001/* 002 * Copyright (C) 2008 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 005 * in compliance with the License. You may obtain a copy of the License at 006 * 007 * http://www.apache.org/licenses/LICENSE-2.0 008 * 009 * Unless required by applicable law or agreed to in writing, software distributed under the License 010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express 011 * or implied. See the License for the specific language governing permissions and limitations under 012 * the License. 013 */ 014 015package com.google.common.primitives; 016 017import static com.google.common.base.Preconditions.checkArgument; 018import static com.google.common.base.Preconditions.checkElementIndex; 019import static com.google.common.base.Preconditions.checkNotNull; 020import static com.google.common.base.Preconditions.checkPositionIndexes; 021import static com.google.common.base.Strings.lenientFormat; 022import static java.lang.Double.NEGATIVE_INFINITY; 023import static java.lang.Double.POSITIVE_INFINITY; 024 025import com.google.common.annotations.GwtCompatible; 026import com.google.common.annotations.GwtIncompatible; 027import com.google.common.base.Converter; 028import com.google.errorprone.annotations.InlineMe; 029import java.io.Serializable; 030import java.util.AbstractList; 031import java.util.Arrays; 032import java.util.Collection; 033import java.util.Collections; 034import java.util.Comparator; 035import java.util.List; 036import java.util.RandomAccess; 037import java.util.Spliterator; 038import java.util.Spliterators; 039import javax.annotation.CheckForNull; 040 041/** 042 * Static utility methods pertaining to {@code double} primitives, that are not already found in 043 * either {@link Double} or {@link Arrays}. 044 * 045 * <p>See the Guava User Guide article on <a 046 * href="https://github.com/google/guava/wiki/PrimitivesExplained">primitive utilities</a>. 047 * 048 * @author Kevin Bourrillion 049 * @since 1.0 050 */ 051@GwtCompatible(emulated = true) 052@ElementTypesAreNonnullByDefault 053public final class Doubles extends DoublesMethodsForWeb { 054 private Doubles() {} 055 056 /** 057 * The number of bytes required to represent a primitive {@code double} value. 058 * 059 * <p><b>Java 8+ users:</b> use {@link Double#BYTES} instead. 060 * 061 * @since 10.0 062 */ 063 public static final int BYTES = Double.SIZE / Byte.SIZE; 064 065 /** 066 * Returns a hash code for {@code value}; equal to the result of invoking {@code ((Double) 067 * value).hashCode()}. 068 * 069 * <p><b>Java 8+ users:</b> use {@link Double#hashCode(double)} instead. 070 * 071 * @param value a primitive {@code double} value 072 * @return a hash code for the value 073 */ 074 public static int hashCode(double value) { 075 return ((Double) value).hashCode(); 076 // TODO(kevinb): do it this way when we can (GWT problem): 077 // long bits = Double.doubleToLongBits(value); 078 // return (int) (bits ^ (bits >>> 32)); 079 } 080 081 /** 082 * Compares the two specified {@code double} values. The sign of the value returned is the same as 083 * that of <code>((Double) a).{@linkplain Double#compareTo compareTo}(b)</code>. As with that 084 * method, {@code NaN} is treated as greater than all other values, and {@code 0.0 > -0.0}. 085 * 086 * <p><b>Note:</b> this method simply delegates to the JDK method {@link Double#compare}. It is 087 * provided for consistency with the other primitive types, whose compare methods were not added 088 * to the JDK until JDK 7. 089 * 090 * @param a the first {@code double} to compare 091 * @param b the second {@code double} to compare 092 * @return a negative value if {@code a} is less than {@code b}; a positive value if {@code a} is 093 * greater than {@code b}; or zero if they are equal 094 */ 095 @InlineMe(replacement = "Double.compare(a, b)") 096 public static int compare(double a, double b) { 097 return Double.compare(a, b); 098 } 099 100 /** 101 * Returns {@code true} if {@code value} represents a real number. This is equivalent to, but not 102 * necessarily implemented as, {@code !(Double.isInfinite(value) || Double.isNaN(value))}. 