001/* 002 * Copyright (C) 2008 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 005 * in compliance with the License. You may obtain a copy of the License at 006 * 007 * http://www.apache.org/licenses/LICENSE-2.0 008 * 009 * Unless required by applicable law or agreed to in writing, software distributed under the License 010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express 011 * or implied. See the License for the specific language governing permissions and limitations under 012 * the License. 013 */ 014 015package com.google.common.net; 016 017import static com.google.common.base.Preconditions.checkArgument; 018import static com.google.common.base.Preconditions.checkNotNull; 019import static java.util.Objects.requireNonNull; 020 021import com.google.common.annotations.GwtIncompatible; 022import com.google.common.annotations.J2ktIncompatible; 023import com.google.common.base.CharMatcher; 024import com.google.common.base.MoreObjects; 025import com.google.common.hash.Hashing; 026import com.google.common.io.ByteStreams; 027import com.google.common.primitives.Ints; 028import com.google.errorprone.annotations.CanIgnoreReturnValue; 029import java.math.BigInteger; 030import java.net.Inet4Address; 031import java.net.Inet6Address; 032import java.net.InetAddress; 033import java.net.NetworkInterface; 034import java.net.SocketException; 035import java.net.UnknownHostException; 036import java.nio.ByteBuffer; 037import java.util.Arrays; 038import java.util.Locale; 039import javax.annotation.CheckForNull; 040import org.checkerframework.checker.nullness.qual.Nullable; 041 042/** 043 * Static utility methods pertaining to {@link InetAddress} instances. 044 * 045 * <p><b>Important note:</b> Unlike {@code InetAddress.getByName()}, the methods of this class never 046 * cause DNS services to be accessed. For this reason, you should prefer these methods as much as 047 * possible over their JDK equivalents whenever you are expecting to handle only IP address string 048 * literals -- there is no blocking DNS penalty for a malformed string. 049 * 050 * <p>When dealing with {@link Inet4Address} and {@link Inet6Address} objects as byte arrays (vis. 051 * {@code InetAddress.getAddress()}) they are 4 and 16 bytes in length, respectively, and represent 052 * the address in network byte order. 053 * 054 * <p>Examples of IP addresses and their byte representations: 055 * 056 * <dl> 057 * <dt>The IPv4 loopback address, {@code "127.0.0.1"}. 058 * <dd>{@code 7f 00 00 01} 059 * <dt>The IPv6 loopback address, {@code "::1"}. 060 * <dd>{@code 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01} 061 * <dt>From the IPv6 reserved documentation prefix ({@code 2001:db8::/32}), {@code "2001:db8::1"}. 062 * <dd>{@code 20 01 0d b8 00 00 00 00 00 00 00 00 00 00 00 01} 063 * <dt>An IPv6 "IPv4 compatible" (or "compat") address, {@code "::192.168.0.1"}. 064 * <dd>{@code 00 00 00 00 00 00 00 00 00 00 00 00 c0 a8 00 01} 065 * <dt>An IPv6 "IPv4 mapped" address, {@code "::ffff:192.168.0.1"}. 066 * <dd>{@code 00 00 00 00 00 00 00 00 00 00 ff ff c0 a8 00 01} 067 * </dl> 068 * 069 * <p>A few notes about IPv6 "IPv4 mapped" addresses and their observed use in Java. 070 * 071 * <p>"IPv4 mapped" addresses were originally a representation of IPv4 addresses for use on an IPv6 072 * socket that could receive both IPv4 and IPv6 connections (by disabling the {@code IPV6_V6ONLY} 073 * socket option on an IPv6 socket). Yes, it's confusing. Nevertheless, these "mapped" addresses 074 * were never supposed to be seen on the wire. That assumption was dropped, some say mistakenly, in 075 * later RFCs with the apparent aim of making IPv4-to-IPv6 transition simpler. 