001/* 002 * Copyright (C) 2008 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 005 * in compliance with the License. You may obtain a copy of the License at 006 * 007 * http://www.apache.org/licenses/LICENSE-2.0 008 * 009 * Unless required by applicable law or agreed to in writing, software distributed under the License 010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express 011 * or implied. See the License for the specific language governing permissions and limitations under 012 * the License. 013 */ 014 015package com.google.common.primitives; 016 017import static com.google.common.base.Preconditions.checkArgument; 018import static com.google.common.base.Preconditions.checkElementIndex; 019import static com.google.common.base.Preconditions.checkNotNull; 020import static com.google.common.base.Preconditions.checkPositionIndexes; 021import static com.google.common.base.Strings.lenientFormat; 022import static java.lang.Double.NEGATIVE_INFINITY; 023import static java.lang.Double.POSITIVE_INFINITY; 024 025import com.google.common.annotations.GwtCompatible; 026import com.google.common.annotations.GwtIncompatible; 027import com.google.common.base.Converter; 028import com.google.errorprone.annotations.InlineMe; 029import java.io.Serializable; 030import java.util.AbstractList; 031import java.util.Arrays; 032import java.util.Collection; 033import java.util.Collections; 034import java.util.Comparator; 035import java.util.List; 036import java.util.RandomAccess; 037import javax.annotation.CheckForNull; 038 039/** 040 * Static utility methods pertaining to {@code double} primitives, that are not already found in 041 * either {@link Double} or {@link Arrays}. 042 * 043 * <p>See the Guava User Guide article on <a 044 * href="https://github.com/google/guava/wiki/PrimitivesExplained">primitive utilities</a>. 045 * 046 * @author Kevin Bourrillion 047 * @since 1.0 048 */ 049@GwtCompatible(emulated = true) 050@ElementTypesAreNonnullByDefault 051public final class Doubles extends DoublesMethodsForWeb { 052 private Doubles() {} 053 054 /** 055 * The number of bytes required to represent a primitive {@code double} value. 056 * 057 * <p><b>Java 8+ users:</b> use {@link Double#BYTES} instead. 058 * 059 * @since 10.0 060 */ 061 public static final int BYTES = Double.SIZE / Byte.SIZE; 062 063 /** 064 * Returns a hash code for {@code value}; equal to the result of invoking {@code ((Double) 065 * value).hashCode()}. 066 * 067 * <p><b>Java 8+ users:</b> use {@link Double#hashCode(double)} instead. 068 * 069 * @param value a primitive {@code double} value 070 * @return a hash code for the value 071 */ 072 public static int hashCode(double value) { 073 return ((Double) value).hashCode(); 074 // TODO(kevinb): do it this way when we can (GWT problem): 075 // long bits = Double.doubleToLongBits(value); 076 // return (int) (bits ^ (bits >>> 32)); 077 } 078 079 /** 080 * Compares the two specified {@code double} values. The sign of the value returned is the same as 081 * that of <code>((Double) a).{@linkplain Double#compareTo compareTo}(b)</code>. As with that 082 * method, {@code NaN} is treated as greater than all other values, and {@code 0.0 > -0.0}. 083 * 084 * <p><b>Note:</b> this method simply delegates to the JDK method {@link Double#compare}. It is 085 * provided for consistency with the other primitive types, whose compare methods were not added 086 * to the JDK until JDK 7. 087 * 088 * @param a the first {@code double} to compare 089 * @param b the second {@code double} to compare 090 * @return a negative value if {@code a} is less than {@code b}; a positive value if {@code a} is 091 * greater than {@code b}; or zero if they are equal 092 */ 093 @InlineMe(replacement = "Double.compare(a, b)") 094 public static int compare(double a, double b) { 095 return Double.compare(a, b); 096 } 097 098 /** 099 * Returns {@code true} if {@code value} represents a real number. This is equivalent to, but not 100 * necessarily implemented as, {@code !(Double.isInfinite(value) || Double.isNaN(value))}. 