001 /* 002 * Copyright (C) 2007 Google Inc. 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017 package com.google.common.collect; 018 019 import static com.google.common.base.Preconditions.checkArgument; 020 import static com.google.common.base.Preconditions.checkNotNull; 021 import static com.google.common.base.Preconditions.checkState; 022 import static com.google.common.collect.Multisets.setCountImpl; 023 import static java.util.Collections.unmodifiableList; 024 025 import com.google.common.annotations.GwtCompatible; 026 import com.google.common.annotations.GwtIncompatible; 027 import com.google.common.base.Objects; 028 import com.google.common.base.Preconditions; 029 030 import java.io.IOException; 031 import java.io.ObjectInputStream; 032 import java.io.ObjectOutputStream; 033 import java.io.Serializable; 034 import java.util.AbstractCollection; 035 import java.util.AbstractMap; 036 import java.util.AbstractSequentialList; 037 import java.util.AbstractSet; 038 import java.util.Collection; 039 import java.util.HashSet; 040 import java.util.Iterator; 041 import java.util.List; 042 import java.util.ListIterator; 043 import java.util.Map; 044 import java.util.Map.Entry; 045 import java.util.NoSuchElementException; 046 import java.util.Set; 047 048 import javax.annotation.Nullable; 049 050 /** 051 * An implementation of {@code ListMultimap} that supports deterministic 052 * iteration order for both keys and values. The iteration order is preserved 053 * across non-distinct key values. For example, for the following multimap 054 * definition: <pre> {@code 055 * 056 * Multimap<K, V> multimap = LinkedListMultimap.create(); 057 * multimap.put(key1, foo); 058 * multimap.put(key2, bar); 059 * multimap.put(key1, baz);}</pre> 060 * 061 * ... the iteration order for {@link #keys()} is {@code [key1, key2, key1]}, 062 * and similarly for {@link #entries()}. Unlike {@link LinkedHashMultimap}, the 063 * iteration order is kept consistent between keys, entries and values. For 064 * example, calling: <pre> {@code 065 * 066 * map.remove(key1, foo);}</pre> 067 * 068 * changes the entries iteration order to {@code [key2=bar, key1=baz]} and the 069 * key iteration order to {@code [key2, key1]}. The {@link #entries()} iterator 070 * returns mutable map entries, and {@link #replaceValues} attempts to preserve 071 * iteration order as much as possible. 072 * 073 * <p>The collections returned by {@link #keySet} and {@link #asMap} iterate 074 * through the keys in the order they were first added to the multimap. 075 * Similarly, {@link #get}, {@link #removeAll}, and {@link #replaceValues} 076 * return collections that iterate through the values in the order they were 077 * added. The collections generated by {@link #entries}, {@link #keys}, and 078 * {@link #values} iterate across the key-value mappings in the order they were 079 * added to the multimap. 080 * 081 * <p>Keys and values may be null. All optional multimap methods are supported, 082 * and all returned views are modifiable. 083 * 084 * <p>The methods {@link #get}, {@link #keySet}, {@link #keys}, {@link #values}, 085 * {@link #entries}, and {@link #asMap} return collections that are views of the 086 * multimap. If the multimap is modified while an iteration over any of those 087 * collections is in progress, except through the iterator's own {@code remove} 088 * operation, the results of the iteration are undefined. 089 * 090 * <p>This class is not threadsafe when any concurrent operations update the 091 * multimap. Concurrent read operations will work correctly. To allow concurrent 092 * update operations, wrap your multimap with a call to {@link 093 * Multimaps#synchronizedListMultimap}. 