076 * 077 * <p>Technically one <i>can</i> create a 128bit IPv6 address with the wire format of a "mapped" 078 * address, as shown above, and transmit it in an IPv6 packet header. However, Java's InetAddress 079 * creation methods appear to adhere doggedly to the original intent of the "mapped" address: all 080 * "mapped" addresses return {@link Inet4Address} objects. 081 * 082 * <p>For added safety, it is common for IPv6 network operators to filter all packets where either 083 * the source or destination address appears to be a "compat" or "mapped" address. Filtering 084 * suggestions usually recommend discarding any packets with source or destination addresses in the 085 * invalid range {@code ::/3}, which includes both of these bizarre address formats. For more 086 * information on "bogons", including lists of IPv6 bogon space, see: 087 * 088 * <ul> 089 * <li><a target="_parent" 090 * href="http://en.wikipedia.org/wiki/Bogon_filtering">http://en.wikipedia. 091 * org/wiki/Bogon_filtering</a> 092 * <li><a target="_parent" 093 * href="http://www.cymru.com/Bogons/ipv6.txt">http://www.cymru.com/Bogons/ ipv6.txt</a> 094 * <li><a target="_parent" href="http://www.cymru.com/Bogons/v6bogon.html">http://www.cymru.com/ 095 * Bogons/v6bogon.html</a> 096 * <li><a target="_parent" href="http://www.space.net/~gert/RIPE/ipv6-filters.html">http://www. 097 * space.net/~gert/RIPE/ipv6-filters.html</a> 098 * </ul> 099 * 100 * @author Erik Kline 101 * @since 5.0 102 */ 103@J2ktIncompatible 104@GwtIncompatible 105@ElementTypesAreNonnullByDefault 106public final class InetAddresses { 107 private static final int IPV4_PART_COUNT = 4; 108 private static final int IPV6_PART_COUNT = 8; 109 private static final char IPV4_DELIMITER = '.'; 110 private static final char IPV6_DELIMITER = ':'; 111 private static final CharMatcher IPV4_DELIMITER_MATCHER = CharMatcher.is(IPV4_DELIMITER); 112 private static final CharMatcher IPV6_DELIMITER_MATCHER = CharMatcher.is(IPV6_DELIMITER); 113 private static final Inet4Address LOOPBACK4 = (Inet4Address) forString("127.0.0.1"); 114 private static final Inet4Address ANY4 = (Inet4Address) forString("0.0.0.0"); 115 116 private InetAddresses() {} 117 118 /** 119 * Returns an {@link Inet4Address}, given a byte array representation of the IPv4 address. 120 * 121 * @param bytes byte array representing an IPv4 address (should be of length 4) 122 * @return {@link Inet4Address} corresponding to the supplied byte array 123 * @throws IllegalArgumentException if a valid {@link Inet4Address} can not be created 124 */ 125 private static Inet4Address getInet4Address(byte[] bytes) { 126 checkArgument( 127 bytes.length == 4, 128 "Byte array has invalid length for an IPv4 address: %s != 4.", 129 bytes.length); 130 131 // Given a 4-byte array, this cast should always succeed. 132 return (Inet4Address) bytesToInetAddress(bytes, null); 133 } 134 135 /** 136 * Returns the {@link InetAddress} having the given string representation. 137 * 138 * <p>This deliberately avoids all nameservice lookups (e.g. no DNS). 139 * 140 * <p>This method accepts non-ASCII digits, for example {@code "192.168.0.1"} (those are fullwidth 141 * characters). That is consistent with {@link InetAddress}, but not with various RFCs. If you 142 * want to accept ASCII digits only, you can use something like {@code 143 * CharMatcher.ascii().matchesAllOf(ipString)}. 144 * 145 * <p>The scope ID is validated against the interfaces on the machine, which requires permissions 146 * under Android. 