103 * 104 * <p><b>Java 8+ users:</b> use {@link Double#isFinite(double)} instead. 105 * 106 * @since 10.0 107 */ 108 public static boolean isFinite(double value) { 109 return NEGATIVE_INFINITY < value && value < POSITIVE_INFINITY; 110 } 111 112 /** 113 * Returns {@code true} if {@code target} is present as an element anywhere in {@code array}. Note 114 * that this always returns {@code false} when {@code target} is {@code NaN}. 115 * 116 * @param array an array of {@code double} values, possibly empty 117 * @param target a primitive {@code double} value 118 * @return {@code true} if {@code array[i] == target} for some value of {@code i} 119 */ 120 public static boolean contains(double[] array, double target) { 121 for (double value : array) { 122 if (value == target) { 123 return true; 124 } 125 } 126 return false; 127 } 128 129 /** 130 * Returns the index of the first appearance of the value {@code target} in {@code array}. Note 131 * that this always returns {@code -1} when {@code target} is {@code NaN}. 132 * 133 * @param array an array of {@code double} values, possibly empty 134 * @param target a primitive {@code double} value 135 * @return the least index {@code i} for which {@code array[i] == target}, or {@code -1} if no 136 * such index exists. 137 */ 138 public static int indexOf(double[] array, double target) { 139 return indexOf(array, target, 0, array.length); 140 } 141 142 // TODO(kevinb): consider making this public 143 private static int indexOf(double[] array, double target, int start, int end) { 144 for (int i = start; i < end; i++) { 145 if (array[i] == target) { 146 return i; 147 } 148 } 149 return -1; 150 } 151 152 /** 153 * Returns the start position of the first occurrence of the specified {@code target} within 154 * {@code array}, or {@code -1} if there is no such occurrence. 155 * 156 * <p>More formally, returns the lowest index {@code i} such that {@code Arrays.copyOfRange(array, 157 * i, i + target.length)} contains exactly the same elements as {@code target}. 158 * 159 * <p>Note that this always returns {@code -1} when {@code target} contains {@code NaN}. 160 * 161 * @param array the array to search for the sequence {@code target} 162 * @param target the array to search for as a sub-sequence of {@code array} 163 */ 164 public static int indexOf(double[] array, double[] target) { 165 checkNotNull(array, "array"); 166 checkNotNull(target, "target"); 167 if (target.length == 0) { 168 return 0; 169 } 170 171 outer: 172 for (int i = 0; i < array.length - target.length + 1; i++) { 173 for (int j = 0; j < target.length; j++) { 174 if (array[i + j] != target[j]) { 175 continue outer; 176 } 177 } 178 return i; 179 } 180 return -1; 181 } 182 183 /** 184 * Returns the index of the last appearance of the value {@code target} in {@code array}. Note 185 * that this always returns {@code -1} when {@code target} is {@code NaN}. 186 * 187 * @param array an array of {@code double} values, possibly empty 188 * @param target a primitive {@code double} value 189 * @return the greatest index {@code i} for which {@code array[i] == target}, or {@code -1} if no 190 * such index exists. 191 */ 192 public static int lastIndexOf(double[] array, double target) { 193 return lastIndexOf(array, target, 0, array.length); 194 } 195 196 // TODO(kevinb): consider making this public 197 private static int lastIndexOf(double[] array, double target, int start, int end) { 198 for (int i = end - 1; i >= start; i--) { 199 if (array[i] == target) { 200 return i; 201 } 202 } 203 return -1; 204 } 205 206 /** 207 * Returns the least value present in {@code array}, using the same rules of comparison as {@link 208 * Math#min(double, double)}. 209 * 210 * @param array a <i>nonempty</i> array of {@code double} values 211 * @return the value present in {@code array} that is less than or equal to every other value in 212 * the array 213 * @throws IllegalArgumentException if {@code array} is empty 214 */ 215 @GwtIncompatible( 216 "Available in GWT! Annotation is to avoid conflict with GWT specialization of base class.") 