094 * 095 * @author Mike Bostock 096 * @since 2 (imported from Google Collections Library) 097 */ 098 @GwtCompatible(serializable = true, emulated = true) 099 public final class LinkedListMultimap<K, V> 100 implements ListMultimap<K, V>, Serializable { 101 /* 102 * Order is maintained using a linked list containing all key-value pairs. In 103 * addition, a series of disjoint linked lists of "siblings", each containing 104 * the values for a specific key, is used to implement {@link 105 * ValueForKeyIterator} in constant time. 106 */ 107 108 private static final class Node<K, V> { 109 final K key; 110 V value; 111 Node<K, V> next; // the next node (with any key) 112 Node<K, V> previous; // the previous node (with any key) 113 Node<K, V> nextSibling; // the next node with the same key 114 Node<K, V> previousSibling; // the previous node with the same key 115 116 Node(@Nullable K key, @Nullable V value) { 117 this.key = key; 118 this.value = value; 119 } 120 121 @Override public String toString() { 122 return key + "=" + value; 123 } 124 } 125 126 private transient Node<K, V> head; // the head for all keys 127 private transient Node<K, V> tail; // the tail for all keys 128 private transient Multiset<K> keyCount; // the number of values for each key 129 private transient Map<K, Node<K, V>> keyToKeyHead; // the head for a given key 130 private transient Map<K, Node<K, V>> keyToKeyTail; // the tail for a given key 131 132 /** 133 * Creates a new, empty {@code LinkedListMultimap} with the default initial 134 * capacity. 135 */ 136 public static <K, V> LinkedListMultimap<K, V> create() { 137 return new LinkedListMultimap<K, V>(); 138 } 139 140 /** 141 * Constructs an empty {@code LinkedListMultimap} with enough capacity to hold 142 * the specified number of keys without rehashing. 143 * 144 * @param expectedKeys the expected number of distinct keys 145 * @throws IllegalArgumentException if {@code expectedKeys} is negative 146 */ 147 public static <K, V> LinkedListMultimap<K, V> create(int expectedKeys) { 148 return new LinkedListMultimap<K, V>(expectedKeys); 149 } 150 151 /** 152 * Constructs a {@code LinkedListMultimap} with the same mappings as the 153 * specified {@code Multimap}. The new multimap has the same 154 * {@link Multimap#entries()} iteration order as the input multimap. 155 * 156 * @param multimap the multimap whose contents are copied to this multimap 157 */ 158 public static <K, V> LinkedListMultimap<K, V> create( 159 Multimap<? extends K, ? extends V> multimap) { 160 return new LinkedListMultimap<K, V>(multimap); 161 } 162 163 private LinkedListMultimap() { 164 keyCount = LinkedHashMultiset.create(); 165 keyToKeyHead = Maps.newHashMap(); 166 keyToKeyTail = Maps.newHashMap(); 167 } 168 169 private LinkedListMultimap(int expectedKeys) { 170 keyCount = LinkedHashMultiset.create(expectedKeys); 171 keyToKeyHead = Maps.newHashMapWithExpectedSize(expectedKeys); 172 keyToKeyTail = Maps.newHashMapWithExpectedSize(expectedKeys); 173 } 174 175 private LinkedListMultimap(Multimap<? extends K, ? extends V> multimap) { 176 this(multimap.keySet().size()); 177 putAll(multimap); 178 } 179 180 /** 181 * Adds a new node for the specified key-value pair before the specified 182 * {@code nextSibling} element, or at the end of the list if {@code 183 * nextSibling} is null. Note: if {@code nextSibling} is specified, it MUST be 184 * for an node for the same {@code key}! 185 */ 186 private Node<K, V> addNode( 187 @Nullable K key, @Nullable V value, @Nullable Node<K, V> nextSibling) { 188 Node<K, V> node = new Node<K, V>(key, value); 189 if (head == null) { // empty list 190 head = tail = node; 191 keyToKeyHead.put(key, node); 192 keyToKeyTail.put(key, node); 193 } else if (nextSibling == null) { // non-empty list, add to tail 194 tail.next = node; 195 node.previous = tail; 196 Node<K, V> keyTail = keyToKeyTail.get(key); 197 if (keyTail == null) { // first for this key 198 keyToKeyHead.put(key, node); 199 } else { 200 keyTail.nextSibling = node; 201 node.previousSibling = keyTail; 202 } 203 keyToKeyTail.put(key, node); 204 tail = node; 205 } else { // non-empty list, insert before nextSibling 206 node.previous = nextSibling.previous; 207 node.previousSibling = nextSibling.previousSibling; 208 node.next = nextSibling; 209 node.nextSibling = nextSibling; 210 if (nextSibling.previousSibling == null) { // nextSibling was key head 211 keyToKeyHead.put(key, node); 212 } else { 213 nextSibling.previousSibling.nextSibling = node; 214 } 215 if (nextSibling.previous == null) { // nextSibling was head 216 head = node; 217 } else { 218 nextSibling.previous.next = node; 219 } 220 nextSibling.previous = node; 221 nextSibling.previousSibling = node; 222 } 223 keyCount.add(key); 224 return node; 225 } 226 227 /** 228 * Removes the specified node from the linked list. This method is only 229 * intended to be used from the {@code Iterator} classes. See also {@link 230 * LinkedListMultimap#removeAllNodes(Object)}. 