147 * 148 * <p><b>Android users on API >= 29:</b> Prefer {@code InetAddresses.parseNumericAddress}. 149 * 150 * @param ipString {@code String} containing an IPv4 or IPv6 string literal, e.g. {@code 151 * "192.168.0.1"} or {@code "2001:db8::1"} or with a scope ID, e.g. {@code "2001:db8::1%eth0"} 152 * @return {@link InetAddress} representing the argument 153 * @throws IllegalArgumentException if the argument is not a valid IP string literal 154 */ 155 @CanIgnoreReturnValue // TODO(b/219820829): consider removing 156 public static InetAddress forString(String ipString) { 157 Scope scope = new Scope(); 158 byte[] addr = ipStringToBytes(ipString, scope); 159 160 // The argument was malformed, i.e. not an IP string literal. 161 if (addr == null) { 162 throw formatIllegalArgumentException("'%s' is not an IP string literal.", ipString); 163 } 164 165 return bytesToInetAddress(addr, scope.scope); 166 } 167 168 /** 169 * Returns {@code true} if the supplied string is a valid IP string literal, {@code false} 170 * otherwise. 171 * 172 * <p>This method accepts non-ASCII digits, for example {@code "192.168.0.1"} (those are fullwidth 173 * characters). That is consistent with {@link InetAddress}, but not with various RFCs. If you 174 * want to accept ASCII digits only, you can use something like {@code 175 * CharMatcher.ascii().matchesAllOf(ipString)}. 176 * 177 * @param ipString {@code String} to evaluated as an IP string literal 178 * @return {@code true} if the argument is a valid IP string literal 179 */ 180 public static boolean isInetAddress(String ipString) { 181 return ipStringToBytes(ipString, null) != null; 182 } 183 184 private static final class Scope { 185 private String scope; 186 } 187 188 /** Returns {@code null} if unable to parse into a {@code byte[]}. */ 189 @CheckForNull 190 private static byte[] ipStringToBytes(String ipStringParam, @Nullable Scope scope) { 191 String ipString = ipStringParam; 192 // Make a first pass to categorize the characters in this string. 193 boolean hasColon = false; 194 boolean hasDot = false; 195 int percentIndex = -1; 196 for (int i = 0; i < ipString.length(); i++) { 197 char c = ipString.charAt(i); 198 if (c == '.') { 199 hasDot = true; 200 } else if (c == ':') { 201 if (hasDot) { 202 return null; // Colons must not appear after dots. 203 } 204 hasColon = true; 205 } else if (c == '%') { 206 percentIndex = i; 207 break; 208 } else if (Character.digit(c, 16) == -1) { 209 return null; // Everything else must be a decimal or hex digit. 210 } 211 } 212 213 // Now decide which address family to parse. 214 if (hasColon) { 215 if (hasDot) { 216 ipString = convertDottedQuadToHex(ipString); 217 if (ipString == null) { 218 return null; 219 } 220 } 221 if (percentIndex != -1) { 222 if (scope != null) { 223 scope.scope = ipString.substring(percentIndex + 1); 224 } 225 ipString = ipString.substring(0, percentIndex); 226 } 227 return textToNumericFormatV6(ipString); 228 } else if (hasDot) { 229 if (percentIndex != -1) { 230 return null; // Scope IDs are not supported for IPV4 231 } 232 return textToNumericFormatV4(ipString); 233 } 234 return null; 235 } 236 237 @CheckForNull 238 private static byte[] textToNumericFormatV4(String ipString) { 239 if (IPV4_DELIMITER_MATCHER.countIn(ipString) + 1 != IPV4_PART_COUNT) { 240 return null; // Wrong number of parts 241 } 242 243 byte[] bytes = new byte[IPV4_PART_COUNT]; 244 int start = 0; 245 // Iterate through the parts of the ip string. 246 // Invariant: start is always the beginning of an octet. 