001/* 002 * Copyright (C) 2006 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 005 * in compliance with the License. You may obtain a copy of the License at 006 * 007 * http://www.apache.org/licenses/LICENSE-2.0 008 * 009 * Unless required by applicable law or agreed to in writing, software distributed under the License 010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express 011 * or implied. See the License for the specific language governing permissions and limitations under 012 * the License. 013 */ 014 015package com.google.common.reflect; 016 017import static com.google.common.base.Preconditions.checkArgument; 018import static com.google.common.base.Preconditions.checkNotNull; 019import static com.google.common.base.Preconditions.checkState; 020import static java.lang.Math.max; 021import static java.util.Objects.requireNonNull; 022 023import com.google.common.annotations.VisibleForTesting; 024import com.google.common.base.Joiner; 025import com.google.common.base.Predicate; 026import com.google.common.collect.FluentIterable; 027import com.google.common.collect.ForwardingSet; 028import com.google.common.collect.ImmutableList; 029import com.google.common.collect.ImmutableMap; 030import com.google.common.collect.ImmutableSet; 031import com.google.common.collect.Maps; 032import com.google.common.collect.Ordering; 033import com.google.common.primitives.Primitives; 034import com.google.errorprone.annotations.CanIgnoreReturnValue; 035import com.google.errorprone.annotations.concurrent.LazyInit; 036import java.io.Serializable; 037import java.lang.reflect.Constructor; 038import java.lang.reflect.GenericArrayType; 039import java.lang.reflect.Method; 040import java.lang.reflect.Modifier; 041import java.lang.reflect.ParameterizedType; 042import java.lang.reflect.Type; 043import java.lang.reflect.TypeVariable; 044import java.lang.reflect.WildcardType; 045import java.util.ArrayList; 046import java.util.Arrays; 047import java.util.Comparator; 048import java.util.List; 049import java.util.Map; 050import java.util.Set; 051import org.checkerframework.checker.nullness.qual.Nullable; 052 053/** 054 * A {@link Type} with generics. 055 * 056 * <p>Operations that are otherwise only available in {@link Class} are implemented to support 057 * {@code Type}, for example {@link #isSubtypeOf}, {@link #isArray} and {@link #getComponentType}. 058 * It also provides additional utilities such as {@link #getTypes}, {@link #resolveType}, etc. 059 * 060 * <p>There are three ways to get a {@code TypeToken} instance: 061 * 062 * <ul> 063 * <li>Wrap a {@code Type} obtained via reflection. For example: {@code 064 * TypeToken.of(method.getGenericReturnType())}. 065 * <li>Capture a generic type with a (usually anonymous) subclass. For example: 066 * <pre>{@code 067 * new TypeToken<List<String>>() {} 068 * }</pre> 069 * <p>Note that it's critical that the actual type argument is carried by a subclass. The 070 * following code is wrong because it only captures the {@code <T>} type variable of the 071 * {@code listType()} method signature; while {@code <String>} is lost in erasure: 072 * <pre>{@code 073 * class Util { 074 * static <T> TypeToken<List<T>> listType() { 075 * return new TypeToken<List<T>>() {}; 076 * } 077 * } 078 * 079 * TypeToken<List<String>> stringListType = Util.<String>listType(); 080 * }</pre> 081 * <li>Capture a generic type with a (usually anonymous) subclass and resolve it against a context 082 * class that knows what the type parameters are. For example: 083 * <pre>{@code 084 * abstract class IKnowMyType<T> { 085 * TypeToken<T> type = new TypeToken<T>(getClass()) {}; 086 * } 087 * new IKnowMyType<String>() {}.type => String 088 * }</pre> 089 * </ul> 090 * 091 * <p>{@code TypeToken} is serializable when no type variable is contained in the type. 092 * 093 * <p>Note to Guice users: {@code TypeToken} is similar to Guice's {@code TypeLiteral} class except 094 * that it is serializable and offers numerous additional utility methods. 095 * 096 * @author Bob Lee 097 * @author Sven Mawson 098 * @author Ben Yu 099 * @since 12.0 100 */ 101@SuppressWarnings("serial") // SimpleTypeToken is the serialized form. 102public abstract class TypeToken<T> extends TypeCapture<T> implements Serializable { 103 104 private final Type runtimeType; 105 106 /** Resolver for resolving parameter and field types with {@link #runtimeType} as context. */ 107 @LazyInit private transient @Nullable TypeResolver invariantTypeResolver; 108 109 /** Resolver for resolving covariant types with {@link #runtimeType} as context. */ 110 @LazyInit private transient @Nullable TypeResolver covariantTypeResolver; 111 112 /** 113 * Constructs a new type token of {@code T}. 114 * 115 * <p>Clients create an empty anonymous subclass. Doing so embeds the type parameter in the 116 * anonymous class's type hierarchy so we can reconstitute it at runtime despite erasure. 117 * 118 * <p>For example: 119 * 120 * <pre>{@code 121 * TypeToken<List<String>> t = new TypeToken<List<String>>() {}; 122 * }</pre> 123 */ 124 protected TypeToken() { 125 this.runtimeType = capture(); 126 checkState( 127 !(runtimeType instanceof TypeVariable), 128 "Cannot construct a TypeToken for a type variable.\n" 129 + "You probably meant to call new TypeToken<%s>(getClass()) " 130 + "that can resolve the type variable for you.\n" 131 + "If you do need to create a TypeToken of a type variable, " 132 + "please use TypeToken.of() instead.", 133 runtimeType); 134 } 135 136 /** 137 * Constructs a new type token of {@code T} while resolving free type variables in the context of 138 * {@code declaringClass}. 139 * 140 * <p>Clients create an empty anonymous subclass. Doing so embeds the type parameter in the 141 * anonymous class's type hierarchy so we can reconstitute it at runtime despite erasure. 142 * 143 * <p>For example: 144 * 145 * <pre>{@code 146 * abstract class IKnowMyType<T> { 147 * TypeToken<T> getMyType() { 148 * return new TypeToken<T>(getClass()) {}; 149 * } 150 * } 151 * 152 * new IKnowMyType<String>() {}.getMyType() => String 153 * }</pre> 154 */ 155 protected TypeToken(Class<?> declaringClass) { 156 Type captured = super.capture(); 157 if (captured instanceof Class) { 158 this.runtimeType = captured; 159 } else { 160 this.runtimeType = TypeResolver.covariantly(declaringClass).resolveType(captured); 161 } 162 } 163 164 private TypeToken(Type type) { 165 this.runtimeType = checkNotNull(type); 166 } 167 168 /** Returns an instance of type token that wraps {@code type}. */ 169 public static <T> TypeToken<T> of(Class<T> type) { 170 return new SimpleTypeToken<>(type); 171 } 172 173 /** Returns an instance of type token that wraps {@code type}. */ 174 public static TypeToken<?