231 */ 232 private void removeNode(Node<K, V> node) { 233 if (node.previous != null) { 234 node.previous.next = node.next; 235 } else { // node was head 236 head = node.next; 237 } 238 if (node.next != null) { 239 node.next.previous = node.previous; 240 } else { // node was tail 241 tail = node.previous; 242 } 243 if (node.previousSibling != null) { 244 node.previousSibling.nextSibling = node.nextSibling; 245 } else if (node.nextSibling != null) { // node was key head 246 keyToKeyHead.put(node.key, node.nextSibling); 247 } else { 248 keyToKeyHead.remove(node.key); // don't leak a key-null entry 249 } 250 if (node.nextSibling != null) { 251 node.nextSibling.previousSibling = node.previousSibling; 252 } else if (node.previousSibling != null) { // node was key tail 253 keyToKeyTail.put(node.key, node.previousSibling); 254 } else { 255 keyToKeyTail.remove(node.key); // don't leak a key-null entry 256 } 257 keyCount.remove(node.key); 258 } 259 260 /** Removes all nodes for the specified key. */ 261 private void removeAllNodes(@Nullable Object key) { 262 for (Iterator<V> i = new ValueForKeyIterator(key); i.hasNext();) { 263 i.next(); 264 i.remove(); 265 } 266 } 267 268 /** Helper method for verifying that an iterator element is present. */ 269 private static void checkElement(@Nullable Object node) { 270 if (node == null) { 271 throw new NoSuchElementException(); 272 } 273 } 274 275 /** An {@code Iterator} over all nodes. */ 276 private class NodeIterator implements Iterator<Node<K, V>> { 277 Node<K, V> next = head; 278 Node<K, V> current; 279 280 public boolean hasNext() { 281 return next != null; 282 } 283 public Node<K, V> next() { 284 checkElement(next); 285 current = next; 286 next = next.next; 287 return current; 288 } 289 public void remove() { 290 checkState(current != null); 291 removeNode(current); 292 current = null; 293 } 294 } 295 296 /** An {@code Iterator} over distinct keys in key head order. */ 297 private class DistinctKeyIterator implements Iterator<K> { 298 final Set<K> seenKeys = new HashSet<K>(Maps.capacity(keySet().size())); 299 Node<K, V> next = head; 300 Node<K, V> current; 301 302 public boolean hasNext() { 303 return next != null; 304 } 305 public K next() { 306 checkElement(next); 307 current = next; 308 seenKeys.add(current.key); 309 do { // skip ahead to next unseen key 310 next = next.next; 311 } while ((next != null) && !seenKeys.add(next.key)); 312 return current.key; 313 } 314 public void remove() { 315 checkState(current != null); 316 removeAllNodes(current.key); 317 current = null; 318 } 319 } 320 321 /** A {@code ListIterator} over values for a specified key. */ 322 private class ValueForKeyIterator implements ListIterator<V> { 323 final Object key; 324 int nextIndex; 325 Node<K, V> next; 326 Node<K, V> current; 327 Node<K, V> previous; 328 329 /** Constructs a new iterator over all values for the specified key. */ 330 ValueForKeyIterator(@Nullable Object key) { 331 this.key = key; 332 next = keyToKeyHead.get(key); 333 } 334 335 /** 336 * Constructs a new iterator over all values for the specified key starting 337 * at the specified index. This constructor is optimized so that it starts 338 * at either the head or the tail, depending on which is closer to the 339 * specified index. This allows adds to the tail to be done in constant 340 * time. 341 * 342 * @throws IndexOutOfBoundsException if index is invalid 343 */ 344 public ValueForKeyIterator(@Nullable Object key, int index) { 345 int size = keyCount.count(key); 346 Preconditions.checkPositionIndex(index, size); 347 if (index >= (size / 2)) { 348 