247 for (int i = 0; i < IPV4_PART_COUNT; i++) { 248 int end = ipString.indexOf(IPV4_DELIMITER, start); 249 if (end == -1) { 250 end = ipString.length(); 251 } 252 try { 253 bytes[i] = parseOctet(ipString, start, end); 254 } catch (NumberFormatException ex) { 255 return null; 256 } 257 start = end + 1; 258 } 259 260 return bytes; 261 } 262 263 @CheckForNull 264 private static byte[] textToNumericFormatV6(String ipString) { 265 // An address can have [2..8] colons. 266 int delimiterCount = IPV6_DELIMITER_MATCHER.countIn(ipString); 267 if (delimiterCount < 2 || delimiterCount > IPV6_PART_COUNT) { 268 return null; 269 } 270 int partsSkipped = IPV6_PART_COUNT - (delimiterCount + 1); // estimate; may be modified later 271 boolean hasSkip = false; 272 // Scan for the appearance of ::, to mark a skip-format IPV6 string and adjust the partsSkipped 273 // estimate. 274 for (int i = 0; i < ipString.length() - 1; i++) { 275 if (ipString.charAt(i) == IPV6_DELIMITER && ipString.charAt(i + 1) == IPV6_DELIMITER) { 276 if (hasSkip) { 277 return null; // Can't have more than one :: 278 } 279 hasSkip = true; 280 partsSkipped++; // :: means we skipped an extra part in between the two delimiters. 281 if (i == 0) { 282 partsSkipped++; // Begins with ::, so we skipped the part preceding the first : 283 } 284 if (i == ipString.length() - 2) { 285 partsSkipped++; // Ends with ::, so we skipped the part after the last : 286 } 287 } 288 } 289 if (ipString.charAt(0) == IPV6_DELIMITER && ipString.charAt(1) != IPV6_DELIMITER) { 290 return null; // ^: requires ^:: 291 } 292 if (ipString.charAt(ipString.length() - 1) == IPV6_DELIMITER 293 && ipString.charAt(ipString.length() - 2) != IPV6_DELIMITER) { 294 return null; // :$ requires ::$ 295 } 296 if (hasSkip && partsSkipped <= 0) { 297 return null; // :: must expand to at least one '0' 298 } 299 if (!hasSkip && delimiterCount + 1 != IPV6_PART_COUNT) { 300 return null; // Incorrect number of parts 301 } 302 303 ByteBuffer rawBytes = ByteBuffer.allocate(2 * IPV6_PART_COUNT); 304 try { 305 // Iterate through the parts of the ip string. 306 // Invariant: start is always the beginning of a hextet, or the second ':' of the skip 307 // sequence "::" 308 int start = 0; 309 if (ipString.charAt(0) == IPV6_DELIMITER) { 310 start = 1; 311 } 312 while (start < ipString.length()) { 313 int end = ipString.indexOf(IPV6_DELIMITER, start); 314 if (end == -1) { 315 end = ipString.length(); 316 } 317 if (ipString.charAt(start) == IPV6_DELIMITER) { 318 // expand zeroes 319 for (int i = 0; i < partsSkipped; i++) { 320 rawBytes.putShort((short) 0); 321 } 322 323 } else { 324 rawBytes.putShort(parseHextet(ipString, start, end)); 325 } 326 start = end + 1; 327 } 328 } catch (NumberFormatException ex) { 329 return null; 330 } 331 return rawBytes.array(); 332 } 333 334 @CheckForNull 335 private static String convertDottedQuadToHex(String ipString) { 336 int lastColon = ipString.lastIndexOf(':'); 337 String initialPart = ipString.substring(0, lastColon + 1); 338 String dottedQuad = ipString.substring(lastColon + 1); 339 byte[] quad = textToNumericFormatV4(dottedQuad); 340 if (quad == null) { 341 return null; 342 } 343 String penultimate = Integer.toHexString(((quad[0] & 0xff) << 8) | (quad[1] & 0xff)); 344 String ultimate = Integer.toHexString(((quad[2] & 0xff) << 8) | (quad[3] & 0xff)); 345 return initialPart + penultimate + ":" + ultimate; 346 } 347 348 private static byte parseOctet(String ipString, int start, int end) { 349 // Note: we already verified that this string contains only hex digits, but the string may still 350 // contain non-decimal characters. 