001/* 002 * Copyright (C) 2011 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 005 * in compliance with the License. You may obtain a copy of the License at 006 * 007 * http://www.apache.org/licenses/LICENSE-2.0 008 * 009 * Unless required by applicable law or agreed to in writing, software distributed under the License 010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express 011 * or implied. See the License for the specific language governing permissions and limitations under 012 * the License. 013 */ 014 015package com.google.common.util.concurrent; 016 017import static com.google.common.base.Preconditions.checkNotNull; 018import static java.util.Objects.requireNonNull; 019 020import com.google.common.annotations.GwtIncompatible; 021import com.google.common.annotations.J2ktIncompatible; 022import com.google.common.annotations.VisibleForTesting; 023import com.google.common.base.MoreObjects; 024import com.google.common.base.Preconditions; 025import com.google.common.collect.ImmutableSet; 026import com.google.common.collect.Lists; 027import com.google.common.collect.MapMaker; 028import com.google.common.collect.Maps; 029import com.google.common.collect.Sets; 030import com.google.j2objc.annotations.Weak; 031import java.util.ArrayList; 032import java.util.Arrays; 033import java.util.Collections; 034import java.util.EnumMap; 035import java.util.List; 036import java.util.Map; 037import java.util.Map.Entry; 038import java.util.Set; 039import java.util.concurrent.ConcurrentMap; 040import java.util.concurrent.TimeUnit; 041import java.util.concurrent.locks.ReentrantLock; 042import java.util.concurrent.locks.ReentrantReadWriteLock; 043import java.util.logging.Level; 044import javax.annotation.CheckForNull; 045 046/** 047 * The {@code CycleDetectingLockFactory} creates {@link ReentrantLock} instances and {@link 048 * ReentrantReadWriteLock} instances that detect potential deadlock by checking for cycles in lock 049 * acquisition order. 050 * 051 * <p>Potential deadlocks detected when calling the {@code lock()}, {@code lockInterruptibly()}, or 052 * {@code tryLock()} methods will result in the execution of the {@link Policy} specified when 053 * creating the factory. The currently available policies are: 054 * 055 * <ul> 056 * <li>DISABLED 057 * <li>WARN 058 * <li>THROW 059 * </ul> 060 * 061 * <p>The locks created by a factory instance will detect lock acquisition cycles with locks created 062 * by other {@code CycleDetectingLockFactory} instances (except those with {@code Policy.DISABLED}). 063 * A lock's behavior when a cycle is detected, however, is defined by the {@code Policy} of the 064 * factory that created it. This allows detection of cycles across components while delegating 065 * control over lock behavior to individual components. 066 * 067 * <p>Applications are encouraged to use a {@code CycleDetectingLockFactory} to create any locks for 068 * which external/unmanaged code is executed while the lock is held. (See caveats under 069 * <strong>Performance</strong>). 070 * 071 * <p><strong>Cycle Detection</strong> 072 * 073 * <p>Deadlocks can arise when locks are acquired in an order that forms a cycle. In a simple 074 * example involving two locks and two threads, deadlock occurs when one thread acquires Lock A, and 075 * then Lock B, while another thread acquires Lock B, and then Lock A: 076 * 077 * <pre> 078 * Thread1: acquire(LockA) --X acquire(LockB) 079 * Thread2: acquire(LockB) --X acquire(LockA) 080 * </pre> 081 * 082 * <p>Neither thread will progress because each is waiting for the other. In more complex 083 * applications, cycles can arise from interactions among more than 2 locks: 084 * 085 * <pre> 086 * Thread1: acquire(LockA) --X acquire(LockB) 087 * Thread2: acquire(LockB) --X acquire(LockC) 088 * ... 089 * ThreadN: acquire(LockN) --X acquire(LockA) 090 * </pre> 091 * 092 * <p>The implementation detects cycles by constructing a directed graph in which each lock 093 * represents a node and each edge represents an acquisition ordering between two locks. 094 * 095 * <ul> 096 * <li>Each lock adds (and removes) itself to/from a ThreadLocal Set of acquired locks when the 097 * Thread acquires its first hold (and releases its last remaining hold). 098 * <li>Before the lock is acquired, the lock is checked against the current set of acquired 099 * locks---to each of the acquired locks, an edge from the soon-to-be-acquired lock is either 100 * verified or created. 