previous = keyToKeyTail.get(key); 349 nextIndex = size; 350 while (index++ < size) { 351 previous(); 352 } 353 } else { 354 next = keyToKeyHead.get(key); 355 while (index-- > 0) { 356 next(); 357 } 358 } 359 this.key = key; 360 current = null; 361 } 362 363 public boolean hasNext() { 364 return next != null; 365 } 366 367 public V next() { 368 checkElement(next); 369 previous = current = next; 370 next = next.nextSibling; 371 nextIndex++; 372 return current.value; 373 } 374 375 public boolean hasPrevious() { 376 return previous != null; 377 } 378 379 public V previous() { 380 checkElement(previous); 381 next = current = previous; 382 previous = previous.previousSibling; 383 nextIndex--; 384 return current.value; 385 } 386 387 public int nextIndex() { 388 return nextIndex; 389 } 390 391 public int previousIndex() { 392 return nextIndex - 1; 393 } 394 395 public void remove() { 396 checkState(current != null); 397 if (current != next) { // removing next element 398 previous = current.previousSibling; 399 nextIndex--; 400 } else { 401 next = current.nextSibling; 402 } 403 removeNode(current); 404 current = null; 405 } 406 407 public void set(V value) { 408 checkState(current != null); 409 current.value = value; 410 } 411 412 @SuppressWarnings("unchecked") 413 public void add(V value) { 414 previous = addNode((K) key, value, next); 415 nextIndex++; 416 current = null; 417 } 418 } 419 420 // Query Operations 421 422 public int size() { 423 return keyCount.size(); 424 } 425 426 public boolean isEmpty() { 427 return head == null; 428 } 429 430 public boolean containsKey(@Nullable Object key) { 431 return keyToKeyHead.containsKey(key); 432 } 433 434 public boolean containsValue(@Nullable Object value) { 435 for (Iterator<Node<K, V>> i = new NodeIterator(); i.hasNext();) { 436 if (Objects.equal(i.next().value, value)) { 437 return true; 438 } 439 } 440 return false; 441 } 442 443 public boolean containsEntry(@Nullable Object key, @Nullable Object value) { 444 for (Iterator<V> i = new ValueForKeyIterator(key); i.hasNext();) { 445 if (Objects.equal(i.next(), value)) { 446 return true; 447 } 448 } 449 return false; 450 } 451 452 // Modification Operations 453 454 /** 455 * Stores a key-value pair in the multimap. 456 * 457 * @param key key to store in the multimap 458 * @param value value to store in the multimap 459 * @return {@code true} always 460 */ 461 public boolean put(@Nullable K key, @Nullable V value) { 462 addNode(key, value, null); 463 return true; 464 } 465 466 public boolean remove(@Nullable Object key, @Nullable Object value) { 467 Iterator<V> values = new ValueForKeyIterator(key); 468 while (values.hasNext()) { 469 if (Objects.equal(values.next(), value)) { 470 values.remove(); 471 return true; 472 } 473 } 474 return false; 475 } 476 477 // Bulk Operations 478 479 public boolean putAll(@Nullable K key, Iterable<? extends V> values) { 480 boolean changed = false; 481 for (V value : values) { 482 changed |= put(key, value); 483 } 484 return changed; 485 } 486 487 public boolean putAll(Multimap<? extends K, ? extends V> multimap) { 488 boolean changed = false; 489 for (Entry<? extends K, ? extends V> entry : multimap.entries()) { 490 changed |= put(entry.getKey(), entry.getValue()); 491 } 492 return changed; 493 } 494 495 /** 496 * {@inheritDoc} 497 * 498 * <p>If any entries for the specified {@code key} already exist in the 499 * multimap, their values are changed in-place without affecting the iteration 500 * order. 501 * 502 * <p>The returned list is immutable and implements 503 * {@link java.util.RandomAccess}. 504 */ 505 public List<V> replaceValues(@Nullable K key, Iterable<? extends V> values) { 506 List<V> oldValues = getCopy(key); 507 ListIterator<V> keyValues = new ValueForKeyIterator(key); 508 Iterator<? extends V> newValues = values.iterator(); 509 510 // Replace existing values, if any. 511 while (keyValues.hasNext() && newValues.hasNext()) { 512 keyValues.next(); 513 keyValues.set(newValues.next()); 514 } 515 516 // Remove remaining old values, if any. 517 while (keyValues.hasNext()) { 518 keyValues.next(); 519 keyValues.remove(); 520 } 521 522 // Add remaining new values, if any. 523 while (newValues.hasNext()) { 524 keyValues.add(newValues.next()); 525 } 526 527 return oldValues; 528 } 529 530 private List<V> getCopy(@Nullable Object key) { 531 return unmodifiableList(Lists.newArrayList(new ValueForKeyIterator(key))); 532 } 533 534 /** 535 * {@inheritDoc} 536 * 537 * <p>The returned list is immutable and implements 538 * {@link java.util.RandomAccess}. 