351 int length = end - start; 352 if (length <= 0 || length > 3) { 353 throw new NumberFormatException(); 354 } 355 // Disallow leading zeroes, because no clear standard exists on 356 // whether these should be interpreted as decimal or octal. 357 if (length > 1 && ipString.charAt(start) == '0') { 358 throw new NumberFormatException(); 359 } 360 int octet = 0; 361 for (int i = start; i < end; i++) { 362 octet *= 10; 363 int digit = Character.digit(ipString.charAt(i), 10); 364 if (digit < 0) { 365 throw new NumberFormatException(); 366 } 367 octet += digit; 368 } 369 if (octet > 255) { 370 throw new NumberFormatException(); 371 } 372 return (byte) octet; 373 } 374 375 /** Returns a -1 if unable to parse */ 376 private static int tryParseDecimal(String string, int start, int end) { 377 int decimal = 0; 378 final int max = Integer.MAX_VALUE / 10; // for int overflow detection 379 for (int i = start; i < end; i++) { 380 if (decimal > max) { 381 return -1; 382 } 383 decimal *= 10; 384 int digit = Character.digit(string.charAt(i), 10); 385 if (digit < 0) { 386 return -1; 387 } 388 decimal += digit; 389 } 390 return decimal; 391 } 392 393 // Parse a hextet out of the ipString from start (inclusive) to end (exclusive) 394 private static short parseHextet(String ipString, int start, int end) { 395 // Note: we already verified that this string contains only hex digits. 396 int length = end - start; 397 if (length <= 0 || length > 4) { 398 throw new NumberFormatException(); 399 } 400 int hextet = 0; 401 for (int i = start; i < end; i++) { 402 hextet = hextet << 4; 403 hextet |= Character.digit(ipString.charAt(i), 16); 404 } 405 return (short) hextet; 406 } 407 408 /** 409 * Convert a byte array into an InetAddress. 410 * 411 * <p>{@link InetAddress#getByAddress} is documented as throwing a checked exception "if IP 412 * address is of illegal length." We replace it with an unchecked exception, for use by callers 413 * who already know that addr is an array of length 4 or 16. 414 * 415 * @param addr the raw 4-byte or 16-byte IP address in big-endian order 416 * @return an InetAddress object created from the raw IP address 417 */ 418 private static InetAddress bytesToInetAddress(byte[] addr, @Nullable String scope) { 419 try { 420 InetAddress address = InetAddress.getByAddress(addr); 421 if (scope == null) { 422 return address; 423 } 424 checkArgument( 425 address instanceof Inet6Address, "Unexpected state, scope should only appear for ipv6"); 426 Inet6Address v6Address = (Inet6Address) address; 427 int interfaceIndex = tryParseDecimal(scope, 0, scope.length()); 428 if (interfaceIndex != -1) { 429 return Inet6Address.getByAddress( 430 v6Address.getHostAddress(), v6Address.getAddress(), interfaceIndex); 431 } 432 try { 433 NetworkInterface asInterface = NetworkInterface.getByName(scope); 434 if (asInterface == null) { 435 throw formatIllegalArgumentException("No such interface: '%s'", scope); 436 } 437 return Inet6Address.getByAddress( 438 v6Address.getHostAddress(), v6Address.getAddress(), asInterface); 439 } catch (SocketException | UnknownHostException e) { 440 throw new IllegalArgumentException("No such interface: " + scope, e); 441 } 442 } catch (UnknownHostException e) { 443 throw new AssertionError(e); 444 } 445 } 446 447 /** 448 * Returns the string representation of an {@link InetAddress}. 