101 * <li>If a new edge needs to be created, the outgoing edges of the acquired locks are traversed 102 * to check for a cycle that reaches the lock to be acquired. If no cycle is detected, a new 103 * "safe" edge is created. 104 * <li>If a cycle is detected, an "unsafe" (cyclic) edge is created to represent a potential 105 * deadlock situation, and the appropriate Policy is executed. 106 * </ul> 107 * 108 * <p>Note that detection of potential deadlock does not necessarily indicate that deadlock will 109 * happen, as it is possible that higher level application logic prevents the cyclic lock 110 * acquisition from occurring. One example of a false positive is: 111 * 112 * <pre> 113 * LockA -> LockB -> LockC 114 * LockA -> LockC -> LockB 115 * </pre> 116 * 117 * <p><strong>ReadWriteLocks</strong> 118 * 119 * <p>While {@code ReadWriteLock} instances have different properties and can form cycles without 120 * potential deadlock, this class treats {@code ReadWriteLock} instances as equivalent to 121 * traditional exclusive locks. Although this increases the false positives that the locks detect 122 * (i.e. cycles that will not actually result in deadlock), it simplifies the algorithm and 123 * implementation considerably. The assumption is that a user of this factory wishes to eliminate 124 * any cyclic acquisition ordering. 125 * 126 * <p><strong>Explicit Lock Acquisition Ordering</strong> 127 * 128 * <p>The {@link CycleDetectingLockFactory.WithExplicitOrdering} class can be used to enforce an 129 * application-specific ordering in addition to performing general cycle detection. 130 * 131 * <p><strong>Garbage Collection</strong> 132 * 133 * <p>In order to allow proper garbage collection of unused locks, the edges of the lock graph are 134 * weak references. 135 * 136 * <p><strong>Performance</strong> 137 * 138 * <p>The extra bookkeeping done by cycle detecting locks comes at some cost to performance. 139 * Benchmarks (as of December 2011) show that: 140 * 141 * <ul> 142 * <li>for an unnested {@code lock()} and {@code unlock()}, a cycle detecting lock takes 38ns as 143 * opposed to the 24ns taken by a plain lock. 144 * <li>for nested locking, the cost increases with the depth of the nesting: 145 * <ul> 146 * <li>2 levels: average of 64ns per lock()/unlock() 147 * <li>3 levels: average of 77ns per lock()/unlock() 148 * <li>4 levels: average of 99ns per lock()/unlock() 149 * <li>5 levels: average of 103ns per lock()/unlock() 150 * <li>10 levels: average of 184ns per lock()/unlock() 151 * <li>20 levels: average of 393ns per lock()/unlock() 152 * </ul> 153 * </ul> 154 * 155 * <p>As such, the CycleDetectingLockFactory may not be suitable for performance-critical 156 * applications which involve tightly-looped or deeply-nested locking algorithms. 157 * 158 * @author Darick Tong 159 * @since 13.0 160 */ 161@J2ktIncompatible 162@GwtIncompatible 163public class CycleDetectingLockFactory { 164 165 /** 166 * Encapsulates the action to be taken when a potential deadlock is encountered. Clients can use 167 * one of the predefined {@link Policies} or specify a custom implementation. Implementations must 168 * be thread-safe. 169 * 170 * @since 13.0 171 */ 172 public interface Policy { 173 174 /** 175 * Called when a potential deadlock is encountered. Implementations can throw the given {@code 176 * exception} and/or execute other desired logic. 177 * 178 * <p>Note that the method will be called even upon an invocation of {@code tryLock()}. Although 179 * {@code tryLock()} technically recovers from deadlock by eventually timing out, this behavior 180 * is chosen based on the assumption that it is the application's wish to prohibit any cyclical 181 * lock acquisitions. 182 */ 183 void handlePotentialDeadlock(PotentialDeadlockException exception); 184 } 185 186 /** 187 * Pre-defined {@link Policy} implementations. 188 * 189 * @since 13.0 190 */ 191 public enum Policies implements Policy { 192 /** 193 * When potential deadlock is detected, this policy results in the throwing of the {@code 194 * PotentialDeadlockException} indicating the potential deadlock, which includes stack traces 195 * illustrating the cycle in lock acquisition order. 196 */ 197 THROW { 198 @Override 199 public void handlePotentialDeadlock(PotentialDeadlockException e) { 200 throw e; 201 } 202 }, 203 204 /** 205 * When potential deadlock is detected, this policy results in the logging of a {@link 206 * Level#SEVERE} message indicating the potential deadlock, which includes stack traces 207 * illustrating the cycle in lock acquisition order. 