101 * 102 * <p><b>Java 8+ users:</b> use {@link Double#isFinite(double)} instead. 103 * 104 * @since 10.0 105 */ 106 public static boolean isFinite(double value) { 107 return NEGATIVE_INFINITY < value && value < POSITIVE_INFINITY; 108 } 109 110 /** 111 * Returns {@code true} if {@code target} is present as an element anywhere in {@code array}. Note 112 * that this always returns {@code false} when {@code target} is {@code NaN}. 113 * 114 * @param array an array of {@code double} values, possibly empty 115 * @param target a primitive {@code double} value 116 * @return {@code true} if {@code array[i] == target} for some value of {@code i} 117 */ 118 public static boolean contains(double[] array, double target) { 119 for (double value : array) { 120 if (value == target) { 121 return true; 122 } 123 } 124 return false; 125 } 126 127 /** 128 * Returns the index of the first appearance of the value {@code target} in {@code array}. Note 129 * that this always returns {@code -1} when {@code target} is {@code NaN}. 130 * 131 * @param array an array of {@code double} values, possibly empty 132 * @param target a primitive {@code double} value 133 * @return the least index {@code i} for which {@code array[i] == target}, or {@code -1} if no 134 * such index exists. 135 */ 136 public static int indexOf(double[] array, double target) { 137 return indexOf(array, target, 0, array.length); 138 } 139 140 // TODO(kevinb): consider making this public 141 private static int indexOf(double[] array, double target, int start, int end) { 142 for (int i = start; i < end; i++) { 143 if (array[i] == target) { 144 return i; 145 } 146 } 147 return -1; 148 } 149 150 /** 151 * Returns the start position of the first occurrence of the specified {@code target} within 152 * {@code array}, or {@code -1} if there is no such occurrence. 153 * 154 * <p>More formally, returns the lowest index {@code i} such that {@code Arrays.copyOfRange(array, 155 * i, i + target.length)} contains exactly the same elements as {@code target}. 156 * 157 * <p>Note that this always returns {@code -1} when {@code target} contains {@code NaN}. 158 * 159 * @param array the array to search for the sequence {@code target} 160 * @param target the array to search for as a sub-sequence of {@code array} 161 */ 162 public static int indexOf(double[] array, double[] target) { 163 checkNotNull(array, "array"); 164 checkNotNull(target, "target"); 165 if (target.length == 0) { 166 return 0; 167 } 168 169 outer: 170 for (int i = 0; i < array.length - target.length + 1; i++) { 171 for (int j = 0; j < target.length; j++) { 172 if (array[i + j] != target[j]) { 173 continue outer; 174 } 175 } 176 return i; 177 } 178 return -1; 179 } 180 181 /** 182 * Returns the index of the last appearance of the value {@code target} in {@code array}. Note 183 * that this always returns {@code -1} when {@code target} is {@code NaN}. 184 * 185 * @param array an array of {@code double} values, possibly empty 186 * @param target a primitive {@code double} value 187 * @return the greatest index {@code i} for which {@code array[i] == target}, or {@code -1} if no 188 * such index exists. 189 */ 190 public static int lastIndexOf(double[] array, double target) { 191 return lastIndexOf(array, target, 0, array.length); 192 } 193 194 // TODO(kevinb): consider making this public 195 private static int lastIndexOf(double[] array, double target, int start, int end) { 196 for (int i = end - 1; i >= start; i--) { 197 if (array[i] == target) { 198 return i; 199 } 200 } 201 return -1; 202 } 203 204 /** 205 * Returns the least value present in {@code array}, using the same rules of comparison as {@link 206 * Math#min(double, double)}. 207 * 208 * @param array a <i>nonempty</i> array of {@code double} values 209 * @return the value present in {@code array} that is less than or equal to every other value in 210 * the array 211 * @throws IllegalArgumentException if {@code array} is empty 212 */ 213 @GwtIncompatible( 214 "Available in GWT! Annotation is to avoid conflict with GWT specialization of base class.") 