> of(Type type) { 175 return new SimpleTypeToken<>(type); 176 } 177 178 /** 179 * Returns the raw type of {@code T}. Formally speaking, if {@code T} is returned by {@link 180 * java.lang.reflect.Method#getGenericReturnType}, the raw type is what's returned by {@link 181 * java.lang.reflect.Method#getReturnType} of the same method object. Specifically: 182 * 183 * <ul> 184 * <li>If {@code T} is a {@code Class} itself, {@code T} itself is returned. 185 * <li>If {@code T} is a {@link ParameterizedType}, the raw type of the parameterized type is 186 * returned. 187 * <li>If {@code T} is a {@link GenericArrayType}, the returned type is the corresponding array 188 * class. For example: {@code List<Integer>[] => List[]}. 189 * <li>If {@code T} is a type variable or a wildcard type, the raw type of the first upper bound 190 * is returned. For example: {@code <X extends Foo> => Foo}. 191 * </ul> 192 */ 193 public final Class<? super T> getRawType() { 194 // For wildcard or type variable, the first bound determines the runtime type. 195 Class<?> rawType = getRawTypes().iterator().next(); 196 @SuppressWarnings("unchecked") // raw type is |T| 197 Class<? super T> result = (Class<? super T>) rawType; 198 return result; 199 } 200 201 /** Returns the represented type. */ 202 public final Type getType() { 203 return runtimeType; 204 } 205 206 /** 207 * Returns a new {@code TypeToken} where type variables represented by {@code typeParam} are 208 * substituted by {@code typeArg}. For example, it can be used to construct {@code Map<K, V>} for 209 * any {@code K} and {@code V} type: 210 * 211 * <pre>{@code 212 * static <K, V> TypeToken<Map<K, V>> mapOf( 213 * TypeToken<K> keyType, TypeToken<V> valueType) { 214 * return new TypeToken<Map<K, V>>() {} 215 * .where(new TypeParameter<K>() {}, keyType) 216 * .where(new TypeParameter<V>() {}, valueType); 217 * } 218 * }</pre> 219 * 220 * @param <X> The parameter type 221 * @param typeParam the parameter type variable 222 * @param typeArg the actual type to substitute 223 */ 224 /* 225 * TODO(cpovirk): Is there any way for us to support TypeParameter instances for type parameters 226 * that have nullable bounds? Unfortunately, if we change the parameter to TypeParameter<? extends 227 * @Nullable X>, then users might pass a TypeParameter<Y>, where Y is a subtype of X, while still 228 * passing a TypeToken<X>. This would be invalid. Maybe we could accept a TypeParameter<@PolyNull 229 * X> if we support such a thing? It would be weird or misleading for users to be able to pass 230 * `new TypeParameter<@Nullable T>() {}` and have it act as a plain `TypeParameter<T>`, but 231 * hopefully no one would do that, anyway. See also the comment on TypeParameter itself. 232 * 233 * TODO(cpovirk): Elaborate on this / merge with other comment? 234 */ 235 public final <X> TypeToken<T> where(TypeParameter<X> typeParam, TypeToken<X> typeArg) { 236 TypeResolver resolver = 237 new TypeResolver() 238 .where( 239 ImmutableMap.of( 240 new TypeResolver.TypeVariableKey(typeParam.typeVariable), typeArg.runtimeType)); 241 // If there's any type error, we'd report now rather than later. 242 return new SimpleTypeToken<>(resolver.resolveType(runtimeType)); 243 } 244 245 /** 246 * Returns a new {@code TypeToken} where type variables represented by {@code typeParam} are 247 * substituted by {@code typeArg}. For example, it can be used to construct {@code Map<K, V>} for 248 * any {@code K} and {@code V} type: 249 * 250 * <pre>{@code 251 * static <K, V> TypeToken<Map<K, V>> mapOf( 252 * Class<K> keyType, Class<V> valueType) { 253 * return new TypeToken<Map<K, V>>() {} 254 * .where(new TypeParameter<K>() {}, keyType) 255 * .where(new TypeParameter<V>() {}, valueType); 256 * } 257 * }</pre> 258 * 259 * @param <X> The parameter type 260 * @param typeParam the parameter type variable 261 * @param typeArg the actual type to substitute 262 */ 263 /* 264 * TODO(cpovirk): Is there any way for us to support TypeParameter instances for type parameters 265 * that have nullable bounds? See discussion on the other overload of this method. 266 */ 267 public final <X> TypeToken<T> where(TypeParameter<X> typeParam, Class<X> typeArg) { 268 return where(typeParam, of(typeArg)); 269 } 270 271 /** 272 * Resolves the given {@code type} against the type context represented by this type. For example: 273 * 274 * <pre>{@code 275 * new TypeToken<List<String>>() {}.resolveType( 276 * List.class.getMethod("get", int.class).getGenericReturnType()) 277 * => String.class 278 * }</pre> 279 */ 280 public final TypeToken<?> resolveType(Type type) { 281 checkNotNull(type); 282 // Being conservative here because the user could use resolveType() to resolve a type in an 283 // invariant context. 284 return of(getInvariantTypeResolver().resolveType(type)); 285 } 286 287 private TypeToken<?> resolveSupertype(Type type) { 288 TypeToken<?> supertype = of(getCovariantTypeResolver().resolveType(type)); 289 // super types' type mapping is a subset of type mapping of this type. 290 supertype.covariantTypeResolver = covariantTypeResolver; 291 supertype.invariantTypeResolver = invariantTypeResolver; 292 return supertype; 293 } 294 295 /** 296 * Returns the generic superclass of this type or {@code null} if the type represents {@link 297 * Object} or an interface. This method is similar but different from {@link 298 * Class#getGenericSuperclass}. For example, {@code new TypeToken<StringArrayList>() 299 * {}.getGenericSuperclass()} will return {@code new TypeToken<ArrayList<String>>() {}}; while 300 * {@code StringArrayList.class.getGenericSuperclass()} will return {@code ArrayList<E>}, where 301 * {@code E} is the type variable declared by class {@code ArrayList}. 302 * 303 * <p>If this type is a type variable or wildcard, its first upper bound is examined and returned 304 * if the bound is a class or extends from a class. This means that the returned type could be a 305 * type variable too. 306 */ 307 final @Nullable TypeToken<? super T> getGenericSuperclass() { 308 if (runtimeType instanceof TypeVariable) { 309 // First bound is always the super class, if one exists. 310 return boundAsSuperclass(((TypeVariable<?>) runtimeType).getBounds()[0]); 311 } 312 if (runtimeType instanceof WildcardType) { 313 // wildcard has one and only one upper bound. 314 return boundAsSuperclass(((WildcardType) runtimeType).getUpperBounds()[0]); 315 } 316 Type superclass = getRawType().getGenericSuperclass(); 317 if (superclass == null) { 318 return null; 319 } 320 @SuppressWarnings("unchecked") // super class of T 321 TypeToken<? super T> superToken = (TypeToken<? super T>) resolveSupertype(superclass); 322 return superToken; 323 } 324 325 private @Nullable TypeToken<? super T> boundAsSuperclass(Type bound) { 326 TypeToken<?