero. The returned ordering is based on the state of 269 * the {@code comparators} iterable at the time it was provided to this 270 * method. 271 * 272 * <p>The returned ordering is equivalent to that produced using {@code 273 * Ordering.from(comp1).compound(comp2).compound(comp3) . . .}. 274 * 275 * <p><b>Warning:</b> Supplying an argument with undefined iteration order, 276 * such as a {@link HashSet}, will produce non-deterministic results. 277 * 278 * @param comparators the comparators to try in order 279 */ 280 @GwtCompatible(serializable = true) 281 public static <T> Ordering<T> compound( 282 Iterable<? extends Comparator<? super T>> comparators) { 283 return new CompoundOrdering<T>(comparators); 284 } 285 286 /** 287 * Constructs a new instance of this class (only invokable by the subclass 288 * constructor, typically implicit). 289 */ 290 protected Ordering() {} 291 292 // Non-static factories 293 294 /** 295 * Returns an ordering which first uses the ordering {@code this}, but which 296 * in the event of a "tie", then delegates to {@code secondaryComparator}. 297 * For example, to sort a bug list first by status and second by priority, you 298 * might use {@code byStatus.compound(byPriority)}. For a compound ordering 299 * with three or more components, simply chain multiple calls to this method. 300 * 301 * <p>An ordering produced by this method, or a chain of calls to this method, 302 * is equivalent to one created using {@link Ordering#compound(Iterable)} on 303 * the same component comparators. 304 */ 305 @GwtCompatible(serializable = true) 306 public <U extends T> Ordering<U> compound( 307 Comparator<? super U> secondaryComparator) { 308 return new CompoundOrdering<U>(this, checkNotNull(secondaryComparator)); 309 } 310 311 /** 312 * Returns the reverse of this ordering; the {@code Ordering} equivalent to 313 * {@link Collections#reverseOrder(Comparator)}. 314 */ 315 // type parameter <S> lets us avoid the extra <String> in statements like: 316 // Ordering<String> o = Ordering.<String>natural().reverse(); 317 @GwtCompatible(serializable = true) 318 public <S extends T> Ordering<S> reverse() { 319 return new ReverseOrdering<S>(this); 320 } 321 322 /** 323 * Returns a new ordering on {@code F} which orders elements by first applying 324 * a function to them, then comparing those results using {@code this}. For 325 * example, to compare objects by their string forms, in a case-insensitive 326 * manner, use: <pre> {@code 327 * 328 * Ordering.from(String.CASE_INSENSITIVE_ORDER) 329 * .onResultOf(Functions.toStringFunction())}</pre> 330 */ 331 @GwtCompatible(serializable = true) 332 public <F> Ordering<F> onResultOf(Function<F, ? extends T> function) { 333 return new ByFunctionOrdering<F, T>(function, this); 334 } 335 336 /** 337 * Returns a new ordering which sorts iterables by comparing corresponding 338 * elements pairwise until a nonzero result is found; imposes "dictionary 339 * order". If the end of one iterable is reached, but not the other, the 340 * shorter iterable is considered to be less than the longer one. For example, 341 * a lexicographical natural ordering over integers considers {@code 342 * [] < [1] < [1, 1] < [1, 2] < [2]}. 343 * 344 * <p>Note that {@code ordering.lexicographical().reverse()} is not 345 * equivalent to {@code ordering.reverse().lexicographical()} (consider how 346 * each would order {@code [1]} and {@code [1, 1]}). 347 * 348 * @since 2 349 */ 350 @GwtCompatible(serializable = true) 351 // type parameter <S> lets us avoid the extra <String> in statements like: 352 // Ordering<Iterable<String>> o = 353 // Ordering.<String>natural().lexicographical(); 354 public <S extends T> Ordering<Iterable<S>> lexicographical() { 355 /* 356 * Note that technically the returned ordering should be capable of 357 * handling not just {@code Iterable<S>} instances, but also any {@code 358 * Iterable<? extends S>}. However, the need for this comes up so rarely 359 * that it doesn't justify making everyone else deal with the very ugly 360 * wildcard. 