215 public static double min(double... array) { 216 checkArgument(array.length > 0); 217 double min = array[0]; 218 for (int i = 1; i < array.length; i++) { 219 min = Math.min(min, array[i]); 220 } 221 return min; 222 } 223 224 /** 225 * Returns the greatest value present in {@code array}, using the same rules of comparison as 226 * {@link Math#max(double, double)}. 227 * 228 * @param array a <i>nonempty</i> array of {@code double} values 229 * @return the value present in {@code array} that is greater than or equal to every other value 230 * in the array 231 * @throws IllegalArgumentException if {@code array} is empty 232 */ 233 @GwtIncompatible( 234 "Available in GWT! Annotation is to avoid conflict with GWT specialization of base class.") 235 public static double max(double... array) { 236 checkArgument(array.length > 0); 237 double max = array[0]; 238 for (int i = 1; i < array.length; i++) { 239 max = Math.max(max, array[i]); 240 } 241 return max; 242 } 243 244 /** 245 * Returns the value nearest to {@code value} which is within the closed range {@code [min..max]}. 246 * 247 * <p>If {@code value} is within the range {@code [min..max]}, {@code value} is returned 248 * unchanged. If {@code value} is less than {@code min}, {@code min} is returned, and if {@code 249 * value} is greater than {@code max}, {@code max} is returned. 250 * 251 * @param value the {@code double} value to constrain 252 * @param min the lower bound (inclusive) of the range to constrain {@code value} to 253 * @param max the upper bound (inclusive) of the range to constrain {@code value} to 254 * @throws IllegalArgumentException if {@code min > max} 255 * @since 21.0 256 */ 257 public static double constrainToRange(double value, double min, double max) { 258 // avoid auto-boxing by not using Preconditions.checkArgument(); see Guava issue 3984 259 // Reject NaN by testing for the good case (min <= max) instead of the bad (min > max). 260 if (min <= max) { 261 return Math.min(Math.max(value, min), max); 262 } 263 throw new IllegalArgumentException( 264 lenientFormat("min (%s) must be less than or equal to max (%s)", min, max)); 265 } 266 267 /** 268 * Returns the values from each provided array combined into a single array. For example, {@code 269 * concat(new double[] {a, b}, new double[] {}, new double[] {c}} returns the array {@code {a, b, 270 * c}}. 271 * 272 * @param arrays zero or more {@code double} arrays 273 * @return a single array containing all the values from the source arrays, in order 274 * @throws IllegalArgumentException if the total number of elements in {@code arrays} does not fit 275 * in an {@code int} 276 */ 277 public static double[] concat(double[]... arrays) { 278 long length = 0; 279 for (double[] array : arrays) { 280 length += array.length; 281 } 282 double[] result = new double[checkNoOverflow(length)]; 283 int pos = 0; 284 for (double[] array : arrays) { 285 System.arraycopy(array, 0, result, pos, array.length); 286 pos += array.length; 287 } 288 return result; 289 } 290 291 private static int checkNoOverflow(long result) { 292 checkArgument( 293 result == (int) result, 294 "the total number of elements (%s) in the arrays must fit in an int", 295 result); 296 return (int) result; 297 } 298 299 private static final class DoubleConverter extends Converter<String, Double> 300 implements Serializable { 301 static final Converter<String, Double> INSTANCE = new DoubleConverter(); 302 303 @Override 304 protected Double doForward(String value) { 305 return Double.valueOf(value); 306 } 307 308 @Override 309 protected String doBackward(Double value) { 310 return value.toString(); 311 } 312 313 @Override 314 public String toString() { 315 return "Doubles.stringConverter()"; 316 } 317 318 private Object readResolve() { 319 return INSTANCE; 320 } 321 322 private static final long serialVersionUID = 1; 323 } 324 325 /** 326 * Returns a serializable converter object that converts between strings and doubles using {@link 327 * Double#valueOf} and {@link Double#toString()}. 