> token = of(bound); 327 if (token.getRawType().isInterface()) { 328 return null; 329 } 330 @SuppressWarnings("unchecked") // only upper bound of T is passed in. 331 TypeToken<? super T> superclass = (TypeToken<? super T>) token; 332 return superclass; 333 } 334 335 /** 336 * Returns the generic interfaces that this type directly {@code implements}. This method is 337 * similar but different from {@link Class#getGenericInterfaces()}. For example, {@code new 338 * TypeToken<List<String>>() {}.getGenericInterfaces()} will return a list that contains {@code 339 * new TypeToken<Iterable<String>>() {}}; while {@code List.class.getGenericInterfaces()} will 340 * return an array that contains {@code Iterable<T>}, where the {@code T} is the type variable 341 * declared by interface {@code Iterable}. 342 * 343 * <p>If this type is a type variable or wildcard, its upper bounds are examined and those that 344 * are either an interface or upper-bounded only by interfaces are returned. This means that the 345 * returned types could include type variables too. 346 */ 347 final ImmutableList<TypeToken<? super T>> getGenericInterfaces() { 348 if (runtimeType instanceof TypeVariable) { 349 return boundsAsInterfaces(((TypeVariable<?>) runtimeType).getBounds()); 350 } 351 if (runtimeType instanceof WildcardType) { 352 return boundsAsInterfaces(((WildcardType) runtimeType).getUpperBounds()); 353 } 354 ImmutableList.Builder<TypeToken<? super T>> builder = ImmutableList.builder(); 355 for (Type interfaceType : getRawType().getGenericInterfaces()) { 356 @SuppressWarnings("unchecked") // interface of T 357 TypeToken<? super T> resolvedInterface = 358 (TypeToken<? super T>) resolveSupertype(interfaceType); 359 builder.add(resolvedInterface); 360 } 361 return builder.build(); 362 } 363 364 private ImmutableList<TypeToken<? super T>> boundsAsInterfaces(Type[] bounds) { 365 ImmutableList.Builder<TypeToken<? super T>> builder = ImmutableList.builder(); 366 for (Type bound : bounds) { 367 @SuppressWarnings("unchecked") // upper bound of T 368 TypeToken<? super T> boundType = (TypeToken<? super T>) of(bound); 369 if (boundType.getRawType().isInterface()) { 370 builder.add(boundType); 371 } 372 } 373 return builder.build(); 374 } 375 376 /** 377 * Returns the set of interfaces and classes that this type is or is a subtype of. The returned 378 * types are parameterized with proper type arguments. 379 * 380 * <p>Subtypes are always listed before supertypes. But the reverse is not true. A type isn't 381 * necessarily a subtype of all the types following. Order between types without subtype 382 * relationship is arbitrary and not guaranteed. 383 * 384 * <p>If this type is a type variable or wildcard, upper bounds that are themselves type variables 385 * aren't included (their super interfaces and superclasses are). 386 */ 387 public final TypeSet getTypes() { 388 return new TypeSet(); 389 } 390 391 /** 392 * Returns the generic form of {@code superclass}. For example, if this is {@code 393 * ArrayList<String>}, {@code Iterable<String>} is returned given the input {@code 394 * Iterable.class}. 395 */ 396 public final TypeToken<? super T> getSupertype(Class<? super T> superclass) { 397 checkArgument( 398 this.someRawTypeIsSubclassOf(superclass), 399 "%s is not a super class of %s", 400 superclass, 401 this); 402 if (runtimeType instanceof TypeVariable) { 403 return getSupertypeFromUpperBounds(superclass, ((TypeVariable<?>) runtimeType).getBounds()); 404 } 405 if (runtimeType instanceof WildcardType) { 406 return getSupertypeFromUpperBounds(superclass, ((WildcardType) runtimeType).getUpperBounds()); 407 } 408 if (superclass.isArray()) { 409 return getArraySupertype(superclass); 410 } 411 @SuppressWarnings("unchecked") // resolved supertype 412 TypeToken<? super T> supertype = 413 (TypeToken<? super T>) resolveSupertype(toGenericType(superclass).runtimeType); 414 return supertype; 415 } 416 417 /** 418 * Returns subtype of {@code this} with {@code subclass} as the raw class. For example, if this is 419 * {@code Iterable<String>} and {@code subclass} is {@code List}, {@code List<String>} is 420 * returned. 421 */ 422 public final TypeToken<? extends T> getSubtype(Class<?> subclass) { 423 checkArgument( 424 !(runtimeType instanceof TypeVariable), "Cannot get subtype of type variable <%s>", this); 425 if (runtimeType instanceof WildcardType) { 426 return getSubtypeFromLowerBounds(subclass, ((WildcardType) runtimeType).getLowerBounds()); 427 } 428 // unwrap array type if necessary 429 if (isArray()) { 430 return getArraySubtype(subclass); 431 } 432 // At this point, it's either a raw class or parameterized type. 433 checkArgument( 434 getRawType().isAssignableFrom(subclass), "%s isn't a subclass of %s", subclass, this); 435 Type resolvedTypeArgs = resolveTypeArgsForSubclass(subclass); 436 @SuppressWarnings("unchecked") // guarded by the isAssignableFrom() statement above 437 TypeToken<? extends T> subtype = (TypeToken<? extends T>) of(resolvedTypeArgs); 438 checkArgument( 439 subtype.isSubtypeOf(this), "%s does not appear to be a subtype of %s", subtype, this); 440 return subtype; 441 } 442 443 /** 444 * Returns true if this type is a supertype of the given {@code type}. "Supertype" is defined 445 * according to <a 446 * href="http://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html#jls-4.5.1">the rules for type 447 * arguments</a> introduced with Java generics. 448 * 449 * @since 19.0 450 */ 451 public final boolean isSupertypeOf(TypeToken<?> type) { 452 return type.isSubtypeOf(getType()); 453 } 454 455 /** 456 * Returns true if this type is a supertype of the given {@code type}. "Supertype" is defined 457 * according to <a 458 * href="http://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html#jls-4.5.1">the rules for type 459 * arguments</a> introduced with Java generics. 460 * 461 * @since 19.0 462 */ 463 public final boolean isSupertypeOf(Type type) { 464 return of(type).isSubtypeOf(getType()); 465 } 466 467 /** 468 * Returns true if this type is a subtype of the given {@code type}. "Subtype" is defined 469 * according to <a 470 * href="http://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html#jls-4.5.1">the rules for type 471 * arguments</a> introduced with Java generics. 472 * 473 * @since 19.0 474 */ 475 public final boolean isSubtypeOf(TypeToken<?> type) { 476 return isSubtypeOf(type.getType()); 477 } 478 479 /** 480 * Returns true if this type is a subtype of the given {@code type}. "Subtype" is defined 481 * according to <a 482 * href="http://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html#jls-4.5.1">the rules for type 483 * arguments</a> introduced with Java generics. 484 * 485 * @since 19.0 486 */ 487 public final boolean isSubtypeOf(Type supertype) { 488 checkNotNull(supertype); 489 if (supertype instanceof WildcardType) { 490 // if 'supertype' is <? super Foo>, 'this' can be: 491 // Foo, SubFoo, <? extends Foo>. 492 // if 'supertype' is <? extends Foo>, nothing is a subtype. 