361 */ 362 return new LexicographicalOrdering<S>(this); 363 } 364 365 /** 366 * Returns an ordering that treats {@code null} as less than all other values 367 * and uses {@code this} to compare non-null values. 368 */ 369 // type parameter <S> lets us avoid the extra <String> in statements like: 370 // Ordering<String> o = Ordering.<String>natural().nullsFirst(); 371 @GwtCompatible(serializable = true) 372 public <S extends T> Ordering<S> nullsFirst() { 373 return new NullsFirstOrdering<S>(this); 374 } 375 376 /** 377 * Returns an ordering that treats {@code null} as greater than all other 378 * values and uses this ordering to compare non-null values. 379 */ 380 // type parameter <S> lets us avoid the extra <String> in statements like: 381 // Ordering<String> o = Ordering.<String>natural().nullsLast(); 382 @GwtCompatible(serializable = true) 383 public <S extends T> Ordering<S> nullsLast() { 384 return new NullsLastOrdering<S>(this); 385 } 386 387 // Regular instance methods 388 389 // Override to add @Nullable 390 @Override public abstract int compare(@Nullable T left, @Nullable T right); 391 392 /** 393 * Returns the {@code k} least elements of the given iterable according to 394 * this ordering, in order from least to greatest. If there are fewer than 395 * {@code k} elements present, all will be included. 396 * 397 * <p>The implementation does not necessarily use a <em>stable</em> sorting 398 * algorithm; when multiple elements are equivalent, it is undefined which 399 * will come first. 400 * 401 * @return an immutable {@code RandomAccess} list of the {@code k} least 402 * elements in ascending order 403 * @throws IllegalArgumentException if {@code k} is negative 404 * @since 8 405 */ 406 @Beta 407 public <E extends T> List<E> leastOf(Iterable<E> iterable, int k) { 408 checkArgument(k >= 0, "%d is negative", k); 409 410 // values is not an E[], but we use it as such for readability. Hack. 411 @SuppressWarnings("unchecked") 412 E[] values = (E[]) Iterables.toArray(iterable); 413 414 // TODO(nshupe): also sort whole list if k is *near* values.length? 415 // TODO(kevinb): benchmark this impl against hand-coded heap 416 E[] resultArray; 417 if (values.length <= k) { 418 Arrays.sort(values, this); 419 resultArray = values; 420 } else { 421 quicksortLeastK(values, 0, values.length - 1, k); 422 423 // this is not an E[], but we use it as such for readability. Hack. 424 @SuppressWarnings("unchecked") 425 E[] tmp = (E[]) new Object[k]; 426 resultArray = tmp; 427 System.arraycopy(values, 0, resultArray, 0, k); 428 } 429 430 return Collections.unmodifiableList(Arrays.asList(resultArray)); 431 } 432 433 /** 434 * Returns the {@code k} greatest elements of the given iterable according to 435 * this ordering, in order from greatest to least. If there are fewer than 436 * {@code k} elements present, all will be included. 437 * 438 * <p>The implementation does not necessarily use a <em>stable</em> sorting 439 * algorithm; when multiple elements are equivalent, it is undefined which 440 * will come first. 441 * 442 * @return an immutable {@code RandomAccess} list of the {@code k} greatest 443 * elements in <i>descending order</i> 444 * @throws IllegalArgumentException if {@code k} is negative 445 * @since 8 446 */ 447 @Beta 448 public <E extends T> List<E> greatestOf(Iterable<E> iterable, int k) { 449 // TODO(kevinb): see if delegation is hurting performance noticeably 450 // TODO(kevinb): if we change this implementation, add full unit tests. 