208 */ 209 WARN { 210 @Override 211 public void handlePotentialDeadlock(PotentialDeadlockException e) { 212 logger.get().log(Level.SEVERE, "Detected potential deadlock", e); 213 } 214 }, 215 216 /** 217 * Disables cycle detection. This option causes the factory to return unmodified lock 218 * implementations provided by the JDK, and is provided to allow applications to easily 219 * parameterize when cycle detection is enabled. 220 * 221 * <p>Note that locks created by a factory with this policy will <em>not</em> participate the 222 * cycle detection performed by locks created by other factories. 223 */ 224 DISABLED { 225 @Override 226 public void handlePotentialDeadlock(PotentialDeadlockException e) {} 227 }; 228 } 229 230 /** Creates a new factory with the specified policy. */ 231 public static CycleDetectingLockFactory newInstance(Policy policy) { 232 return new CycleDetectingLockFactory(policy); 233 } 234 235 /** Equivalent to {@code newReentrantLock(lockName, false)}. */ 236 public ReentrantLock newReentrantLock(String lockName) { 237 return newReentrantLock(lockName, false); 238 } 239 240 /** 241 * Creates a {@link ReentrantLock} with the given fairness policy. The {@code lockName} is used in 242 * the warning or exception output to help identify the locks involved in the detected deadlock. 243 */ 244 public ReentrantLock newReentrantLock(String lockName, boolean fair) { 245 return policy == Policies.DISABLED 246 ? new ReentrantLock(fair) 247 : new CycleDetectingReentrantLock(new LockGraphNode(lockName), fair); 248 } 249 250 /** Equivalent to {@code newReentrantReadWriteLock(lockName, false)}. */ 251 public ReentrantReadWriteLock newReentrantReadWriteLock(String lockName) { 252 return newReentrantReadWriteLock(lockName, false); 253 } 254 255 /** 256 * Creates a {@link ReentrantReadWriteLock} with the given fairness policy. The {@code lockName} 257 * is used in the warning or exception output to help identify the locks involved in the detected 258 * deadlock. 259 */ 260 public ReentrantReadWriteLock newReentrantReadWriteLock(String lockName, boolean fair) { 261 return policy == Policies.DISABLED 262 ? new ReentrantReadWriteLock(fair) 263 : new CycleDetectingReentrantReadWriteLock(new LockGraphNode(lockName), fair); 264 } 265 266 // A static mapping from an Enum type to its set of LockGraphNodes. 267 private static final ConcurrentMap< 268 Class<? extends Enum<?>>, Map<? extends Enum<?>, LockGraphNode>> 269 lockGraphNodesPerType = new MapMaker().weakKeys().makeMap(); 270 271 /** Creates a {@code CycleDetectingLockFactory.WithExplicitOrdering<E>}. */ 272 public static <E extends Enum<E>> WithExplicitOrdering<E> newInstanceWithExplicitOrdering( 273 Class<E> enumClass, Policy policy) { 274 // createNodes maps each enumClass to a Map with the corresponding enum key 275 // type. 276 checkNotNull(enumClass); 277 checkNotNull(policy); 278 @SuppressWarnings("unchecked") 279 Map<E, LockGraphNode> lockGraphNodes = (Map<E, LockGraphNode>) getOrCreateNodes(enumClass); 280 return new WithExplicitOrdering<>(policy, lockGraphNodes); 281 } 282 283 @SuppressWarnings("unchecked") 284 private static <E extends Enum<E>> Map<? extends E, LockGraphNode> getOrCreateNodes( 285 Class<E> clazz) { 286 Map<E, LockGraphNode> existing = (Map<E, LockGraphNode>) lockGraphNodesPerType.get(clazz); 287 if (existing != null) { 288 return existing; 289 } 290 Map<E, LockGraphNode> created = createNodes(clazz); 291 existing = (Map<E, LockGraphNode>) lockGraphNodesPerType.putIfAbsent(clazz, created); 292 return MoreObjects.firstNonNull(existing, created); 293 } 294 295 /** 296 * For a given Enum type, creates an immutable map from each of the Enum's values to a 297 * corresponding LockGraphNode, with the {@code allowedPriorLocks} and {@code 298 * disallowedPriorLocks} prepopulated with nodes according to the natural ordering of the 299 * associated Enum values. 300 */ 301 @VisibleForTesting 302 static <E extends Enum<E>> Map<E, LockGraphNode> createNodes(Class<E> clazz) { 303 EnumMap<E, LockGraphNode> map = Maps.newEnumMap(clazz); 304 E[] keys = clazz.getEnumConstants(); 305 int numKeys = keys.length; 306 ArrayList<LockGraphNode> nodes = Lists.newArrayListWithCapacity(numKeys); 307 // Create a LockGraphNode for each enum value. 308 for (E key : keys) { 309 LockGraphNode node = new LockGraphNode(getLockName(key)); 310 nodes.add(node); 311 map.put(key, node); 312 } 313 // Pre-populate all allowedPriorLocks with nodes of smaller ordinal. 314 for (int i = 1; i < numKeys; i++) { 315 nodes.get(i).checkAcquiredLocks(Policies.THROW, nodes.subList(0, i)); 316 } 317 // Pre-populate all disallowedPriorLocks with nodes of larger ordinal. 