539 */ 540 public List<V> removeAll(@Nullable Object key) { 541 List<V> oldValues = getCopy(key); 542 removeAllNodes(key); 543 return oldValues; 544 } 545 546 public void clear() { 547 head = null; 548 tail = null; 549 keyCount.clear(); 550 keyToKeyHead.clear(); 551 keyToKeyTail.clear(); 552 } 553 554 // Views 555 556 /** 557 * {@inheritDoc} 558 * 559 * <p>If the multimap is modified while an iteration over the list is in 560 * progress (except through the iterator's own {@code add}, {@code set} or 561 * {@code remove} operations) the results of the iteration are undefined. 562 * 563 * <p>The returned list is not serializable and does not have random access. 564 */ 565 public List<V> get(final @Nullable K key) { 566 return new AbstractSequentialList<V>() { 567 @Override public int size() { 568 return keyCount.count(key); 569 } 570 @Override public ListIterator<V> listIterator(int index) { 571 return new ValueForKeyIterator(key, index); 572 } 573 @Override public boolean removeAll(Collection<?> c) { 574 return Iterators.removeAll(iterator(), c); 575 } 576 @Override public boolean retainAll(Collection<?> c) { 577 return Iterators.retainAll(iterator(), c); 578 } 579 }; 580 } 581 582 private transient Set<K> keySet; 583 584 public Set<K> keySet() { 585 Set<K> result = keySet; 586 if (result == null) { 587 keySet = result = new AbstractSet<K>() { 588 @Override public int size() { 589 return keyCount.elementSet().size(); 590 } 591 @Override public Iterator<K> iterator() { 592 return new DistinctKeyIterator(); 593 } 594 @Override public boolean contains(Object key) { // for performance 595 return keyCount.contains(key); 596 } 597 @Override public boolean removeAll(Collection<?> c) { 598 checkNotNull(c); // eager for GWT 599 return super.removeAll(c); 600 } 601 }; 602 } 603 return result; 604 } 605 606 private transient Multiset<K> keys; 607 608 public Multiset<K> keys() { 609 Multiset<K> result = keys; 610 if (result == null) { 611 keys = result = new MultisetView(); 612 } 613 return result; 614 } 615 616 private class MultisetView extends AbstractCollection<K> 617 implements Multiset<K> { 618 619 @Override public int size() { 620 return keyCount.size(); 621 } 622 623 @Override public Iterator<K> iterator() { 624 final Iterator<Node<K, V>> nodes = new NodeIterator(); 625 return new Iterator<K>() { 626 public boolean hasNext() { 627 return nodes.hasNext(); 628 } 629 public K next() { 630 return nodes.next().key; 631 } 632 public void remove() { 633 nodes.remove(); 634 } 635 }; 636 } 637 638 public int count(@Nullable Object key) { 639 return keyCount.count(key); 640 } 641 642 public int add(@Nullable K key, int occurrences) { 643 throw new UnsupportedOperationException(); 644 } 645 646 public int remove(@Nullable Object key, int occurrences) { 647 checkArgument(occurrences >= 0); 648 int oldCount = count(key); 649 Iterator<V> values = new ValueForKeyIterator(key); 650 while ((occurrences-- > 0) && values.hasNext()) { 651 values.next(); 652 values.remove(); 653 } 654 return oldCount; 655 } 656 657 public int setCount(K element, int count) { 658 return setCountImpl(this, element, count); 659 } 660 661 public boolean setCount(K element, int oldCount, int newCount) { 662 return setCountImpl(this, element, oldCount, newCount); 663 } 664 665 @Override public boolean removeAll(Collection<?> c) { 666 return Iterators.removeAll(iterator(), c); 667 } 668 669 @Override public boolean retainAll(Collection<?