328 * 329 * @since 16.0 330 */ 331 public static Converter<String, Double> stringConverter() { 332 return DoubleConverter.INSTANCE; 333 } 334 335 /** 336 * Returns an array containing the same values as {@code array}, but guaranteed to be of a 337 * specified minimum length. If {@code array} already has a length of at least {@code minLength}, 338 * it is returned directly. Otherwise, a new array of size {@code minLength + padding} is 339 * returned, containing the values of {@code array}, and zeroes in the remaining places. 340 * 341 * @param array the source array 342 * @param minLength the minimum length the returned array must guarantee 343 * @param padding an extra amount to "grow" the array by if growth is necessary 344 * @throws IllegalArgumentException if {@code minLength} or {@code padding} is negative 345 * @return an array containing the values of {@code array}, with guaranteed minimum length {@code 346 * minLength} 347 */ 348 public static double[] ensureCapacity(double[] array, int minLength, int padding) { 349 checkArgument(minLength >= 0, "Invalid minLength: %s", minLength); 350 checkArgument(padding >= 0, "Invalid padding: %s", padding); 351 return (array.length < minLength) ? Arrays.copyOf(array, minLength + padding) : array; 352 } 353 354 /** 355 * Returns a string containing the supplied {@code double} values, converted to strings as 356 * specified by {@link Double#toString(double)}, and separated by {@code separator}. For example, 357 * {@code join("-", 1.0, 2.0, 3.0)} returns the string {@code "1.0-2.0-3.0"}. 358 * 359 * <p>Note that {@link Double#toString(double)} formats {@code double} differently in GWT 360 * sometimes. In the previous example, it returns the string {@code "1-2-3"}. 361 * 362 * @param separator the text that should appear between consecutive values in the resulting string 363 * (but not at the start or end) 364 * @param array an array of {@code double} values, possibly empty 365 */ 366 public static String join(String separator, double... array) { 367 checkNotNull(separator); 368 if (array.length == 0) { 369 return ""; 370 } 371 372 // For pre-sizing a builder, just get the right order of magnitude 373 StringBuilder builder = new StringBuilder(array.length * 12); 374 builder.append(array[0]); 375 for (int i = 1; i < array.length; i++) { 376 builder.append(separator).append(array[i]); 377 } 378 return builder.toString(); 379 } 380 381 /** 382 * Returns a comparator that compares two {@code double} arrays <a 383 * href="http://en.wikipedia.org/wiki/Lexicographical_order">lexicographically</a>. That is, it 384 * compares, using {@link #compare(double, double)}), the first pair of values that follow any 385 * common prefix, or when one array is a prefix of the other, treats the shorter array as the 386 * lesser. For example, {@code [] < [1.0] < [1.0, 2.0] < [2.0]}. 387 * 388 * <p>The returned comparator is inconsistent with {@link Object#equals(Object)} (since arrays 389 * support only identity equality), but it is consistent with {@link Arrays#equals(double[], 390 * double[])}. 391 * 392 * @since 2.0 393 */ 394 public static Comparator<double[]> lexicographicalComparator() { 395 return LexicographicalComparator.INSTANCE; 396 } 397 398 private enum LexicographicalComparator implements Comparator<double[]> { 399 INSTANCE; 400 401 @Override 402 public int compare(double[] left, double[] right) { 403 int minLength = Math.min(left.length, right.length); 404 for (int i = 0; i < minLength; i++) { 405 int result = Double.compare(left[i], right[i]); 406 if (result != 0) { 407 return result; 408 } 409 } 410 return left.length - right.length; 411 } 412 413 @Override 414 public String toString() { 415 return "Doubles.lexicographicalComparator()"; 416 } 417 } 418 419 /** 420 * Sorts the elements of {@code array} in descending order. 421 * 422 * <p>Note that this method uses the total order imposed by {@link Double#compare}, which treats 423 * all NaN values as equal and 0.0 as greater than -0.0. 