318 for (int i = 0; i < numKeys - 1; i++) { 319 nodes.get(i).checkAcquiredLocks(Policies.DISABLED, nodes.subList(i + 1, numKeys)); 320 } 321 return Collections.unmodifiableMap(map); 322 } 323 324 /** 325 * For the given Enum value {@code rank}, returns the value's {@code "EnumClass.name"}, which is 326 * used in exception and warning output. 327 */ 328 private static String getLockName(Enum<?> rank) { 329 return rank.getDeclaringClass().getSimpleName() + "." + rank.name(); 330 } 331 332 /** 333 * A {@code CycleDetectingLockFactory.WithExplicitOrdering} provides the additional enforcement of 334 * an application-specified ordering of lock acquisitions. The application defines the allowed 335 * ordering with an {@code Enum} whose values each correspond to a lock type. The order in which 336 * the values are declared dictates the allowed order of lock acquisition. In other words, locks 337 * corresponding to smaller values of {@link Enum#ordinal()} should only be acquired before locks 338 * with larger ordinals. Example: 339 * 340 * <pre>{@code 341 * enum MyLockOrder { 342 * FIRST, SECOND, THIRD; 343 * } 344 * 345 * CycleDetectingLockFactory.WithExplicitOrdering<MyLockOrder> factory = 346 * CycleDetectingLockFactory.newInstanceWithExplicitOrdering(Policies.THROW); 347 * 348 * Lock lock1 = factory.newReentrantLock(MyLockOrder.FIRST); 349 * Lock lock2 = factory.newReentrantLock(MyLockOrder.SECOND); 350 * Lock lock3 = factory.newReentrantLock(MyLockOrder.THIRD); 351 * 352 * lock1.lock(); 353 * lock3.lock(); 354 * lock2.lock(); // will throw an IllegalStateException 355 * }</pre> 356 * 357 * <p>As with all locks created by instances of {@code CycleDetectingLockFactory} explicitly 358 * ordered locks participate in general cycle detection with all other cycle detecting locks, and 359 * a lock's behavior when detecting a cyclic lock acquisition is defined by the {@code Policy} of 360 * the factory that created it. 361 * 362 * <p>Note, however, that although multiple locks can be created for a given Enum value, whether 363 * it be through separate factory instances or through multiple calls to the same factory, 364 * attempting to acquire multiple locks with the same Enum value (within the same thread) will 365 * result in an IllegalStateException regardless of the factory's policy. For example: 366 * 367 * <pre>{@code 368 * CycleDetectingLockFactory.WithExplicitOrdering<MyLockOrder> factory1 = 369 * CycleDetectingLockFactory.newInstanceWithExplicitOrdering(...); 370 * CycleDetectingLockFactory.WithExplicitOrdering<MyLockOrder> factory2 = 371 * CycleDetectingLockFactory.newInstanceWithExplicitOrdering(...); 372 * 373 * Lock lockA = factory1.newReentrantLock(MyLockOrder.FIRST); 374 * Lock lockB = factory1.newReentrantLock(MyLockOrder.FIRST); 375 * Lock lockC = factory2.newReentrantLock(MyLockOrder.FIRST); 376 * 377 * lockA.lock(); 378 * 379 * lockB.lock(); // will throw an IllegalStateException 380 * lockC.lock(); // will throw an IllegalStateException 381 * 382 * lockA.lock(); // reentrant acquisition is okay 383 * }</pre> 384 * 385 * <p>It is the responsibility of the application to ensure that multiple lock instances with the 386 * same rank are never acquired in the same thread. 387 * 388 * @param <E> The Enum type representing the explicit lock ordering. 389 * @since 13.0 390 */ 391 public static final class WithExplicitOrdering<E extends Enum<E>> 392 extends CycleDetectingLockFactory { 393 394 private final Map<E, LockGraphNode> lockGraphNodes; 395 396 @VisibleForTesting 397 WithExplicitOrdering(Policy policy, Map<E, LockGraphNode> lockGraphNodes) { 398 super(policy); 399 this.lockGraphNodes = lockGraphNodes; 400 } 401 402 /** Equivalent to {@code newReentrantLock(rank, false)}. */ 403 public ReentrantLock newReentrantLock(E rank) { 404 return newReentrantLock(rank, false); 405 } 406 407 /** 408 * Creates a {@link ReentrantLock} with the given fairness policy and rank. The values returned 409 * by {@link Enum#getDeclaringClass()} and {@link Enum#name()} are used to describe the lock in 410 * warning or exception output. 