> c) { 670 return Iterators.retainAll(iterator(), c); 671 } 672 673 public Set<K> elementSet() { 674 return keySet(); 675 } 676 677 public Set<Entry<K>> entrySet() { 678 // TODO(jlevy): lazy init? 679 return new AbstractSet<Entry<K>>() { 680 @Override public int size() { 681 return keyCount.elementSet().size(); 682 } 683 684 @Override public Iterator<Entry<K>> iterator() { 685 final Iterator<K> keyIterator = new DistinctKeyIterator(); 686 return new Iterator<Entry<K>>() { 687 public boolean hasNext() { 688 return keyIterator.hasNext(); 689 } 690 public Entry<K> next() { 691 final K key = keyIterator.next(); 692 return new Multisets.AbstractEntry<K>() { 693 public K getElement() { 694 return key; 695 } 696 public int getCount() { 697 return keyCount.count(key); 698 } 699 }; 700 } 701 public void remove() { 702 keyIterator.remove(); 703 } 704 }; 705 } 706 }; 707 } 708 709 @Override public boolean equals(@Nullable Object object) { 710 return keyCount.equals(object); 711 } 712 713 @Override public int hashCode() { 714 return keyCount.hashCode(); 715 } 716 717 @Override public String toString() { 718 return keyCount.toString(); // XXX observe order? 719 } 720 } 721 722 private transient Collection<V> valuesCollection; 723 724 /** 725 * {@inheritDoc} 726 * 727 * <p>The iterator generated by the returned collection traverses the values 728 * in the order they were added to the multimap. 729 */ 730 public Collection<V> values() { 731 Collection<V> result = valuesCollection; 732 if (result == null) { 733 valuesCollection = result = new AbstractCollection<V>() { 734 @Override public int size() { 735 return keyCount.size(); 736 } 737 @Override public Iterator<V> iterator() { 738 final Iterator<Node<K, V>> nodes = new NodeIterator(); 739 return new Iterator<V>() { 740 public boolean hasNext() { 741 return nodes.hasNext(); 742 } 743 public V next() { 744 return nodes.next().value; 745 } 746 public void remove() { 747 nodes.remove(); 748 } 749 }; 750 } 751 }; 752 } 753 return result; 754 } 755 756 private transient Collection<Entry<K, V>> entries; 757 758 /** 759 * {@inheritDoc} 760 * 761 * <p>The iterator generated by the returned collection traverses the entries 762 * in the order they were added to the multimap. 763 * 764 * <p>An entry's {@link Entry#getKey} method always returns the same key, 765 * regardless of what happens subsequently. As long as the corresponding 766 * key-value mapping is not removed from the multimap, {@link Entry#getValue} 767 * returns the value from the multimap, which may change over time, and {@link 768 * Entry#setValue} modifies that value. Removing the mapping from the 769 * multimap does not alter the value returned by {@code getValue()}, though a 770 * subsequent {@code setValue()} call won't update the multimap but will lead 771 * to a revised value being returned by {@code getValue()}. 772 */ 773 public Collection<Entry<K, V>> entries() { 774 Collection<Entry<K, V>> result = entries; 775 if (result == null) { 776 entries = result = new AbstractCollection<Entry<K, V>>() { 777 @Override public int size() { 778 return keyCount.size(); 779 } 780 781 @Override public Iterator<Entry<K, V>> iterator() { 782 final Iterator<Node<K, V>> nodes = new NodeIterator(); 783 return new Iterator<Entry<K, V>>() { 784 public boolean hasNext() { 785 return nodes.hasNext(); 786 } 787 788 public Entry<K, V> next() { 789 final Node<K, V> node = nodes.next(); 790 return new AbstractMapEntry<K, V>() { 791 @Override public K getKey() { 792 return node.key; 793 } 794 @Override public V getValue() { 795 return node.value; 796 } 797 @Override public V setValue(V value) { 798 V oldValue = node.value; 799 node.value = value; 800 return oldValue; 801 } 802 }; 803 } 804 805 public void remove() { 806 nodes.remove(); 807 } 808 }; 809 } 810 }; 811 } 812 return result; 813 } 814 815 private class AsMapEntries extends AbstractSet<Entry<K, Collection<V>>> { 816 @Override public int size() { 817 return keyCount.elementSet().size(); 818 } 819 820 @Override public Iterator<Entry<K, Collection<V>>> iterator() { 821 final Iterator<K> keyIterator = new DistinctKeyIterator(); 822 return new Iterator<Entry<K, Collection<V>>>() { 823 public boolean hasNext() { 824 return keyIterator.hasNext(); 825 } 826 827 public Entry<K, Collection<V>> next() { 828 final K key = keyIterator.next(); 829 return new AbstractMapEntry<K, Collection<V>>() { 830 @Override public K getKey() { 831 return key; 832 } 833 834 @Override public Collection<V> getValue() { 835 return LinkedListMultimap.this.get(key); 836 } 837 }; 838 } 839 840 public void remove() { 841 keyIterator.remove(); 842 } 843 }; 844 } 845 846 // TODO(jlevy): Override contains() and remove() for better performance. 