451 return reverse().leastOf(iterable, k); 452 } 453 454 private <E extends T> void quicksortLeastK( 455 E[] values, int left, int right, int k) { 456 if (right > left) { 457 int pivotIndex = (left + right) >>> 1; // left + ((right - left) / 2) 458 int pivotNewIndex = partition(values, left, right, pivotIndex); 459 quicksortLeastK(values, left, pivotNewIndex - 1, k); 460 if (pivotNewIndex < k) { 461 quicksortLeastK(values, pivotNewIndex + 1, right, k); 462 } 463 } 464 } 465 466 private <E extends T> int partition( 467 E[] values, int left, int right, int pivotIndex) { 468 E pivotValue = values[pivotIndex]; 469 470 values[pivotIndex] = values[right]; 471 values[right] = pivotValue; 472 473 int storeIndex = left; 474 for (int i = left; i < right; i++) { 475 if (compare(values[i], pivotValue) < 0) { 476 ObjectArrays.swap(values, storeIndex, i); 477 storeIndex++; 478 } 479 } 480 ObjectArrays.swap(values, right, storeIndex); 481 return storeIndex; 482 } 483 484 /** 485 * {@link Collections#binarySearch(List, Object, Comparator) Searches} 486 * {@code sortedList} for {@code key} using the binary search algorithm. The 487 * list must be sorted using this ordering. 488 * 489 * @param sortedList the list to be searched 490 * @param key the key to be searched for 491 */ 492 public int binarySearch(List<? extends T> sortedList, @Nullable T key) { 493 return Collections.binarySearch(sortedList, key, this); 494 } 495 496 /** 497 * Returns a copy of the given iterable sorted by this ordering. The input is 498 * not modified. The returned list is modifiable, serializable, and has random 499 * access. 500 * 501 * <p>Unlike {@link Sets#newTreeSet(Iterable)}, this method does not discard 502 * elements that are duplicates according to the comparator. The sort 503 * performed is <i>stable</i>, meaning that such elements will appear in the 504 * resulting list in the same order they appeared in the input. 505 * 506 * @param iterable the elements to be copied and sorted 507 * @return a new list containing the given elements in sorted order 508 */ 509 public <E extends T> List<E> sortedCopy(Iterable<E> iterable) { 510 List<E> list = Lists.newArrayList(iterable); 511 Collections.sort(list, this); 512 return list; 513 } 514 515 /** 516 * Returns an <i>immutable</i> copy of the given iterable sorted by this 517 * ordering. The input is not modified. 518 * 519 * <p>Unlike {@link Sets#newTreeSet(Iterable)}, this method does not discard 520 * elements that are duplicates according to the comparator. The sort 521 * performed is <i>stable</i>, meaning that such elements will appear in the 522 * resulting list in the same order they appeared in the input. 523 * 524 * @param iterable the elements to be copied and sorted 525 * @return a new immutable list containing the given elements in sorted order 526 * @throws NullPointerException if {@code iterable} or any of its elements is 527 * null 528 * @since 3 529 */ 530 public <E extends T> ImmutableList<E> immutableSortedCopy( 531 Iterable<E> iterable) { 532 return ImmutableList.copyOf(sortedCopy(iterable)); 533 } 534 535 /** 536 * Returns {@code true} if each element in {@code iterable} after the first is 537 * greater than or equal to the element that preceded it, according to this 538 * ordering. Note that this is always true when the iterable has fewer than 539 * two elements. 540 */ 541 public boolean isOrdered(Iterable<? extends T> iterable) { 542 Iterator<? extends T> it = iterable.iterator(); 543 if (it.hasNext()) { 544 T prev = it.next(); 545 while (it.hasNext()) { 546 T next = it.next(); 547 if (compare(prev, next) > 0) { 548 return false; 549 } 550 prev = next; 551 } 552 } 553 return true; 554 } 555 556 /** 557 * Returns {@code true} if each element in {@code iterable} after the first is 558 * <i>strictly</i> greater than the element that preceded it, according to 559 * this ordering. Note that this is always true when the iterable has fewer 560 * than two elements. 561 */ 562 public boolean isStrictlyOrdered(Iterable<? extends T> iterable) { 563 Iterator<? extends T> it = iterable.iterator(); 564 if (it.hasNext()) { 565 T prev = it.next(); 566 while (it.hasNext()) { 567 T next = it.next(); 568 if (compare(prev, next) >= 0) { 569 return false; 570 } 571 prev = next; 572 } 573 } 574 return true; 575 } 576 577 /** 578 * Returns the greatest of the specified values according to this ordering. If 579 * there are multiple greatest values, the first of those is returned. 580 * 581 * @param iterable the iterable whose maximum element is to be determined 582 * @throws NoSuchElementException if {@code iterable} is empty 583 * @throws ClassCastException if the parameters are not <i>mutually 584 * comparable</i> under this ordering. 