493 return any(((WildcardType) supertype).getLowerBounds()).isSupertypeOf(runtimeType); 494 } 495 // if 'this' is wildcard, it's a suptype of to 'supertype' if any of its "extends" 496 // bounds is a subtype of 'supertype'. 497 if (runtimeType instanceof WildcardType) { 498 // <? super Base> is of no use in checking 'from' being a subtype of 'to'. 499 return any(((WildcardType) runtimeType).getUpperBounds()).isSubtypeOf(supertype); 500 } 501 // if 'this' is type variable, it's a subtype if any of its "extends" 502 // bounds is a subtype of 'supertype'. 503 if (runtimeType instanceof TypeVariable) { 504 return runtimeType.equals(supertype) 505 || any(((TypeVariable<?>) runtimeType).getBounds()).isSubtypeOf(supertype); 506 } 507 if (runtimeType instanceof GenericArrayType) { 508 return of(supertype).isSupertypeOfArray((GenericArrayType) runtimeType); 509 } 510 // Proceed to regular Type subtype check 511 if (supertype instanceof Class) { 512 return this.someRawTypeIsSubclassOf((Class<?>) supertype); 513 } else if (supertype instanceof ParameterizedType) { 514 return this.isSubtypeOfParameterizedType((ParameterizedType) supertype); 515 } else if (supertype instanceof GenericArrayType) { 516 return this.isSubtypeOfArrayType((GenericArrayType) supertype); 517 } else { // to instanceof TypeVariable 518 return false; 519 } 520 } 521 522 /** 523 * Returns true if this type is known to be an array type, such as {@code int[]}, {@code T[]}, 524 * {@code <? extends Map<String, Integer>[]>} etc. 525 */ 526 public final boolean isArray() { 527 return getComponentType() != null; 528 } 529 530 /** 531 * Returns true if this type is one of the nine primitive types (including {@code void}). 532 * 533 * @since 15.0 534 */ 535 public final boolean isPrimitive() { 536 return (runtimeType instanceof Class) && ((Class<?>) runtimeType).isPrimitive(); 537 } 538 539 /** 540 * Returns the corresponding wrapper type if this is a primitive type; otherwise returns {@code 541 * this} itself. Idempotent. 542 * 543 * @since 15.0 544 */ 545 public final TypeToken<T> wrap() { 546 if (isPrimitive()) { 547 @SuppressWarnings("unchecked") // this is a primitive class 548 Class<T> type = (Class<T>) runtimeType; 549 return of(Primitives.wrap(type)); 550 } 551 return this; 552 } 553 554 private boolean isWrapper() { 555 return Primitives.allWrapperTypes().contains(runtimeType); 556 } 557 558 /** 559 * Returns the corresponding primitive type if this is a wrapper type; otherwise returns {@code 560 * this} itself. Idempotent. 561 * 562 * @since 15.0 563 */ 564 public final TypeToken<T> unwrap() { 565 if (isWrapper()) { 566 @SuppressWarnings("unchecked") // this is a wrapper class 567 Class<T> type = (Class<T>) runtimeType; 568 return of(Primitives.unwrap(type)); 569 } 570 return this; 571 } 572 573 /** 574 * Returns the array component type if this type represents an array ({@code int[]}, {@code T[]}, 575 * {@code <? extends Map<String, Integer>[]>} etc.), or else {@code null} is returned. 576 */ 577 public final @Nullable TypeToken<?> getComponentType() { 578 Type componentType = Types.getComponentType(runtimeType); 579 if (componentType == null) { 580 return null; 581 } 582 return of(componentType); 583 } 584 585 /** 586 * Returns the {@link Invokable} for {@code method}, which must be a member of {@code T}. 587 * 588 * @since 14.0 589 */ 590 public final Invokable<T, Object> method(Method method) { 591 checkArgument( 592 this.someRawTypeIsSubclassOf(method.getDeclaringClass()), 593 "%s not declared by %s", 594 method, 595 this); 596 return new Invokable.MethodInvokable<T>(method) { 597 @Override 598 Type getGenericReturnType() { 599 return getCovariantTypeResolver().resolveType(super.getGenericReturnType()); 600 } 601 602 @Override 603 Type[] getGenericParameterTypes() { 604 return getInvariantTypeResolver().resolveTypesInPlace(super.getGenericParameterTypes()); 605 } 606 607 @Override 608 Type[] getGenericExceptionTypes() { 609 return getCovariantTypeResolver().resolveTypesInPlace(super.getGenericExceptionTypes()); 610 } 611 612 @Override 613 public TypeToken<T> getOwnerType() { 614 return TypeToken.this; 615 } 616 617 @Override 618 public String toString() { 619 return getOwnerType() + "." + super.toString(); 620 } 621 }; 622 } 623 624 /** 625 * Returns the {@link Invokable} for {@code constructor}, which must be a member of {@code T}. 626 * 627 * @since 14.0 628 */ 629 public final Invokable<T, T> constructor(Constructor<?> constructor) { 630 checkArgument( 631 constructor.getDeclaringClass() == getRawType(), 632 "%s not declared by %s", 633 constructor, 634 getRawType()); 635 return new Invokable.ConstructorInvokable<T>(constructor) { 636 @Override 637 Type getGenericReturnType() { 638 return getCovariantTypeResolver().resolveType(super.getGenericReturnType()); 639 } 640 641 @Override 642 Type[] getGenericParameterTypes() { 643 return getInvariantTypeResolver().resolveTypesInPlace(super.getGenericParameterTypes()); 644 } 645 646 @Override 647 Type[] getGenericExceptionTypes() { 648 return getCovariantTypeResolver().resolveTypesInPlace(super.getGenericExceptionTypes()); 649 } 650 651 @Override 652 public TypeToken<T> getOwnerType() { 653 return TypeToken.this; 654 } 655 656 @Override 657 public String toString() { 658 return getOwnerType() + "(" + Joiner.on(", ").join(getGenericParameterTypes()) + ")"; 659 } 660 }; 661 } 662 663 /** 664 * The set of interfaces and classes that {@code T} is or is a subtype of. {@link Object} is not 665 * included in the set if this type is an interface. 666 * 667 * @since 13.0 668 */ 669 public class TypeSet extends ForwardingSet<TypeToken<? super T>> implements Serializable { 670 671 private transient @Nullable ImmutableSet<TypeToken<? super T>> types; 672 673 TypeSet() {} 674 675 /** Returns the types that are interfaces implemented by this type. */ 676 public TypeSet interfaces() { 677 return new InterfaceSet(this); 678 } 679 680 /** Returns the types that are classes. */ 681 public TypeSet classes() { 682 return new ClassSet(); 683 } 684 685 @Override 686 protected Set<TypeToken<? super T>> delegate() { 687 ImmutableSet<TypeToken<? super T>> filteredTypes = types; 688 if (filteredTypes == null) { 689 // Java has no way to express ? super T when we parameterize TypeToken vs. Class. 690 @SuppressWarnings({"unchecked", "rawtypes"}) 691 ImmutableList<TypeToken<? super T>> collectedTypes = 692 (ImmutableList) TypeCollector.FOR_GENERIC_TYPE.collectTypes(TypeToken.this); 693 return (types = 694 FluentIterable.from(collectedTypes) 695 .filter(TypeFilter.IGNORE_TYPE_VARIABLE_OR_WILDCARD) 696 .toSet()); 697 } else { 698 return filteredTypes; 699 } 700 } 701 702 /** Returns the raw types of the types in this set, in the same order. */ 703 public Set<Class<? super T>> rawTypes() { 704 // Java has no way to express ? super T when we parameterize TypeToken vs. Class. 