217 public static double min(double... array) { 218 checkArgument(array.length > 0); 219 double min = array[0]; 220 for (int i = 1; i < array.length; i++) { 221 min = Math.min(min, array[i]); 222 } 223 return min; 224 } 225 226 /** 227 * Returns the greatest value present in {@code array}, using the same rules of comparison as 228 * {@link Math#max(double, double)}. 229 * 230 * @param array a <i>nonempty</i> array of {@code double} values 231 * @return the value present in {@code array} that is greater than or equal to every other value 232 * in the array 233 * @throws IllegalArgumentException if {@code array} is empty 234 */ 235 @GwtIncompatible( 236 "Available in GWT! Annotation is to avoid conflict with GWT specialization of base class.") 237 public static double max(double... array) { 238 checkArgument(array.length > 0); 239 double max = array[0]; 240 for (int i = 1; i < array.length; i++) { 241 max = Math.max(max, array[i]); 242 } 243 return max; 244 } 245 246 /** 247 * Returns the value nearest to {@code value} which is within the closed range {@code [min..max]}. 248 * 249 * <p>If {@code value} is within the range {@code [min..max]}, {@code value} is returned 250 * unchanged. If {@code value} is less than {@code min}, {@code min} is returned, and if {@code 251 * value} is greater than {@code max}, {@code max} is returned. 252 * 253 * @param value the {@code double} value to constrain 254 * @param min the lower bound (inclusive) of the range to constrain {@code value} to 255 * @param max the upper bound (inclusive) of the range to constrain {@code value} to 256 * @throws IllegalArgumentException if {@code min > max} 257 * @since 21.0 258 */ 259 public static double constrainToRange(double value, double min, double max) { 260 // avoid auto-boxing by not using Preconditions.checkArgument(); see Guava issue 3984 261 // Reject NaN by testing for the good case (min <= max) instead of the bad (min > max). 262 if (min <= max) { 263 return Math.min(Math.max(value, min), max); 264 } 265 throw new IllegalArgumentException( 266 lenientFormat("min (%s) must be less than or equal to max (%s)", min, max)); 267 } 268 269 /** 270 * Returns the values from each provided array combined into a single array. For example, {@code 271 * concat(new double[] {a, b}, new double[] {}, new double[] {c}} returns the array {@code {a, b, 272 * c}}. 273 * 274 * @param arrays zero or more {@code double} arrays 275 * @return a single array containing all the values from the source arrays, in order 276 * @throws IllegalArgumentException if the total number of elements in {@code arrays} does not fit 277 * in an {@code int} 278 */ 279 public static double[] concat(double[]... arrays) { 280 long length = 0; 281 for (double[] array : arrays) { 282 length += array.length; 283 } 284 double[] result = new double[checkNoOverflow(length)]; 285 int pos = 0; 286 for (double[] array : arrays) { 287 System.arraycopy(array, 0, result, pos, array.length); 288 pos += array.length; 289 } 290 return result; 291 } 292 293 private static int checkNoOverflow(long result) { 294 checkArgument( 295 result == (int) result, 296 "the total number of elements (%s) in the arrays must fit in an int", 297 result); 298 return (int) result; 299 } 300 301 private static final class DoubleConverter extends Converter<String, Double> 302 implements Serializable { 303 static final Converter<String, Double> INSTANCE = new DoubleConverter(); 304 305 @Override 306 protected Double doForward(String value) { 307 return Double.valueOf(value); 308 } 309 310 @Override 311 protected String doBackward(Double value) { 312 return value.toString(); 313 } 314 315 @Override 316 public String toString() { 317 return "Doubles.stringConverter()"; 318 } 319 320 private Object readResolve() { 321 return INSTANCE; 322 } 323 324 private static final long serialVersionUID = 1; 325 } 326 327 /** 328 * Returns a serializable converter object that converts between strings and doubles using {@link 329 * Double#valueOf} and {@link Double#toString()}. 