424 * 425 * @since 23.1 426 */ 427 public static void sortDescending(double[] array) { 428 checkNotNull(array); 429 sortDescending(array, 0, array.length); 430 } 431 432 /** 433 * Sorts the elements of {@code array} between {@code fromIndex} inclusive and {@code toIndex} 434 * exclusive in descending order. 435 * 436 * <p>Note that this method uses the total order imposed by {@link Double#compare}, which treats 437 * all NaN values as equal and 0.0 as greater than -0.0. 438 * 439 * @since 23.1 440 */ 441 public static void sortDescending(double[] array, int fromIndex, int toIndex) { 442 checkNotNull(array); 443 checkPositionIndexes(fromIndex, toIndex, array.length); 444 Arrays.sort(array, fromIndex, toIndex); 445 reverse(array, fromIndex, toIndex); 446 } 447 448 /** 449 * Reverses the elements of {@code array}. This is equivalent to {@code 450 * Collections.reverse(Doubles.asList(array))}, but is likely to be more efficient. 451 * 452 * @since 23.1 453 */ 454 public static void reverse(double[] array) { 455 checkNotNull(array); 456 reverse(array, 0, array.length); 457 } 458 459 /** 460 * Reverses the elements of {@code array} between {@code fromIndex} inclusive and {@code toIndex} 461 * exclusive. This is equivalent to {@code 462 * Collections.reverse(Doubles.asList(array).subList(fromIndex, toIndex))}, but is likely to be 463 * more efficient. 464 * 465 * @throws IndexOutOfBoundsException if {@code fromIndex < 0}, {@code toIndex > array.length}, or 466 * {@code toIndex > fromIndex} 467 * @since 23.1 468 */ 469 public static void reverse(double[] array, int fromIndex, int toIndex) { 470 checkNotNull(array); 471 checkPositionIndexes(fromIndex, toIndex, array.length); 472 for (int i = fromIndex, j = toIndex - 1; i < j; i++, j--) { 473 double tmp = array[i]; 474 array[i] = array[j]; 475 array[j] = tmp; 476 } 477 } 478 479 /** 480 * Performs a right rotation of {@code array} of "distance" places, so that the first element is 481 * moved to index "distance", and the element at index {@code i} ends up at index {@code (distance 482 * + i) mod array.length}. This is equivalent to {@code Collections.rotate(Bytes.asList(array), 483 * distance)}, but is considerably faster and avoids allocation and garbage collection. 484 * 485 * <p>The provided "distance" may be negative, which will rotate left. 486 * 487 * @since 32.0.0 488 */ 489 public static void rotate(double[] array, int distance) { 490 rotate(array, distance, 0, array.length); 491 } 492 493 /** 494 * Performs a right rotation of {@code array} between {@code fromIndex} inclusive and {@code 495 * toIndex} exclusive. This is equivalent to {@code 496 * Collections.rotate(Bytes.asList(array).subList(fromIndex, toIndex), distance)}, but is 497 * considerably faster and avoids allocations and garbage collection. 498 * 499 * <p>The provided "distance" may be negative, which will rotate left. 500 * 501 * @throws IndexOutOfBoundsException if {@code fromIndex < 0}, {@code toIndex > array.length}, or 502 * {@code toIndex > fromIndex} 503 * @since 32.0.0 504 */ 505 public static void rotate(double[] array, int distance, int fromIndex, int toIndex) { 506 // See Ints.rotate for more details about possible algorithms here. 507 checkNotNull(array); 508 checkPositionIndexes(fromIndex, toIndex, array.length); 509 if (array.length <= 1) { 510 return; 511 } 512 513 int length = toIndex - fromIndex; 514 // Obtain m = (-distance mod length), a non-negative value less than "length". This is how many 515 // places left to rotate. 516 int m = -distance % length; 517 m = (m < 0) ? m + length : m; 518 // The current index of what will become the first element of the rotated section. 519 int newFirstIndex = m + fromIndex; 520 if (newFirstIndex == fromIndex) { 521 return; 522 } 523 524 reverse(array, fromIndex, newFirstIndex); 525 reverse(array, newFirstIndex, toIndex); 526 reverse(array, fromIndex, toIndex); 527 } 528 529 /** 530 * Returns an array containing each value of {@code collection}, converted to a {@code double} 531 * value in the manner of {@link Number#doubleValue}. 532 * 533 * <p>Elements are copied from the argument collection as if by {@code collection.toArray()}. 