705 @SuppressWarnings({"unchecked", "rawtypes"}) 706 ImmutableList<Class<? super T>> collectedTypes = 707 (ImmutableList) TypeCollector.FOR_RAW_TYPE.collectTypes(getRawTypes()); 708 return ImmutableSet.copyOf(collectedTypes); 709 } 710 711 private static final long serialVersionUID = 0; 712 } 713 714 private final class InterfaceSet extends TypeSet { 715 716 private final transient TypeSet allTypes; 717 private transient @Nullable ImmutableSet<TypeToken<? super T>> interfaces; 718 719 InterfaceSet(TypeSet allTypes) { 720 this.allTypes = allTypes; 721 } 722 723 @Override 724 protected Set<TypeToken<? super T>> delegate() { 725 ImmutableSet<TypeToken<? super T>> result = interfaces; 726 if (result == null) { 727 return (interfaces = 728 FluentIterable.from(allTypes).filter(TypeFilter.INTERFACE_ONLY).toSet()); 729 } else { 730 return result; 731 } 732 } 733 734 @Override 735 public TypeSet interfaces() { 736 return this; 737 } 738 739 @Override 740 public Set<Class<? super T>> rawTypes() { 741 // Java has no way to express ? super T when we parameterize TypeToken vs. Class. 742 @SuppressWarnings({"unchecked", "rawtypes"}) 743 ImmutableList<Class<? super T>> collectedTypes = 744 (ImmutableList) TypeCollector.FOR_RAW_TYPE.collectTypes(getRawTypes()); 745 return FluentIterable.from(collectedTypes).filter(Class::isInterface).toSet(); 746 } 747 748 @Override 749 public TypeSet classes() { 750 throw new UnsupportedOperationException("interfaces().classes() not supported."); 751 } 752 753 private Object readResolve() { 754 return getTypes().interfaces(); 755 } 756 757 private static final long serialVersionUID = 0; 758 } 759 760 private final class ClassSet extends TypeSet { 761 762 private transient @Nullable ImmutableSet<TypeToken<? super T>> classes; 763 764 @Override 765 protected Set<TypeToken<? super T>> delegate() { 766 ImmutableSet<TypeToken<? super T>> result = classes; 767 if (result == null) { 768 @SuppressWarnings({"unchecked", "rawtypes"}) 769 ImmutableList<TypeToken<? super T>> collectedTypes = 770 (ImmutableList) 771 TypeCollector.FOR_GENERIC_TYPE.classesOnly().collectTypes(TypeToken.this); 772 return (classes = 773 FluentIterable.from(collectedTypes) 774 .filter(TypeFilter.IGNORE_TYPE_VARIABLE_OR_WILDCARD) 775 .toSet()); 776 } else { 777 return result; 778 } 779 } 780 781 @Override 782 public TypeSet classes() { 783 return this; 784 } 785 786 @Override 787 public Set<Class<? super T>> rawTypes() { 788 // Java has no way to express ? super T when we parameterize TypeToken vs. Class. 789 @SuppressWarnings({"unchecked", "rawtypes"}) 790 ImmutableList<Class<? super T>> collectedTypes = 791 (ImmutableList) TypeCollector.FOR_RAW_TYPE.classesOnly().collectTypes(getRawTypes()); 792 return ImmutableSet.copyOf(collectedTypes); 793 } 794 795 @Override 796 public TypeSet interfaces() { 797 throw new UnsupportedOperationException("classes().interfaces() not supported."); 798 } 799 800 private Object readResolve() { 801 return getTypes().classes(); 802 } 803 804 private static final long serialVersionUID = 0; 805 } 806 807 private enum TypeFilter implements Predicate<TypeToken<?>> { 808 IGNORE_TYPE_VARIABLE_OR_WILDCARD { 809 @Override 810 public boolean apply(TypeToken<?> type) { 811 return !(type.runtimeType instanceof TypeVariable 812 || type.runtimeType instanceof WildcardType); 813 } 814 }, 815 INTERFACE_ONLY { 816 @Override 817 public boolean apply(TypeToken<?> type) { 818 return type.getRawType().isInterface(); 819 } 820 } 821 } 822 823 /** 824 * Returns true if {@code o} is another {@code TypeToken} that represents the same {@link Type}. 825 */ 826 @Override 827 public boolean equals(@Nullable Object o) { 828 if (o instanceof TypeToken) { 829 TypeToken<?> that = (TypeToken<?>) o; 830 return runtimeType.equals(that.runtimeType); 831 } 832 return false; 833 } 834 835 @Override 836 public int hashCode() { 837 return runtimeType.hashCode(); 838 } 839 840 @Override 841 public String toString() { 842 return Types.toString(runtimeType); 843 } 844 845 /** Implemented to support serialization of subclasses. */ 846 protected Object writeReplace() { 847 // TypeResolver just transforms the type to our own impls that are Serializable 848 // except TypeVariable. 849 return of(new TypeResolver().resolveType(runtimeType)); 850 } 851 852 /** 853 * Ensures that this type token doesn't contain type variables, which can cause unchecked type 854 * errors for callers like {@link TypeToInstanceMap}. 855 */ 856 @CanIgnoreReturnValue 857 final TypeToken<T> rejectTypeVariables() { 858 new TypeVisitor() { 859 @Override 860 void visitTypeVariable(TypeVariable<?> type) { 861 throw new IllegalArgumentException( 862 runtimeType + "contains a type variable and is not safe for the operation"); 863 } 864 865 @Override 866 void visitWildcardType(WildcardType type) { 867 visit(type.getLowerBounds()); 868 visit(type.getUpperBounds()); 869 } 870 871 @Override 872 void visitParameterizedType(ParameterizedType type) { 873 visit(type.getActualTypeArguments()); 874 visit(type.getOwnerType()); 875 } 876 877 @Override 878 void visitGenericArrayType(GenericArrayType type) { 879 visit(type.getGenericComponentType()); 880 } 881 }.visit(runtimeType); 882 return this; 883 } 884 885 private boolean someRawTypeIsSubclassOf(Class<?> superclass) { 886 for (Class<?> rawType : getRawTypes()) { 887 if (superclass.isAssignableFrom(rawType)) { 888 return true; 889 } 890 } 891 return false; 892 } 893 894 private boolean isSubtypeOfParameterizedType(ParameterizedType supertype) { 895 Class<?> matchedClass = of(supertype).getRawType(); 896 if (!someRawTypeIsSubclassOf(matchedClass)) { 897 return false; 898 } 899 TypeVariable<?>[] typeVars = matchedClass.getTypeParameters(); 900 Type[] supertypeArgs = supertype.getActualTypeArguments(); 901 for (int i = 0; i < typeVars.length; i++) { 902 Type subtypeParam = getCovariantTypeResolver().resolveType(typeVars[i]); 903 // If 'supertype' is "List<? extends CharSequence>" 904 // and 'this' is StringArrayList, 905 // First step is to figure out StringArrayList "is-a" List<E> where <E> = String. 906 // String is then matched against <? extends CharSequence>, the supertypeArgs[0]. 907 if (!of(subtypeParam).is(supertypeArgs[i], typeVars[i])) { 908 return false; 909 } 910 } 911 // We only care about the case when the supertype is a non-static inner class 912 // in which case we need to make sure the subclass's owner type is a subtype of the 913 // supertype's owner. 914 return Modifier.isStatic(((Class<?>) supertype.getRawType()).getModifiers()) 915 || supertype.getOwnerType() == null 916 || isOwnedBySubtypeOf(supertype.getOwnerType()); 917 } 918 919 private boolean isSubtypeOfArrayType(GenericArrayType supertype) { 920 if (runtimeType instanceof Class) { 921 Class<?> fromClass = (Class<?