330 * 331 * @since 16.0 332 */ 333 public static Converter<String, Double> stringConverter() { 334 return DoubleConverter.INSTANCE; 335 } 336 337 /** 338 * Returns an array containing the same values as {@code array}, but guaranteed to be of a 339 * specified minimum length. If {@code array} already has a length of at least {@code minLength}, 340 * it is returned directly. Otherwise, a new array of size {@code minLength + padding} is 341 * returned, containing the values of {@code array}, and zeroes in the remaining places. 342 * 343 * @param array the source array 344 * @param minLength the minimum length the returned array must guarantee 345 * @param padding an extra amount to "grow" the array by if growth is necessary 346 * @throws IllegalArgumentException if {@code minLength} or {@code padding} is negative 347 * @return an array containing the values of {@code array}, with guaranteed minimum length {@code 348 * minLength} 349 */ 350 public static double[] ensureCapacity(double[] array, int minLength, int padding) { 351 checkArgument(minLength >= 0, "Invalid minLength: %s", minLength); 352 checkArgument(padding >= 0, "Invalid padding: %s", padding); 353 return (array.length < minLength) ? Arrays.copyOf(array, minLength + padding) : array; 354 } 355 356 /** 357 * Returns a string containing the supplied {@code double} values, converted to strings as 358 * specified by {@link Double#toString(double)}, and separated by {@code separator}. For example, 359 * {@code join("-", 1.0, 2.0, 3.0)} returns the string {@code "1.0-2.0-3.0"}. 360 * 361 * <p>Note that {@link Double#toString(double)} formats {@code double} differently in GWT 362 * sometimes. In the previous example, it returns the string {@code "1-2-3"}. 363 * 364 * @param separator the text that should appear between consecutive values in the resulting string 365 * (but not at the start or end) 366 * @param array an array of {@code double} values, possibly empty 367 */ 368 public static String join(String separator, double... array) { 369 checkNotNull(separator); 370 if (array.length == 0) { 371 return ""; 372 } 373 374 // For pre-sizing a builder, just get the right order of magnitude 375 StringBuilder builder = new StringBuilder(array.length * 12); 376 builder.append(array[0]); 377 for (int i = 1; i < array.length; i++) { 378 builder.append(separator).append(array[i]); 379 } 380 return builder.toString(); 381 } 382 383 /** 384 * Returns a comparator that compares two {@code double} arrays <a 385 * href="http://en.wikipedia.org/wiki/Lexicographical_order">lexicographically</a>. That is, it 386 * compares, using {@link #compare(double, double)}), the first pair of values that follow any 387 * common prefix, or when one array is a prefix of the other, treats the shorter array as the 388 * lesser. For example, {@code [] < [1.0] < [1.0, 2.0] < [2.0]}. 389 * 390 * <p>The returned comparator is inconsistent with {@link Object#equals(Object)} (since arrays 391 * support only identity equality), but it is consistent with {@link Arrays#equals(double[], 392 * double[])}. 393 * 394 * @since 2.0 395 */ 396 public static Comparator<double[]> lexicographicalComparator() { 397 return LexicographicalComparator.INSTANCE; 398 } 399 400 private enum LexicographicalComparator implements Comparator<double[]> { 401 INSTANCE; 402 403 @Override 404 public int compare(double[] left, double[] right) { 405 int minLength = Math.min(left.length, right.length); 406 for (int i = 0; i < minLength; i++) { 407 int result = Double.compare(left[i], right[i]); 408 if (result != 0) { 409 return result; 410 } 411 } 412 return left.length - right.length; 413 } 414 415 @Override 416 public String toString() { 417 return "Doubles.lexicographicalComparator()"; 418 } 419 } 420 421 /** 422 * Sorts the elements of {@code array} in descending order. 423 * 424 * <p>Note that this method uses the total order imposed by {@link Double#compare}, which treats 425 * all NaN values as equal and 0.0 as greater than -0.0. 426 * 427 * @since 23.1 428 */ 429 public static void sortDescending(double[] array) { 430 checkNotNull(array); 431 sortDescending(array, 0, array.length); 432 } 433 434 /** 435 * Sorts the elements of {@code array} between {@code fromIndex} inclusive and {@code toIndex} 436 * exclusive in descending order. 