585 */ 586 public <E extends T> E max(Iterable<E> iterable) { 587 Iterator<E> iterator = iterable.iterator(); 588 589 // let this throw NoSuchElementException as necessary 590 E maxSoFar = iterator.next(); 591 592 while (iterator.hasNext()) { 593 maxSoFar = max(maxSoFar, iterator.next()); 594 } 595 596 return maxSoFar; 597 } 598 599 /** 600 * Returns the greatest of the specified values according to this ordering. If 601 * there are multiple greatest values, the first of those is returned. 602 * 603 * @param a value to compare, returned if greater than or equal to the rest. 604 * @param b value to compare 605 * @param c value to compare 606 * @param rest values to compare 607 * @throws ClassCastException if the parameters are not <i>mutually 608 * comparable</i> under this ordering. 609 */ 610 public <E extends T> E max( 611 @Nullable E a, @Nullable E b, @Nullable E c, E... rest) { 612 E maxSoFar = max(max(a, b), c); 613 614 for (E r : rest) { 615 maxSoFar = max(maxSoFar, r); 616 } 617 618 return maxSoFar; 619 } 620 621 /** 622 * Returns the greater of the two values according to this ordering. If the 623 * values compare as 0, the first is returned. 624 * 625 * <p><b>Implementation note:</b> this method is invoked by the default 626 * implementations of the other {@code max} overloads, so overriding it will 627 * affect their behavior. 628 * 629 * @param a value to compare, returned if greater than or equal to b. 630 * @param b value to compare. 631 * @throws ClassCastException if the parameters are not <i>mutually 632 * comparable</i> under this ordering. 633 */ 634 public <E extends T> E max(@Nullable E a, @Nullable E b) { 635 return compare(a, b) >= 0 ? a : b; 636 } 637 638 /** 639 * Returns the least of the specified values according to this ordering. If 640 * there are multiple least values, the first of those is returned. 641 * 642 * @param iterable the iterable whose minimum element is to be determined 643 * @throws NoSuchElementException if {@code iterable} is empty 644 * @throws ClassCastException if the parameters are not <i>mutually 645 * comparable</i> under this ordering. 646 */ 647 public <E extends T> E min(Iterable<E> iterable) { 648 Iterator<E> iterator = iterable.iterator(); 649 650 // let this throw NoSuchElementException as necessary 651 E minSoFar = iterator.next(); 652 653 while (iterator.hasNext()) { 654 minSoFar = min(minSoFar, iterator.next()); 655 } 656 657 return minSoFar; 658 } 659 660 /** 661 * Returns the least of the specified values according to this ordering. If 662 * there are multiple least values, the first of those is returned. 663 * 664 * @param a value to compare, returned if less than or equal to the rest. 665 * @param b value to compare 666 * @param c value to compare 667 * @param rest values to compare 668 * @throws ClassCastException if the parameters are not <i>mutually 669 * comparable</i> under this ordering. 670 */ 671 public <E extends T> E min( 672 @Nullable E a, @Nullable E b, @Nullable E c, E... rest) { 673 E minSoFar = min(min(a, b), c); 674 675 for (E r : rest) { 676 minSoFar = min(minSoFar, r); 677 } 678 679 return minSoFar; 680 } 681 682 /** 683 * Returns the lesser of the two values according to this ordering. If the 684 * values compare as 0, the first is returned. 685 * 686 * <p><b>Implementation note:</b> this method is invoked by the default 687 * implementations of the other {@code min} overloads, so overriding it will 688 * affect their behavior. 689 * 690 * @param a value to compare, returned if less than or equal to b. 691 * @param b value to compare. 692 * @throws ClassCastException if the parameters are not <i>mutually 693 * comparable</i> under this ordering. 694 */ 695 public <E extends T> E min(@Nullable E a, @Nullable E b) { 696 return compare(a, b) <= 0 ? a : b; 697 } 698 699 // Never make these public 700 static final int LEFT_IS_GREATER = 1; 701 static final int RIGHT_IS_GREATER = -1; 702 }