>) runtimeType; 922 if (!fromClass.isArray()) { 923 return false; 924 } 925 return of(fromClass.getComponentType()).isSubtypeOf(supertype.getGenericComponentType()); 926 } else if (runtimeType instanceof GenericArrayType) { 927 GenericArrayType fromArrayType = (GenericArrayType) runtimeType; 928 return of(fromArrayType.getGenericComponentType()) 929 .isSubtypeOf(supertype.getGenericComponentType()); 930 } else { 931 return false; 932 } 933 } 934 935 private boolean isSupertypeOfArray(GenericArrayType subtype) { 936 if (runtimeType instanceof Class) { 937 Class<?> thisClass = (Class<?>) runtimeType; 938 if (!thisClass.isArray()) { 939 return thisClass.isAssignableFrom(Object[].class); 940 } 941 return of(subtype.getGenericComponentType()).isSubtypeOf(thisClass.getComponentType()); 942 } else if (runtimeType instanceof GenericArrayType) { 943 return of(subtype.getGenericComponentType()) 944 .isSubtypeOf(((GenericArrayType) runtimeType).getGenericComponentType()); 945 } else { 946 return false; 947 } 948 } 949 950 /** 951 * {@code A.is(B)} is defined as {@code Foo<A>.isSubtypeOf(Foo<B>)}. 952 * 953 * <p>Specifically, returns true if any of the following conditions is met: 954 * 955 * <ol> 956 * <li>'this' and {@code formalType} are equal. 957 * <li>'this' and {@code formalType} have equal canonical form. 958 * <li>{@code formalType} is {@code <? extends Foo>} and 'this' is a subtype of {@code Foo}. 959 * <li>{@code formalType} is {@code <? super Foo>} and 'this' is a supertype of {@code Foo}. 960 * </ol> 961 * 962 * Note that condition 2 isn't technically accurate under the context of a recursively bounded 963 * type variables. For example, {@code Enum<? extends Enum<E>>} canonicalizes to {@code Enum<?>} 964 * where {@code E} is the type variable declared on the {@code Enum} class declaration. It's 965 * technically <em>not</em> true that {@code Foo<Enum<? extends Enum<E>>>} is a subtype of {@code 966 * Foo<Enum<?>>} according to JLS. See testRecursiveWildcardSubtypeBug() for a real example. 967 * 968 * <p>It appears that properly handling recursive type bounds in the presence of implicit type 969 * bounds is not easy. For now we punt, hoping that this defect should rarely cause issues in real 970 * code. 971 * 972 * @param formalType is {@code Foo<formalType>} a supertype of {@code Foo<T>}? 973 * @param declaration The type variable in the context of a parameterized type. Used to infer type 974 * bound when {@code formalType} is a wildcard with implicit upper bound. 975 */ 976 private boolean is(Type formalType, TypeVariable<?> declaration) { 977 if (runtimeType.equals(formalType)) { 978 return true; 979 } 980 if (formalType instanceof WildcardType) { 981 WildcardType your = canonicalizeWildcardType(declaration, (WildcardType) formalType); 982 // if "formalType" is <? extends Foo>, "this" can be: 983 // Foo, SubFoo, <? extends Foo>, <? extends SubFoo>, <T extends Foo> or 984 // <T extends SubFoo>. 985 // if "formalType" is <? super Foo>, "this" can be: 986 // Foo, SuperFoo, <? super Foo> or <? super SuperFoo>. 987 return every(your.getUpperBounds()).isSupertypeOf(runtimeType) 988 && every(your.getLowerBounds()).isSubtypeOf(runtimeType); 989 } 990 return canonicalizeWildcardsInType(runtimeType).equals(canonicalizeWildcardsInType(formalType)); 991 } 992 993 /** 994 * In reflection, {@code Foo<?>.getUpperBounds()[0]} is always {@code Object.class}, even when Foo 995 * is defined as {@code Foo<T extends String>}. Thus directly calling {@code <?>.is(String.class)} 996 * will return false. To mitigate, we canonicalize wildcards by enforcing the following 997 * invariants: 998 * 999 * <ol> 1000 * <li>{@code canonicalize(t)} always produces the equal result for equivalent types. For 1001 * example both {@code Enum<?>} and {@code Enum<? extends Enum<?>>} canonicalize to {@code 1002 * Enum<? extends Enum<E>}. 1003 * <li>{@code canonicalize(t)} produces a "literal" supertype of t. For example: {@code Enum<? 1004 * extends Enum<?>>} canonicalizes to {@code Enum<?>}, which is a supertype (if we disregard 1005 * the upper bound is implicitly an Enum too). 1006 * <li>If {@code canonicalize(A) == canonicalize(B)}, then {@code Foo<A>.isSubtypeOf(Foo<B>)} 1007 * and vice versa. i.e. {@code A.is(B)} and {@code B.is(A)}. 1008 * <li>{@code canonicalize(canonicalize(A)) == canonicalize(A)}. 1009 * </ol> 1010 */ 1011 private static Type canonicalizeTypeArg(TypeVariable<?> declaration, Type typeArg) { 1012 return typeArg instanceof WildcardType 1013 ? canonicalizeWildcardType(declaration, ((WildcardType) typeArg)) 1014 : canonicalizeWildcardsInType(typeArg); 1015 } 1016 1017 private static Type canonicalizeWildcardsInType(Type type) { 1018 if (type instanceof ParameterizedType) { 1019 return canonicalizeWildcardsInParameterizedType((ParameterizedType) type); 1020 } 1021 if (type instanceof GenericArrayType) { 1022 return Types.newArrayType( 1023 canonicalizeWildcardsInType(((GenericArrayType) type).getGenericComponentType())); 1024 } 1025 return type; 1026 } 1027 1028 // WARNING: the returned type may have empty upper bounds, which may violate common expectations 1029 // by user code or even some of our own code. It's fine for the purpose of checking subtypes. 1030 // Just don't ever let the user access it. 1031 private static WildcardType canonicalizeWildcardType( 1032 TypeVariable<?> declaration, WildcardType type) { 1033 Type[] declared = declaration.getBounds(); 1034 List<Type> upperBounds = new ArrayList<>(); 1035 for (Type bound : type.getUpperBounds()) { 1036 if (!any(declared).isSubtypeOf(bound)) { 1037 upperBounds.add(canonicalizeWildcardsInType(bound)); 1038 } 1039 } 1040 return new Types.WildcardTypeImpl(type.getLowerBounds(), upperBounds.toArray(new Type[0])); 1041 } 1042 1043 private static ParameterizedType canonicalizeWildcardsInParameterizedType( 1044 ParameterizedType type) { 1045 Class<?> rawType = (Class<?>) type.getRawType(); 1046 TypeVariable<?>[] typeVars = rawType.getTypeParameters(); 1047 Type[] typeArgs = type.getActualTypeArguments(); 1048 for (int i = 0; i < typeArgs.length; i++) { 1049 typeArgs[i] = canonicalizeTypeArg(typeVars[i], typeArgs[i]); 1050 } 1051 return Types.newParameterizedTypeWithOwner(type.getOwnerType(), rawType, typeArgs); 1052 } 1053 1054 private static Bounds every(Type[] bounds) { 1055 // Every bound must match. On any false, result is false. 1056 return new Bounds(bounds, false); 1057 } 1058 1059 private static Bounds any(Type[] bounds) { 1060 // Any bound matches. On any true, result is true. 1061 return new Bounds(bounds, true); 1062 } 1063 1064 private static class Bounds { 1065 private final Type[] bounds; 1066 private final boolean target; 1067 1068 Bounds(Type[] bounds, boolean target) { 1069 this.bounds = bounds; 1070 this.target = target; 1071 } 1072 1073 boolean isSubtypeOf(Type supertype) { 1074 for (Type bound : bounds) { 1075 if (of(bound).isSubtypeOf(supertype) == target) { 1076 return target; 1077 } 1078 } 1079 return !target; 1080 } 1081 1082 boolean isSupertypeOf(Type subtype) { 1083 TypeToken<?