411 * 412 * @throws IllegalStateException If the factory has already created a {@code Lock} with the 413 * specified rank. 414 */ 415 public ReentrantLock newReentrantLock(E rank, boolean fair) { 416 return policy == Policies.DISABLED 417 ? new ReentrantLock(fair) 418 // requireNonNull is safe because createNodes inserts an entry for every E. 419 // (If the caller passes `null` for the `rank` parameter, this will throw, but that's OK.) 420 : new CycleDetectingReentrantLock(requireNonNull(lockGraphNodes.get(rank)), fair); 421 } 422 423 /** Equivalent to {@code newReentrantReadWriteLock(rank, false)}. */ 424 public ReentrantReadWriteLock newReentrantReadWriteLock(E rank) { 425 return newReentrantReadWriteLock(rank, false); 426 } 427 428 /** 429 * Creates a {@link ReentrantReadWriteLock} with the given fairness policy and rank. The values 430 * returned by {@link Enum#getDeclaringClass()} and {@link Enum#name()} are used to describe the 431 * lock in warning or exception output. 432 * 433 * @throws IllegalStateException If the factory has already created a {@code Lock} with the 434 * specified rank. 435 */ 436 public ReentrantReadWriteLock newReentrantReadWriteLock(E rank, boolean fair) { 437 return policy == Policies.DISABLED 438 ? new ReentrantReadWriteLock(fair) 439 // requireNonNull is safe because createNodes inserts an entry for every E. 440 // (If the caller passes `null` for the `rank` parameter, this will throw, but that's OK.) 441 : new CycleDetectingReentrantReadWriteLock( 442 requireNonNull(lockGraphNodes.get(rank)), fair); 443 } 444 } 445 446 //////// Implementation ///////// 447 448 private static final LazyLogger logger = new LazyLogger(CycleDetectingLockFactory.class); 449 450 final Policy policy; 451 452 private CycleDetectingLockFactory(Policy policy) { 453 this.policy = checkNotNull(policy); 454 } 455 456 /** 457 * Tracks the currently acquired locks for each Thread, kept up to date by calls to {@link 458 * #aboutToAcquire(CycleDetectingLock)} and {@link #lockStateChanged(CycleDetectingLock)}. 459 */ 460 // This is logically a Set, but an ArrayList is used to minimize the amount 461 // of allocation done on lock()/unlock(). 462 private static final ThreadLocal<ArrayList<LockGraphNode>> acquiredLocks = 463 new ThreadLocal<ArrayList<LockGraphNode>>() { 464 @Override 465 protected ArrayList<LockGraphNode> initialValue() { 466 return Lists.<LockGraphNode>newArrayListWithCapacity(3); 467 } 468 }; 469 470 /** 471 * A Throwable used to record a stack trace that illustrates an example of a specific lock 472 * acquisition ordering. The top of the stack trace is truncated such that it starts with the 473 * acquisition of the lock in question, e.g. 474 * 475 * <pre> 476 * com...ExampleStackTrace: LockB -> LockC 477 * at com...CycleDetectingReentrantLock.lock(CycleDetectingLockFactory.java:443) 478 * at ... 479 * at ... 480 * at com...MyClass.someMethodThatAcquiresLockB(MyClass.java:123) 481 * </pre> 482 */ 483 private static class ExampleStackTrace extends IllegalStateException { 484 485 static final StackTraceElement[] EMPTY_STACK_TRACE = new StackTraceElement[0]; 486 487 static final ImmutableSet<String> EXCLUDED_CLASS_NAMES = 488 ImmutableSet.of( 489 CycleDetectingLockFactory.class.getName(), 490 ExampleStackTrace.class.getName(), 491 LockGraphNode.class.getName()); 492 493 ExampleStackTrace(LockGraphNode node1, LockGraphNode node2) { 494 super(node1.getLockName() + " -> " + node2.getLockName()); 495 StackTraceElement[] origStackTrace = getStackTrace(); 496 for (int i = 0, n = origStackTrace.length; i < n; i++) { 497 if (WithExplicitOrdering.class.getName().equals(origStackTrace[i].getClassName())) { 498 // For pre-populated disallowedPriorLocks edges, omit the stack trace. 499 setStackTrace(EMPTY_STACK_TRACE); 500 break; 501 } 502 if (!EXCLUDED_CLASS_NAMES.contains(origStackTrace[i].getClassName())) { 503 setStackTrace(Arrays.copyOfRange(origStackTrace, i, n)); 504 break; 505 } 506 } 507 } 508 } 509 510 /** 511 * Represents a detected cycle in lock acquisition ordering. The exception includes a causal chain 512 * of {@code ExampleStackTrace} instances to illustrate the cycle, e.g. 513 * 514 * <pre> 515 * com....PotentialDeadlockException: Potential Deadlock from LockC -> ReadWriteA 516 * at ... 517 * at ... 518 * Caused by: com...ExampleStackTrace: LockB -> LockC 519 * at ... 520 * at ... 521 * Caused by: com...ExampleStackTrace: ReadWriteA -> LockB 522 * at ... 523 * at ... 524 * </pre> 525 * 526 * <p>Instances are logged for the {@code Policies.WARN}, and thrown for {@code Policies.THROW}. 527 * 528 * @since 13.0 529 */ 530 public static final class PotentialDeadlockException extends ExampleStackTrace { 531 532 private final ExampleStackTrace conflictingStackTrace; 533 534 private PotentialDeadlockException( 535 LockGraphNode node1, LockGraphNode node2, ExampleStackTrace conflictingStackTrace) { 536 super(node1, node2); 537 this.conflictingStackTrace = conflictingStackTrace; 538 initCause(conflictingStackTrace); 539 } 540 541 public ExampleStackTrace getConflictingStackTrace() { 542 return conflictingStackTrace; 543 } 544 545 /** 546 * Appends the chain of messages from the {@code conflictingStackTrace} to the original {@code 547 * message}. 