437 * 438 * <p>Note that this method uses the total order imposed by {@link Double#compare}, which treats 439 * all NaN values as equal and 0.0 as greater than -0.0. 440 * 441 * @since 23.1 442 */ 443 public static void sortDescending(double[] array, int fromIndex, int toIndex) { 444 checkNotNull(array); 445 checkPositionIndexes(fromIndex, toIndex, array.length); 446 Arrays.sort(array, fromIndex, toIndex); 447 reverse(array, fromIndex, toIndex); 448 } 449 450 /** 451 * Reverses the elements of {@code array}. This is equivalent to {@code 452 * Collections.reverse(Doubles.asList(array))}, but is likely to be more efficient. 453 * 454 * @since 23.1 455 */ 456 public static void reverse(double[] array) { 457 checkNotNull(array); 458 reverse(array, 0, array.length); 459 } 460 461 /** 462 * Reverses the elements of {@code array} between {@code fromIndex} inclusive and {@code toIndex} 463 * exclusive. This is equivalent to {@code 464 * Collections.reverse(Doubles.asList(array).subList(fromIndex, toIndex))}, but is likely to be 465 * more efficient. 466 * 467 * @throws IndexOutOfBoundsException if {@code fromIndex < 0}, {@code toIndex > array.length}, or 468 * {@code toIndex > fromIndex} 469 * @since 23.1 470 */ 471 public static void reverse(double[] array, int fromIndex, int toIndex) { 472 checkNotNull(array); 473 checkPositionIndexes(fromIndex, toIndex, array.length); 474 for (int i = fromIndex, j = toIndex - 1; i < j; i++, j--) { 475 double tmp = array[i]; 476 array[i] = array[j]; 477 array[j] = tmp; 478 } 479 } 480 481 /** 482 * Performs a right rotation of {@code array} of "distance" places, so that the first element is 483 * moved to index "distance", and the element at index {@code i} ends up at index {@code (distance 484 * + i) mod array.length}. This is equivalent to {@code Collections.rotate(Bytes.asList(array), 485 * distance)}, but is considerably faster and avoids allocation and garbage collection. 486 * 487 * <p>The provided "distance" may be negative, which will rotate left. 488 * 489 * @since 32.0.0 490 */ 491 public static void rotate(double[] array, int distance) { 492 rotate(array, distance, 0, array.length); 493 } 494 495 /** 496 * Performs a right rotation of {@code array} between {@code fromIndex} inclusive and {@code 497 * toIndex} exclusive. This is equivalent to {@code 498 * Collections.rotate(Bytes.asList(array).subList(fromIndex, toIndex), distance)}, but is 499 * considerably faster and avoids allocations and garbage collection. 500 * 501 * <p>The provided "distance" may be negative, which will rotate left. 502 * 503 * @throws IndexOutOfBoundsException if {@code fromIndex < 0}, {@code toIndex > array.length}, or 504 * {@code toIndex > fromIndex} 505 * @since 32.0.0 506 */ 507 public static void rotate(double[] array, int distance, int fromIndex, int toIndex) { 508 // See Ints.rotate for more details about possible algorithms here. 509 checkNotNull(array); 510 checkPositionIndexes(fromIndex, toIndex, array.length); 511 if (array.length <= 1) { 512 return; 513 } 514 515 int length = toIndex - fromIndex; 516 // Obtain m = (-distance mod length), a non-negative value less than "length". This is how many 517 // places left to rotate. 518 int m = -distance % length; 519 m = (m < 0) ? m + length : m; 520 // The current index of what will become the first element of the rotated section. 521 int newFirstIndex = m + fromIndex; 522 if (newFirstIndex == fromIndex) { 523 return; 524 } 525 526 reverse(array, fromIndex, newFirstIndex); 527 reverse(array, newFirstIndex, toIndex); 528 reverse(array, fromIndex, toIndex); 529 } 530 531 /** 532 * Returns an array containing each value of {@code collection}, converted to a {@code double} 533 * value in the manner of {@link Number#doubleValue}. 534 * 535 * <p>Elements are copied from the argument collection as if by {@code collection.toArray()}. 536 * Calling this method is as thread-safe as calling that method. 