534 * Calling this method is as thread-safe as calling that method. 535 * 536 * @param collection a collection of {@code Number} instances 537 * @return an array containing the same values as {@code collection}, in the same order, converted 538 * to primitives 539 * @throws NullPointerException if {@code collection} or any of its elements is null 540 * @since 1.0 (parameter was {@code Collection<Double>} before 12.0) 541 */ 542 public static double[] toArray(Collection<? extends Number> collection) { 543 if (collection instanceof DoubleArrayAsList) { 544 return ((DoubleArrayAsList) collection).toDoubleArray(); 545 } 546 547 Object[] boxedArray = collection.toArray(); 548 int len = boxedArray.length; 549 double[] array = new double[len]; 550 for (int i = 0; i < len; i++) { 551 // checkNotNull for GWT (do not optimize) 552 array[i] = ((Number) checkNotNull(boxedArray[i])).doubleValue(); 553 } 554 return array; 555 } 556 557 /** 558 * Returns a fixed-size list backed by the specified array, similar to {@link 559 * Arrays#asList(Object[])}. The list supports {@link List#set(int, Object)}, but any attempt to 560 * set a value to {@code null} will result in a {@link NullPointerException}. 561 * 562 * <p>The returned list maintains the values, but not the identities, of {@code Double} objects 563 * written to or read from it. For example, whether {@code list.get(0) == list.get(0)} is true for 564 * the returned list is unspecified. 565 * 566 * <p>The returned list may have unexpected behavior if it contains {@code NaN}, or if {@code NaN} 567 * is used as a parameter to any of its methods. 568 * 569 * <p>The returned list is serializable. 570 * 571 * <p><b>Note:</b> when possible, you should represent your data as an {@link 572 * ImmutableDoubleArray} instead, which has an {@link ImmutableDoubleArray#asList asList} view. 573 * 574 * @param backingArray the array to back the list 575 * @return a list view of the array 576 */ 577 public static List<Double> asList(double... backingArray) { 578 if (backingArray.length == 0) { 579 return Collections.emptyList(); 580 } 581 return new DoubleArrayAsList(backingArray); 582 } 583 584 @GwtCompatible 585 private static class DoubleArrayAsList extends AbstractList<Double> 586 implements RandomAccess, Serializable { 587 final double[] array; 588 final int start; 589 final int end; 590 591 DoubleArrayAsList(double[] array) { 592 this(array, 0, array.length); 593 } 594 595 DoubleArrayAsList(double[] array, int start, int end) { 596 this.array = array; 597 this.start = start; 598 this.end = end; 599 } 600 601 @Override 602 public int size() { 603 return end - start; 604 } 605 606 @Override 607 public boolean isEmpty() { 608 return false; 609 } 610 611 @Override 612 public Double get(int index) { 613 checkElementIndex(index, size()); 614 return array[start + index]; 615 } 616 617 @Override 618 public boolean contains(@CheckForNull Object target) { 619 // Overridden to prevent a ton of boxing 620 return (target instanceof Double) 621 && Doubles.indexOf(array, (Double) target, start, end) != -1; 622 } 623 624 @Override 625 public int indexOf(@CheckForNull Object target) { 626 // Overridden to prevent a ton of boxing 627 if (target instanceof Double) { 628 int i = Doubles.indexOf(array, (Double) target, start, end); 629 if (i >= 0) { 630 return i - start; 631 } 632 } 633 return -1; 634 } 635 636 @Override 637 public int lastIndexOf(@CheckForNull Object target) { 638 // Overridden to prevent a ton of boxing 639 if (target instanceof Double) { 640 int i = Doubles.lastIndexOf(array, (Double) target, start, end); 641 if (i >= 0) { 642 return i - start; 643 } 644 } 645 return -1; 646 } 647 648 @Override 649 public Double set(int index, Double element) { 650 checkElementIndex(index, size()); 651 double oldValue = array[start + index]; 652 // checkNotNull for GWT (do not optimize) 653 array[start + index] = checkNotNull(element); 654 return oldValue; 655 } 656 657 @Override 658 public List<Double> subList(int fromIndex, int toIndex) { 659 int size = size(); 660 checkPositionIndexes(fromIndex, toIndex, size); 