847 } 848 849 private transient Map<K, Collection<V>> map; 850 851 public Map<K, Collection<V>> asMap() { 852 Map<K, Collection<V>> result = map; 853 if (result == null) { 854 map = result = new AbstractMap<K, Collection<V>>() { 855 Set<Entry<K, Collection<V>>> entrySet; 856 857 @Override public Set<Entry<K, Collection<V>>> entrySet() { 858 Set<Entry<K, Collection<V>>> result = entrySet; 859 if (result == null) { 860 entrySet = result = new AsMapEntries(); 861 } 862 return result; 863 } 864 865 // The following methods are included for performance. 866 867 @Override public boolean containsKey(@Nullable Object key) { 868 return LinkedListMultimap.this.containsKey(key); 869 } 870 871 @SuppressWarnings("unchecked") 872 @Override public Collection<V> get(@Nullable Object key) { 873 Collection<V> collection = LinkedListMultimap.this.get((K) key); 874 return collection.isEmpty() ? null : collection; 875 } 876 877 @Override public Collection<V> remove(@Nullable Object key) { 878 Collection<V> collection = removeAll(key); 879 return collection.isEmpty() ? null : collection; 880 } 881 }; 882 } 883 884 return result; 885 } 886 887 // Comparison and hashing 888 889 /** 890 * Compares the specified object to this multimap for equality. 891 * 892 * <p>Two {@code ListMultimap} instances are equal if, for each key, they 893 * contain the same values in the same order. If the value orderings disagree, 894 * the multimaps will not be considered equal. 895 */ 896 @Override public boolean equals(@Nullable Object other) { 897 if (other == this) { 898 return true; 899 } 900 if (other instanceof Multimap) { 901 Multimap<?, ?> that = (Multimap<?, ?>) other; 902 return this.asMap().equals(that.asMap()); 903 } 904 return false; 905 } 906 907 /** 908 * Returns the hash code for this multimap. 909 * 910 * <p>The hash code of a multimap is defined as the hash code of the map view, 911 * as returned by {@link Multimap#asMap}. 912 */ 913 @Override public int hashCode() { 914 return asMap().hashCode(); 915 } 916 917 /** 918 * Returns a string representation of the multimap, generated by calling 919 * {@code toString} on the map returned by {@link Multimap#asMap}. 920 * 921 * @return a string representation of the multimap 922 */ 923 @Override public String toString() { 924 return asMap().toString(); 925 } 926 927 /** 928 * @serialData the number of distinct keys, and then for each distinct key: 929 * the first key, the number of values for that key, and the key's values, 930 * followed by successive keys and values from the entries() ordering 931 */ 932 @GwtIncompatible("java.io.ObjectOutputStream") 933 private void writeObject(ObjectOutputStream stream) throws IOException { 934 stream.defaultWriteObject(); 935 stream.writeInt(size()); 936 for (Entry<K, V> entry : entries()) { 937 stream.writeObject(entry.getKey()); 938 stream.writeObject(entry.getValue()); 939 } 940 } 941 942 @GwtIncompatible("java.io.ObjectInputStream") 943 private void readObject(ObjectInputStream stream) 944 throws IOException, ClassNotFoundException { 945 stream.defaultReadObject(); 946 keyCount = LinkedHashMultiset.create(); 947 keyToKeyHead = Maps.newHashMap(); 948 keyToKeyTail = Maps.newHashMap(); 949 int size = stream.readInt(); 950 for (int i = 0; i < size; i++) { 951 @SuppressWarnings("unchecked") // reading data stored by writeObject 952 K key = (K) stream.readObject(); 953 @SuppressWarnings("unchecked") // reading data stored by writeObject 954 V value = (V) stream.readObject(); 955 put(key, value); 956 } 957 } 958 959 @GwtIncompatible("java serialization not supported") 960 private static final long serialVersionUID = 0; 961 }