> type = of(subtype); 1084 for (Type bound : bounds) { 1085 if (type.isSubtypeOf(bound) == target) { 1086 return target; 1087 } 1088 } 1089 return !target; 1090 } 1091 } 1092 1093 private ImmutableSet<Class<? super T>> getRawTypes() { 1094 ImmutableSet.Builder<Class<?>> builder = ImmutableSet.builder(); 1095 new TypeVisitor() { 1096 @Override 1097 void visitTypeVariable(TypeVariable<?> t) { 1098 visit(t.getBounds()); 1099 } 1100 1101 @Override 1102 void visitWildcardType(WildcardType t) { 1103 visit(t.getUpperBounds()); 1104 } 1105 1106 @Override 1107 void visitParameterizedType(ParameterizedType t) { 1108 builder.add((Class<?>) t.getRawType()); 1109 } 1110 1111 @Override 1112 void visitClass(Class<?> t) { 1113 builder.add(t); 1114 } 1115 1116 @Override 1117 void visitGenericArrayType(GenericArrayType t) { 1118 builder.add(Types.getArrayClass(of(t.getGenericComponentType()).getRawType())); 1119 } 1120 }.visit(runtimeType); 1121 // Cast from ImmutableSet<Class<?>> to ImmutableSet<Class<? super T>> 1122 @SuppressWarnings({"unchecked", "rawtypes"}) 1123 ImmutableSet<Class<? super T>> result = (ImmutableSet) builder.build(); 1124 return result; 1125 } 1126 1127 private boolean isOwnedBySubtypeOf(Type supertype) { 1128 for (TypeToken<?> type : getTypes()) { 1129 Type ownerType = type.getOwnerTypeIfPresent(); 1130 if (ownerType != null && of(ownerType).isSubtypeOf(supertype)) { 1131 return true; 1132 } 1133 } 1134 return false; 1135 } 1136 1137 /** 1138 * Returns the owner type of a {@link ParameterizedType} or enclosing class of a {@link Class}, or 1139 * null otherwise. 1140 */ 1141 private @Nullable Type getOwnerTypeIfPresent() { 1142 if (runtimeType instanceof ParameterizedType) { 1143 return ((ParameterizedType) runtimeType).getOwnerType(); 1144 } else if (runtimeType instanceof Class<?>) { 1145 return ((Class<?>) runtimeType).getEnclosingClass(); 1146 } else { 1147 return null; 1148 } 1149 } 1150 1151 /** 1152 * Returns the type token representing the generic type declaration of {@code cls}. For example: 1153 * {@code TypeToken.getGenericType(Iterable.class)} returns {@code Iterable<T>}. 1154 * 1155 * <p>If {@code cls} isn't parameterized and isn't a generic array, the type token of the class is 1156 * returned. 1157 */ 1158 @VisibleForTesting 1159 static <T> TypeToken<? extends T> toGenericType(Class<T> cls) { 1160 if (cls.isArray()) { 1161 Type arrayOfGenericType = 1162 Types.newArrayType( 1163 // If we are passed with int[].class, don't turn it to GenericArrayType 1164 toGenericType(cls.getComponentType()).runtimeType); 1165 @SuppressWarnings("unchecked") // array is covariant 1166 TypeToken<? extends T> result = (TypeToken<? extends T>) of(arrayOfGenericType); 1167 return result; 1168 } 1169 TypeVariable<Class<T>>[] typeParams = cls.getTypeParameters(); 1170 Type ownerType = 1171 cls.isMemberClass() && !Modifier.isStatic(cls.getModifiers()) 1172 ? toGenericType(cls.getEnclosingClass()).runtimeType 1173 : null; 1174 1175 if ((typeParams.length > 0) || ((ownerType != null) && ownerType != cls.getEnclosingClass())) { 1176 @SuppressWarnings("unchecked") // Like, it's Iterable<T> for Iterable.class 1177 TypeToken<? extends T> type = 1178 (TypeToken<? extends T>) 1179 of(Types.newParameterizedTypeWithOwner(ownerType, cls, typeParams)); 1180 return type; 1181 } else { 1182 return of(cls); 1183 } 1184 } 1185 1186 private TypeResolver getCovariantTypeResolver() { 1187 TypeResolver resolver = covariantTypeResolver; 1188 if (resolver == null) { 1189 resolver = (covariantTypeResolver = TypeResolver.covariantly(runtimeType)); 1190 } 1191 return resolver; 1192 } 1193 1194 private TypeResolver getInvariantTypeResolver() { 1195 TypeResolver resolver = invariantTypeResolver; 1196 if (resolver == null) { 1197 resolver = (invariantTypeResolver = TypeResolver.invariantly(runtimeType)); 1198 } 1199 return resolver; 1200 } 1201 1202 private TypeToken<? super T> getSupertypeFromUpperBounds( 1203 Class<? super T> supertype, Type[] upperBounds) { 1204 for (Type upperBound : upperBounds) { 1205 @SuppressWarnings("unchecked") // T's upperbound is <? super T>. 1206 TypeToken<? super T> bound = (TypeToken<? super T>) of(upperBound); 1207 if (bound.isSubtypeOf(supertype)) { 1208 @SuppressWarnings({"rawtypes", "unchecked"}) // guarded by the isSubtypeOf check. 1209 TypeToken<? super T> result = bound.getSupertype((Class) supertype); 1210 return result; 1211 } 1212 } 1213 throw new IllegalArgumentException(supertype + " isn't a super type of " + this); 1214 } 1215 1216 private TypeToken<? extends T> getSubtypeFromLowerBounds(Class<?> subclass, Type[] lowerBounds) { 1217 if (lowerBounds.length > 0) { 1218 @SuppressWarnings("unchecked") // T's lower bound is <? extends T> 1219 TypeToken<? extends T> bound = (TypeToken<? extends T>) of(lowerBounds[0]); 1220 // Java supports only one lowerbound anyway. 1221 return bound.getSubtype(subclass); 1222 } 1223 throw new IllegalArgumentException(subclass + " isn't a subclass of " + this); 1224 } 1225 1226 private TypeToken<? super T> getArraySupertype(Class<? super T> supertype) { 1227 // with component type, we have lost generic type information 1228 // Use raw type so that compiler allows us to call getSupertype() 1229 @SuppressWarnings("rawtypes") 1230 TypeToken componentType = getComponentType(); 1231 // TODO(cpovirk): checkArgument? 1232 if (componentType == null) { 1233 throw new IllegalArgumentException(supertype + " isn't a super type of " + this); 1234 } 1235 // array is covariant. component type is super type, so is the array type. 1236 @SuppressWarnings("unchecked") // going from raw type back to generics 1237 /* 1238 * requireNonNull is safe because we call getArraySupertype only after checking 1239 * supertype.isArray(). 1240 */ 1241 TypeToken<?> componentSupertype = 1242 componentType.getSupertype(requireNonNull(supertype.getComponentType())); 1243 @SuppressWarnings("unchecked") // component type is super type, so is array type. 1244 TypeToken<? super T> result = 1245 (TypeToken<? super T>) 1246 // If we are passed with int[].class, don't turn it to GenericArrayType 1247 of(newArrayClassOrGenericArrayType(componentSupertype.runtimeType)); 1248 return result; 1249 } 1250 1251 private TypeToken<? extends T> getArraySubtype(Class<?> subclass) { 1252 Class<?> subclassComponentType = subclass.getComponentType(); 1253 if (subclassComponentType == null) { 1254 throw new IllegalArgumentException(subclass + " does not appear to be a subtype of " + this); 1255 } 1256 // array is covariant. component type is subtype, so is the array type. 1257 // requireNonNull is safe because we call getArraySubtype only when isArray(). 1258 TypeToken<?