661 if (fromIndex == toIndex) { 662 return Collections.emptyList(); 663 } 664 return new DoubleArrayAsList(array, start + fromIndex, start + toIndex); 665 } 666 667 @Override 668 public boolean equals(@CheckForNull Object object) { 669 if (object == this) { 670 return true; 671 } 672 if (object instanceof DoubleArrayAsList) { 673 DoubleArrayAsList that = (DoubleArrayAsList) object; 674 int size = size(); 675 if (that.size() != size) { 676 return false; 677 } 678 for (int i = 0; i < size; i++) { 679 if (array[start + i] != that.array[that.start + i]) { 680 return false; 681 } 682 } 683 return true; 684 } 685 return super.equals(object); 686 } 687 688 @Override 689 public int hashCode() { 690 int result = 1; 691 for (int i = start; i < end; i++) { 692 result = 31 * result + Doubles.hashCode(array[i]); 693 } 694 return result; 695 } 696 697 @Override 698 public String toString() { 699 StringBuilder builder = new StringBuilder(size() * 12); 700 builder.append('[').append(array[start]); 701 for (int i = start + 1; i < end; i++) { 702 builder.append(", ").append(array[i]); 703 } 704 return builder.append(']').toString(); 705 } 706 707 double[] toDoubleArray() { 708 return Arrays.copyOfRange(array, start, end); 709 } 710 711 private static final long serialVersionUID = 0; 712 } 713 714 /** 715 * This is adapted from the regex suggested by {@link Double#valueOf(String)} for prevalidating 716 * inputs. All valid inputs must pass this regex, but it's semantically fine if not all inputs 717 * that pass this regex are valid -- only a performance hit is incurred, not a semantics bug. 718 */ 719 @GwtIncompatible // regular expressions 720 static final 721 java.util.regex.Pattern 722 FLOATING_POINT_PATTERN = fpPattern(); 723 724 @GwtIncompatible // regular expressions 725 private static 726 java.util.regex.Pattern 727 fpPattern() { 728 /* 729 * We use # instead of * for possessive quantifiers. This lets us strip them out when building 730 * the regex for RE2 (which doesn't support them) but leave them in when building it for 731 * java.util.regex (where we want them in order to avoid catastrophic backtracking). 732 */ 733 String decimal = "(?:\\d+#(?:\\.\\d*#)?|\\.\\d+#)"; 734 String completeDec = decimal + "(?:[eE][+-]?\\d+#)?[fFdD]?"; 735 String hex = "(?:[0-9a-fA-F]+#(?:\\.[0-9a-fA-F]*#)?|\\.[0-9a-fA-F]+#)"; 736 String completeHex = "0[xX]" + hex + "[pP][+-]?\\d+#[fFdD]?"; 737 String fpPattern = "[+-]?(?:NaN|Infinity|" + completeDec + "|" + completeHex + ")"; 738 fpPattern = 739 fpPattern.replace( 740 "#", 741 "+" 742 ); 743 return 744 java.util.regex.Pattern 745 .compile(fpPattern); 746 } 747 748 /** 749 * Parses the specified string as a double-precision floating point value. The ASCII character 750 * {@code '-'} (<code>'\u002D'</code>) is recognized as the minus sign. 751 * 752 * <p>Unlike {@link Double#parseDouble(String)}, this method returns {@code null} instead of 753 * throwing an exception if parsing fails. Valid inputs are exactly those accepted by {@link 754 * Double#valueOf(String)}, except that leading and trailing whitespace is not permitted. 755 * 756 * <p>This implementation is likely to be faster than {@code Double.parseDouble} if many failures 757 * are expected. 758 * 759 * @param string the string representation of a {@code double} value 760 * @return the floating point value represented by {@code string}, or {@code null} if {@code 761 * string} has a length of zero or cannot be parsed as a {@code double} value 762 * @throws NullPointerException if {@code string} is {@code null} 763 * @since 14.0 764 */ 765 @GwtIncompatible // regular expressions 766 @CheckForNull 767 public static Double tryParse(String string) { 768 if (FLOATING_POINT_PATTERN.matcher(string).matches()) { 769 // TODO(lowasser): could be potentially optimized, but only with 770 // extensive testing 771 try { 772 return Double.parseDouble(string); 773 } catch (NumberFormatException e) { 774 // Double.parseDouble has changed specs several times, so fall through 775 // gracefully 776 } 777 } 778 return null; 779 } 780}