537 * 538 * @param collection a collection of {@code Number} instances 539 * @return an array containing the same values as {@code collection}, in the same order, converted 540 * to primitives 541 * @throws NullPointerException if {@code collection} or any of its elements is null 542 * @since 1.0 (parameter was {@code Collection<Double>} before 12.0) 543 */ 544 public static double[] toArray(Collection<? extends Number> collection) { 545 if (collection instanceof DoubleArrayAsList) { 546 return ((DoubleArrayAsList) collection).toDoubleArray(); 547 } 548 549 Object[] boxedArray = collection.toArray(); 550 int len = boxedArray.length; 551 double[] array = new double[len]; 552 for (int i = 0; i < len; i++) { 553 // checkNotNull for GWT (do not optimize) 554 array[i] = ((Number) checkNotNull(boxedArray[i])).doubleValue(); 555 } 556 return array; 557 } 558 559 /** 560 * Returns a fixed-size list backed by the specified array, similar to {@link 561 * Arrays#asList(Object[])}. The list supports {@link List#set(int, Object)}, but any attempt to 562 * set a value to {@code null} will result in a {@link NullPointerException}. 563 * 564 * <p>The returned list maintains the values, but not the identities, of {@code Double} objects 565 * written to or read from it. For example, whether {@code list.get(0) == list.get(0)} is true for 566 * the returned list is unspecified. 567 * 568 * <p>The returned list may have unexpected behavior if it contains {@code NaN}, or if {@code NaN} 569 * is used as a parameter to any of its methods. 570 * 571 * <p>The returned list is serializable. 572 * 573 * <p><b>Note:</b> when possible, you should represent your data as an {@link 574 * ImmutableDoubleArray} instead, which has an {@link ImmutableDoubleArray#asList asList} view. 575 * 576 * @param backingArray the array to back the list 577 * @return a list view of the array 578 */ 579 public static List<Double> asList(double... backingArray) { 580 if (backingArray.length == 0) { 581 return Collections.emptyList(); 582 } 583 return new DoubleArrayAsList(backingArray); 584 } 585 586 @GwtCompatible 587 private static class DoubleArrayAsList extends AbstractList<Double> 588 implements RandomAccess, Serializable { 589 final double[] array; 590 final int start; 591 final int end; 592 593 DoubleArrayAsList(double[] array) { 594 this(array, 0, array.length); 595 } 596 597 DoubleArrayAsList(double[] array, int start, int end) { 598 this.array = array; 599 this.start = start; 600 this.end = end; 601 } 602 603 @Override 604 public int size() { 605 return end - start; 606 } 607 608 @Override 609 public boolean isEmpty() { 610 return false; 611 } 612 613 @Override 614 public Double get(int index) { 615 checkElementIndex(index, size()); 616 return array[start + index]; 617 } 618 619 @Override 620 public Spliterator.OfDouble spliterator() { 621 return Spliterators.spliterator(array, start, end, 0); 622 } 623 624 @Override 625 public boolean contains(@CheckForNull Object target) { 626 // Overridden to prevent a ton of boxing 627 return (target instanceof Double) 628 && Doubles.indexOf(array, (Double) target, start, end) != -1; 629 } 630 631 @Override 632 public int indexOf(@CheckForNull Object target) { 633 // Overridden to prevent a ton of boxing 634 if (target instanceof Double) { 635 int i = Doubles.indexOf(array, (Double) target, start, end); 636 if (i >= 0) { 637 return i - start; 638 } 639 } 640 return -1; 641 } 642 643 @Override 644 public int lastIndexOf(@CheckForNull Object target) { 645 // Overridden to prevent a ton of boxing 646 if (target instanceof Double) { 647 int i = Doubles.lastIndexOf(array, (Double) target, start, end); 648 if (i >= 0) { 649 return i - start; 650 } 651 } 652 return -1; 653 } 654 655 @Override 656 public Double set(int index, Double element) { 657 checkElementIndex(index, size()); 658 double oldValue = array[start + index]; 659 // checkNotNull for GWT (do not optimize) 660 array[start + index] = checkNotNull(element); 661 return oldValue; 662 } 663 664 @Override 665 public List<Double> subList(int fromIndex, int toIndex) { 666 int size = size(); 667 