548 */ 549 @Override 550 public String getMessage() { 551 // requireNonNull is safe because ExampleStackTrace sets a non-null message. 552 StringBuilder message = new StringBuilder(requireNonNull(super.getMessage())); 553 for (Throwable t = conflictingStackTrace; t != null; t = t.getCause()) { 554 message.append(", ").append(t.getMessage()); 555 } 556 return message.toString(); 557 } 558 } 559 560 /** 561 * Internal Lock implementations implement the {@code CycleDetectingLock} interface, allowing the 562 * detection logic to treat all locks in the same manner. 563 */ 564 private interface CycleDetectingLock { 565 566 /** @return the {@link LockGraphNode} associated with this lock. */ 567 LockGraphNode getLockGraphNode(); 568 569 /** @return {@code true} if the current thread has acquired this lock. */ 570 boolean isAcquiredByCurrentThread(); 571 } 572 573 /** 574 * A {@code LockGraphNode} associated with each lock instance keeps track of the directed edges in 575 * the lock acquisition graph. 576 */ 577 private static class LockGraphNode { 578 579 /** 580 * The map tracking the locks that are known to be acquired before this lock, each associated 581 * with an example stack trace. Locks are weakly keyed to allow proper garbage collection when 582 * they are no longer referenced. 583 */ 584 final Map<LockGraphNode, ExampleStackTrace> allowedPriorLocks = 585 new MapMaker().weakKeys().makeMap(); 586 587 /** 588 * The map tracking lock nodes that can cause a lock acquisition cycle if acquired before this 589 * node. 590 */ 591 final Map<LockGraphNode, PotentialDeadlockException> disallowedPriorLocks = 592 new MapMaker().weakKeys().makeMap(); 593 594 final String lockName; 595 596 LockGraphNode(String lockName) { 597 this.lockName = Preconditions.checkNotNull(lockName); 598 } 599 600 String getLockName() { 601 return lockName; 602 } 603 604 void checkAcquiredLocks(Policy policy, List<LockGraphNode> acquiredLocks) { 605 for (LockGraphNode acquiredLock : acquiredLocks) { 606 checkAcquiredLock(policy, acquiredLock); 607 } 608 } 609 610 /** 611 * Checks the acquisition-ordering between {@code this}, which is about to be acquired, and the 612 * specified {@code acquiredLock}. 613 * 614 * <p>When this method returns, the {@code acquiredLock} should be in either the {@code 615 * preAcquireLocks} map, for the case in which it is safe to acquire {@code this} after the 616 * {@code acquiredLock}, or in the {@code disallowedPriorLocks} map, in which case it is not 617 * safe. 618 */ 619 void checkAcquiredLock(Policy policy, LockGraphNode acquiredLock) { 620 // checkAcquiredLock() should never be invoked by a lock that has already 621 // been acquired. For unordered locks, aboutToAcquire() ensures this by 622 // checking isAcquiredByCurrentThread(). For ordered locks, however, this 623 // can happen because multiple locks may share the same LockGraphNode. In 624 // this situation, throw an IllegalStateException as defined by contract 625 // described in the documentation of WithExplicitOrdering. 626 Preconditions.checkState( 627 this != acquiredLock, 628 "Attempted to acquire multiple locks with the same rank %s", 629 acquiredLock.getLockName()); 630 631 if (allowedPriorLocks.containsKey(acquiredLock)) { 632 // The acquisition ordering from "acquiredLock" to "this" has already 633 // been verified as safe. In a properly written application, this is 634 // the common case. 635 return; 636 } 637 PotentialDeadlockException previousDeadlockException = disallowedPriorLocks.get(acquiredLock); 638 if (previousDeadlockException != null) { 639 // Previously determined to be an unsafe lock acquisition. 640 // Create a new PotentialDeadlockException with the same causal chain 641 // (the example cycle) as that of the cached exception. 642 PotentialDeadlockException exception = 643 new PotentialDeadlockException( 644 acquiredLock, this, previousDeadlockException.getConflictingStackTrace()); 645 policy.handlePotentialDeadlock(exception); 646 return; 647 } 648 // Otherwise, it's the first time seeing this lock relationship. Look for 649 // a path from the acquiredLock to this. 650 Set<LockGraphNode> seen = Sets.newIdentityHashSet(); 651 ExampleStackTrace path = acquiredLock.findPathTo(this, seen); 652 653 if (path == null) { 654 // this can be safely acquired after the acquiredLock. 