> componentSubtype = 1259 requireNonNull(getComponentType()).getSubtype(subclassComponentType); 1260 @SuppressWarnings("unchecked") // component type is subtype, so is array type. 1261 TypeToken<? extends T> result = 1262 (TypeToken<? extends T>) 1263 // If we are passed with int[].class, don't turn it to GenericArrayType 1264 of(newArrayClassOrGenericArrayType(componentSubtype.runtimeType)); 1265 return result; 1266 } 1267 1268 private Type resolveTypeArgsForSubclass(Class<?> subclass) { 1269 // If both runtimeType and subclass are not parameterized, return subclass 1270 // If runtimeType is not parameterized but subclass is, process subclass as a parameterized type 1271 // If runtimeType is a raw type (i.e. is a parameterized type specified as a Class<?>), we 1272 // return subclass as a raw type 1273 if (runtimeType instanceof Class 1274 && ((subclass.getTypeParameters().length == 0) 1275 || (getRawType().getTypeParameters().length != 0))) { 1276 // no resolution needed 1277 return subclass; 1278 } 1279 // class Base<A, B> {} 1280 // class Sub<X, Y> extends Base<X, Y> {} 1281 // Base<String, Integer>.subtype(Sub.class): 1282 1283 // Sub<X, Y>.getSupertype(Base.class) => Base<X, Y> 1284 // => X=String, Y=Integer 1285 // => Sub<X, Y>=Sub<String, Integer> 1286 TypeToken<?> genericSubtype = toGenericType(subclass); 1287 @SuppressWarnings({"rawtypes", "unchecked"}) // subclass isn't <? extends T> 1288 Type supertypeWithArgsFromSubtype = 1289 genericSubtype.getSupertype((Class) getRawType()).runtimeType; 1290 return new TypeResolver() 1291 .where(supertypeWithArgsFromSubtype, runtimeType) 1292 .resolveType(genericSubtype.runtimeType); 1293 } 1294 1295 /** 1296 * Creates an array class if {@code componentType} is a class, or else, a {@link 1297 * GenericArrayType}. This is what Java7 does for generic array type parameters. 1298 */ 1299 private static Type newArrayClassOrGenericArrayType(Type componentType) { 1300 return Types.JavaVersion.JAVA7.newArrayType(componentType); 1301 } 1302 1303 private static final class SimpleTypeToken<T> extends TypeToken<T> { 1304 1305 SimpleTypeToken(Type type) { 1306 super(type); 1307 } 1308 1309 private static final long serialVersionUID = 0; 1310 } 1311 1312 /** 1313 * Collects parent types from a subtype. 1314 * 1315 * @param <K> The type "kind". Either a TypeToken, or Class. 1316 */ 1317 private abstract static class TypeCollector<K> { 1318 1319 static final TypeCollector<TypeToken<?>> FOR_GENERIC_TYPE = 1320 new TypeCollector<TypeToken<?>>() { 1321 @Override 1322 Class<?> getRawType(TypeToken<?> type) { 1323 return type.getRawType(); 1324 } 1325 1326 @Override 1327 Iterable<? extends TypeToken<?>> getInterfaces(TypeToken<?> type) { 1328 return type.getGenericInterfaces(); 1329 } 1330 1331 @Override 1332 @Nullable TypeToken<?> getSuperclass(TypeToken<?> type) { 1333 return type.getGenericSuperclass(); 1334 } 1335 }; 1336 1337 static final TypeCollector<Class<?>> FOR_RAW_TYPE = 1338 new TypeCollector<Class<?>>() { 1339 @Override 1340 Class<?> getRawType(Class<?> type) { 1341 return type; 1342 } 1343 1344 @Override 1345 Iterable<? extends Class<?>> getInterfaces(Class<?> type) { 1346 return Arrays.asList(type.getInterfaces()); 1347 } 1348 1349 @Override 1350 @Nullable Class<?> getSuperclass(Class<?> type) { 1351 return type.getSuperclass(); 1352 } 1353 }; 1354 1355 /** For just classes, we don't have to traverse interfaces. */ 1356 final TypeCollector<K> classesOnly() { 1357 return new ForwardingTypeCollector<K>(this) { 1358 @Override 1359 Iterable<? extends K> getInterfaces(K type) { 1360 return ImmutableSet.of(); 1361 } 1362 1363 @Override 1364 ImmutableList<K> collectTypes(Iterable<? extends K> types) { 1365 ImmutableList.Builder<K> builder = ImmutableList.builder(); 1366 for (K type : types) { 1367 if (!getRawType(type).isInterface()) { 1368 builder.add(type); 1369 } 1370 } 1371 return super.collectTypes(builder.build()); 1372 } 1373 }; 1374 } 1375 1376 final ImmutableList<K> collectTypes(K type) { 1377 return collectTypes(ImmutableList.of(type)); 1378 } 1379 1380 ImmutableList<K> collectTypes(Iterable<? extends K> types) { 1381 // type -> order number. 1 for Object, 2 for anything directly below, so on so forth. 1382 Map<K, Integer> map = Maps.newHashMap(); 1383 for (K type : types) { 1384 collectTypes(type, map); 1385 } 1386 return sortKeysByValue(map, Ordering.natural().reverse()); 1387 } 1388 1389 /** Collects all types to map, and returns the total depth from T up to Object. */ 1390 @CanIgnoreReturnValue 1391 private int collectTypes(K type, Map<? super K, Integer> map) { 1392 Integer existing = map.get(type); 1393 if (existing != null) { 1394 // short circuit: if set contains type it already contains its supertypes 1395 return existing; 1396 } 1397 // Interfaces should be listed before Object. 1398 int aboveMe = getRawType(type).isInterface() ? 1 : 0; 1399 for (K interfaceType : getInterfaces(type)) { 1400 aboveMe = max(aboveMe, collectTypes(interfaceType, map)); 1401 } 1402 K superclass = getSuperclass(type); 1403 if (superclass != null) { 1404 aboveMe = max(aboveMe, collectTypes(superclass, map)); 1405 } 1406 /* 1407 * TODO(benyu): should we include Object for interface? Also, CharSequence[] and Object[] for 1408 * String[]? 1409 * 1410 */ 1411 map.put(type, aboveMe + 1); 1412 return aboveMe + 1; 1413 } 1414 1415 private static <K, V> ImmutableList<K> sortKeysByValue( 1416 Map<K, V> map, Comparator<? super V> valueComparator) { 1417 Ordering<K> keyOrdering = 1418 new Ordering<K>() { 1419 @Override 1420 public int compare(K left, K right) { 1421 // requireNonNull is safe because we are passing keys in the map. 1422 return valueComparator.compare( 1423 requireNonNull(map.get(left)), requireNonNull(map.get(right))); 1424 } 1425 }; 1426 return keyOrdering.immutableSortedCopy(map.keySet()); 1427 } 1428 1429 abstract Class<?> getRawType(K type); 1430 1431 abstract Iterable<? extends K> getInterfaces(K type); 1432 1433 abstract @Nullable K getSuperclass(K type); 1434 1435 private static class ForwardingTypeCollector<K> extends TypeCollector<K> { 1436 1437 private final TypeCollector<K> delegate; 1438 1439 ForwardingTypeCollector(TypeCollector<K> delegate) { 1440 this.delegate = delegate; 1441 } 1442 1443 @Override 1444 Class<?> getRawType(K type) { 1445 return delegate.getRawType(type); 1446 } 1447 1448 @Override 1449 Iterable<? extends K> getInterfaces(K type) { 1450 return delegate.getInterfaces(type); 1451 } 1452 1453 @Override 1454 @Nullable K getSuperclass(K type) { 1455 return delegate.getSuperclass(type); 1456 } 1457 } 1458 } 1459 1460 // This happens to be the hash of the class as of now. So setting it makes a backward compatible 1461 // change. Going forward, if any incompatible change is added, we can change the UID back to 1. 1462 private static final long serialVersionUID = 3637540370352322684L; 1463}