checkPositionIndexes(fromIndex, toIndex, size); 668 if (fromIndex == toIndex) { 669 return Collections.emptyList(); 670 } 671 return new DoubleArrayAsList(array, start + fromIndex, start + toIndex); 672 } 673 674 @Override 675 public boolean equals(@CheckForNull Object object) { 676 if (object == this) { 677 return true; 678 } 679 if (object instanceof DoubleArrayAsList) { 680 DoubleArrayAsList that = (DoubleArrayAsList) object; 681 int size = size(); 682 if (that.size() != size) { 683 return false; 684 } 685 for (int i = 0; i < size; i++) { 686 if (array[start + i] != that.array[that.start + i]) { 687 return false; 688 } 689 } 690 return true; 691 } 692 return super.equals(object); 693 } 694 695 @Override 696 public int hashCode() { 697 int result = 1; 698 for (int i = start; i < end; i++) { 699 result = 31 * result + Doubles.hashCode(array[i]); 700 } 701 return result; 702 } 703 704 @Override 705 public String toString() { 706 StringBuilder builder = new StringBuilder(size() * 12); 707 builder.append('[').append(array[start]); 708 for (int i = start + 1; i < end; i++) { 709 builder.append(", ").append(array[i]); 710 } 711 return builder.append(']').toString(); 712 } 713 714 double[] toDoubleArray() { 715 return Arrays.copyOfRange(array, start, end); 716 } 717 718 private static final long serialVersionUID = 0; 719 } 720 721 /** 722 * This is adapted from the regex suggested by {@link Double#valueOf(String)} for prevalidating 723 * inputs. All valid inputs must pass this regex, but it's semantically fine if not all inputs 724 * that pass this regex are valid -- only a performance hit is incurred, not a semantics bug. 725 */ 726 @GwtIncompatible // regular expressions 727 static final 728 java.util.regex.Pattern 729 FLOATING_POINT_PATTERN = fpPattern(); 730 731 @GwtIncompatible // regular expressions 732 private static 733 java.util.regex.Pattern 734 fpPattern() { 735 /* 736 * We use # instead of * for possessive quantifiers. This lets us strip them out when building 737 * the regex for RE2 (which doesn't support them) but leave them in when building it for 738 * java.util.regex (where we want them in order to avoid catastrophic backtracking). 739 */ 740 String decimal = "(?:\\d+#(?:\\.\\d*#)?|\\.\\d+#)"; 741 String completeDec = decimal + "(?:[eE][+-]?\\d+#)?[fFdD]?"; 742 String hex = "(?:[0-9a-fA-F]+#(?:\\.[0-9a-fA-F]*#)?|\\.[0-9a-fA-F]+#)"; 743 String completeHex = "0[xX]" + hex + "[pP][+-]?\\d+#[fFdD]?"; 744 String fpPattern = "[+-]?(?:NaN|Infinity|" + completeDec + "|" + completeHex + ")"; 745 fpPattern = 746 fpPattern.replace( 747 "#", 748 "+" 749 ); 750 return 751 java.util.regex.Pattern 752 .compile(fpPattern); 753 } 754 755 /** 756 * Parses the specified string as a double-precision floating point value. The ASCII character 757 * {@code '-'} (<code>'\u002D'</code>) is recognized as the minus sign. 758 * 759 * <p>Unlike {@link Double#parseDouble(String)}, this method returns {@code null} instead of 760 * throwing an exception if parsing fails. Valid inputs are exactly those accepted by {@link 761 * Double#valueOf(String)}, except that leading and trailing whitespace is not permitted. 762 * 763 * <p>This implementation is likely to be faster than {@code Double.parseDouble} if many failures 764 * are expected. 765 * 766 * @param string the string representation of a {@code double} value 767 * @return the floating point value represented by {@code string}, or {@code null} if {@code 768 * string} has a length of zero or cannot be parsed as a {@code double} value 769 * @throws NullPointerException if {@code string} is {@code null} 770 * @since 14.0 771 */ 772 @GwtIncompatible // regular expressions 773 @CheckForNull 774 public static Double tryParse(String string) { 775 if (FLOATING_POINT_PATTERN.matcher(string).matches()) { 776 // TODO(lowasser): could be potentially optimized, but only with 777 // extensive testing 778 try { 779 return Double.parseDouble(string); 780 } catch (NumberFormatException e) { 781 // Double.parseDouble has changed specs several times, so fall through 782 // gracefully 783 } 784 } 785 return null; 786 } 787}