655 // 656 // Note that there is a race condition here which can result in missing 657 // a cyclic edge: it's possible for two threads to simultaneous find 658 // "safe" edges which together form a cycle. Preventing this race 659 // condition efficiently without _introducing_ deadlock is probably 660 // tricky. For now, just accept the race condition---missing a warning 661 // now and then is still better than having no deadlock detection. 662 allowedPriorLocks.put(acquiredLock, new ExampleStackTrace(acquiredLock, this)); 663 } else { 664 // Unsafe acquisition order detected. Create and cache a 665 // PotentialDeadlockException. 666 PotentialDeadlockException exception = 667 new PotentialDeadlockException(acquiredLock, this, path); 668 disallowedPriorLocks.put(acquiredLock, exception); 669 policy.handlePotentialDeadlock(exception); 670 } 671 } 672 673 /** 674 * Performs a depth-first traversal of the graph edges defined by each node's {@code 675 * allowedPriorLocks} to find a path between {@code this} and the specified {@code lock}. 676 * 677 * @return If a path was found, a chained {@link ExampleStackTrace} illustrating the path to the 678 * {@code lock}, or {@code null} if no path was found. 679 */ 680 @CheckForNull 681 private ExampleStackTrace findPathTo(LockGraphNode node, Set<LockGraphNode> seen) { 682 if (!seen.add(this)) { 683 return null; // Already traversed this node. 684 } 685 ExampleStackTrace found = allowedPriorLocks.get(node); 686 if (found != null) { 687 return found; // Found a path ending at the node! 688 } 689 // Recurse the edges. 690 for (Entry<LockGraphNode, ExampleStackTrace> entry : allowedPriorLocks.entrySet()) { 691 LockGraphNode preAcquiredLock = entry.getKey(); 692 found = preAcquiredLock.findPathTo(node, seen); 693 if (found != null) { 694 // One of this node's allowedPriorLocks found a path. Prepend an 695 // ExampleStackTrace(preAcquiredLock, this) to the returned chain of 696 // ExampleStackTraces. 697 ExampleStackTrace path = new ExampleStackTrace(preAcquiredLock, this); 698 path.setStackTrace(entry.getValue().getStackTrace()); 699 path.initCause(found); 700 return path; 701 } 702 } 703 return null; 704 } 705 } 706 707 /** 708 * CycleDetectingLock implementations must call this method before attempting to acquire the lock. 709 */ 710 private void aboutToAcquire(CycleDetectingLock lock) { 711 if (!lock.isAcquiredByCurrentThread()) { 712 // requireNonNull accommodates Android's @RecentlyNullable annotation on ThreadLocal.get 713 ArrayList<LockGraphNode> acquiredLockList = requireNonNull(acquiredLocks.get()); 714 LockGraphNode node = lock.getLockGraphNode(); 715 node.checkAcquiredLocks(policy, acquiredLockList); 716 acquiredLockList.add(node); 717 } 718 } 719 720 /** 721 * CycleDetectingLock implementations must call this method in a {@code finally} clause after any 722 * attempt to change the lock state, including both lock and unlock attempts. Failure to do so can 723 * result in corrupting the acquireLocks set. 724 */ 725 private static void lockStateChanged(CycleDetectingLock lock) { 726 if (!lock.isAcquiredByCurrentThread()) { 727 // requireNonNull accommodates Android's @RecentlyNullable annotation on ThreadLocal.get 728 ArrayList<LockGraphNode> acquiredLockList = requireNonNull(acquiredLocks.get()); 729 LockGraphNode node = lock.getLockGraphNode(); 730 // Iterate in reverse because locks are usually locked/unlocked in a 731 // LIFO order. 732 for (int i = acquiredLockList.size() - 1; i >= 0; i--) { 733 if (acquiredLockList.get(i) == node) { 734 acquiredLockList.remove(i); 735 break; 736 } 737 } 738 } 739 } 740 741 final class CycleDetectingReentrantLock extends ReentrantLock implements CycleDetectingLock { 742 743 private final LockGraphNode lockGraphNode; 744 745 private CycleDetectingReentrantLock(LockGraphNode lockGraphNode, boolean fair) { 746 super(fair); 747 this.lockGraphNode = Preconditions.checkNotNull(lockGraphNode); 748 } 749 750 ///// CycleDetectingLock methods. ///// 751 752 @Override 753 public LockGraphNode getLockGraphNode() { 754 return lockGraphNode; 755 } 756 757 @Override 758 public boolean isAcquiredByCurrentThread() { 759 return isHeldByCurrentThread(); 760 } 761 762 ///// Overridden ReentrantLock methods. ///// 763 764 @Override 765 public void lock() { 766 aboutToAcquire(this); 767 try { 768 super.lock(); 769 } finally { 770 lockStateChanged(this); 771 } 772 } 773 774 @Override 775 public void lockInterruptibly() throws InterruptedException { 776 aboutToAcquire(this); 777 try { 778 super.lockInterruptibly(); 779 } finally { 780 lockStateChanged(this); 781 } 782 } 783 784 @Override 785 public boolean tryLock() { 786 aboutToAcquire(this); 787 try { 788 return super.tryLock(); 789 } finally { 790 lockStateChanged(this); 791 } 792 } 793 794 @Override 795 public boolean tryLock(long timeout, TimeUnit unit) throws InterruptedException { 796 aboutToAcquire(this); 797 try { 798 return super.tryLock(timeout, unit); 799 } finally { 800 lockStateChanged(this); 801 } 802 } 803 804 @Override 805 public void unlock() { 806 try { 807 super.unlock(); 808 } finally { 809 lockStateChanged(this); 810 } 811 } 812 } 813 814 final class CycleDetectingReentrantReadWriteLock extends ReentrantReadWriteLock 815 implements CycleDetectingLock { 816 817 // These ReadLock/WriteLock implementations shadow those in the 818 // ReentrantReadWriteLock superclass. They are simply wrappers around the 819 // internal Sync object, so this is safe since the shadowed locks are never 820 // exposed or used. 821 private final CycleDetectingReentrantReadLock readLock; 822 private final CycleDetectingReentrantWriteLock writeLock; 823 824 private final LockGraphNode lockGraphNode; 825 826 private CycleDetectingReentrantReadWriteLock(LockGraphNode lockGraphNode, boolean fair) { 827 super(fair); 828 this.readLock = new CycleDetectingReentrantReadLock(this); 829 this.writeLock = new CycleDetectingReentrantWriteLock(this); 830 this.lockGraphNode = Preconditions.checkNotNull(lockGraphNode); 831 } 832 833 ///// Overridden ReentrantReadWriteLock methods. ///// 834 835 @Override 836 public ReadLock readLock() { 837 return readLock; 838 } 839 840 @Override 841 public WriteLock writeLock() { 842 return writeLock; 843 } 844 845 ///// CycleDetectingLock methods. ///// 846 847 @Override 848 public LockGraphNode getLockGraphNode() { 849 return lockGraphNode; 850 } 851 852 @Override 853 public boolean isAcquiredByCurrentThread() { 854 return isWriteLockedByCurrentThread() || getReadHoldCount() > 0; 855 } 856 } 857 858 private class CycleDetectingReentrantReadLock extends ReentrantReadWriteLock.ReadLock { 859 860 @Weak final CycleDetectingReentrantReadWriteLock readWriteLock; 861 862 CycleDetectingReentrantReadLock(CycleDetectingReentrantReadWriteLock readWriteLock) { 863 super(readWriteLock); 864 this.readWriteLock = readWriteLock; 865 } 866 867 @Override 868 public void lock() { 869 aboutToAcquire(readWriteLock); 870 try { 871 super.lock(); 872 } finally { 873 lockStateChanged(readWriteLock); 874 } 875 } 876 877 @Override 878 public void lockInterruptibly() throws InterruptedException { 879 aboutToAcquire(readWriteLock); 880 try { 881 super.lockInterruptibly(); 882 } finally { 883 lockStateChanged(readWriteLock); 884 } 885 } 886 887 @Override 888 public boolean tryLock() { 889 aboutToAcquire(readWriteLock); 890 try { 891 return super.tryLock(); 892 } finally { 893 lockStateChanged(readWriteLock); 894 } 895 } 896 897 @Override 898 public boolean tryLock(long timeout, TimeUnit unit) throws InterruptedException { 899 aboutToAcquire(readWriteLock); 900 try { 901 return super.tryLock(timeout, unit); 902 } finally { 903 lockStateChanged(readWriteLock); 904 } 905 } 906 907 @Override 908 public void unlock() { 909 try { 910 super.unlock(); 911 } finally { 912 lockStateChanged(readWriteLock); 913 } 914 } 915 } 916 917 private class CycleDetectingReentrantWriteLock extends ReentrantReadWriteLock.WriteLock { 918 919 @Weak final CycleDetectingReentrantReadWriteLock readWriteLock; 920 921 CycleDetectingReentrantWriteLock(CycleDetectingReentrantReadWriteLock readWriteLock) { 922 super(readWriteLock); 923 this.readWriteLock = readWriteLock; 924 } 925 926 @Override 927 public void lock() { 928 aboutToAcquire(readWriteLock); 929 try { 930 super.lock(); 931 } finally { 932 lockStateChanged(readWriteLock); 933 } 934 } 935 936 @Override 937 public void lockInterruptibly() throws InterruptedException { 938 aboutToAcquire(readWriteLock); 939 try { 940 super.lockInterruptibly(); 941 } finally { 942 lockStateChanged(readWriteLock); 943 } 944 } 945 946 @Override 947 public boolean tryLock() { 948 aboutToAcquire(readWriteLock); 949 try { 950 return super.tryLock(); 951 } finally { 952 lockStateChanged(readWriteLock); 953 } 954 } 955 956 @Override 957 public boolean tryLock(long timeout, TimeUnit unit) throws InterruptedException { 958 aboutToAcquire(readWriteLock); 959 try { 960 return super.tryLock(timeout, unit); 961 } finally { 962 lockStateChanged(readWriteLock); 963 } 964 } 965 966 @Override 967 public void unlock() { 968 try { 969 super.unlock(); 970 } finally { 971 lockStateChanged(readWriteLock); 972 } 973 } 974 } 975}