449 * 450 * <p>For IPv4 addresses, this is identical to {@link InetAddress#getHostAddress()}, but for IPv6 451 * addresses, the output follows <a href="http://tools.ietf.org/html/rfc5952">RFC 5952</a> section 452 * 4. The main difference is that this method uses "::" for zero compression, while Java's version 453 * uses the uncompressed form (except on Android, where the zero compression is also done). The 454 * other difference is that this method outputs any scope ID in the format that it was provided at 455 * creation time, while Android may always output it as an interface name, even if it was supplied 456 * as a numeric ID. 457 * 458 * <p>This method uses hexadecimal for all IPv6 addresses, including IPv4-mapped IPv6 addresses 459 * such as "::c000:201". 460 * 461 * @param ip {@link InetAddress} to be converted to an address string 462 * @return {@code String} containing the text-formatted IP address 463 * @since 10.0 464 */ 465 public static String toAddrString(InetAddress ip) { 466 checkNotNull(ip); 467 if (ip instanceof Inet4Address) { 468 // For IPv4, Java's formatting is good enough. 469 // requireNonNull accommodates Android's @RecentlyNullable annotation on getHostAddress 470 return requireNonNull(ip.getHostAddress()); 471 } 472 byte[] bytes = ip.getAddress(); 473 int[] hextets = new int[IPV6_PART_COUNT]; 474 for (int i = 0; i < hextets.length; i++) { 475 hextets[i] = Ints.fromBytes((byte) 0, (byte) 0, bytes[2 * i], bytes[2 * i + 1]); 476 } 477 compressLongestRunOfZeroes(hextets); 478 479 return hextetsToIPv6String(hextets) + scopeWithDelimiter((Inet6Address) ip); 480 } 481 482 private static String scopeWithDelimiter(Inet6Address ip) { 483 // getHostAddress on android sometimes maps the scope id to an invalid interface name; if the 484 // mapped interface isn't present, fallback to use the scope id (which has no validation against 485 // present interfaces) 486 NetworkInterface scopedInterface = ip.getScopedInterface(); 487 if (scopedInterface != null) { 488 return "%" + scopedInterface.getName(); 489 } 490 int scope = ip.getScopeId(); 491 if (scope != 0) { 492 return "%" + scope; 493 } 494 return ""; 495 } 496 497 /** 498 * Identify and mark the longest run of zeroes in an IPv6 address. 499 * 500 * <p>Only runs of two or more hextets are considered. In case of a tie, the leftmost run wins. If 501 * a qualifying run is found, its hextets are replaced by the sentinel value -1. 502 * 503 * @param hextets {@code int[]} mutable array of eight 16-bit hextets 504 */ 505 private static void compressLongestRunOfZeroes(int[] hextets) { 506 int bestRunStart = -1; 507 int bestRunLength = -1; 508 int runStart = -1; 509 for (int i = 0; i < hextets.length + 1; i++) { 510 if (i < hextets.length && hextets[i] == 0) { 511 if (runStart < 0) { 512 runStart = i; 513 } 514 } else if (runStart >= 0) { 515 int runLength = i - runStart; 516 if (runLength > bestRunLength) { 517 bestRunStart = runStart; 518 bestRunLength = runLength; 519 } 520 runStart = -1; 521 } 522 } 523 if (bestRunLength >= 2) { 524 Arrays.fill(hextets, bestRunStart, bestRunStart + bestRunLength, -1); 525 } 526 } 527 528 /** 529 * Convert a list of hextets into a human-readable IPv6 address. 530 * 531 * <p>In order for "::" compression to work, the input should contain negative sentinel values in 532 * place of the elided zeroes. 533 * 534 * @param hextets {@code int[]} array of eight 16-bit hextets, or -1s 535 */ 536 private static String hextetsToIPv6String(int[] hextets) { 537 // While scanning the array, handle these state transitions: 538 // start->num => "num" start->gap => "::" 539 // num->num => ":num" num->gap => "::" 540 // gap->num => "num" gap->gap => "" 541 StringBuilder buf = new StringBuilder(39); 542 boolean lastWasNumber = false; 543 for (int i = 0; i < hextets.length; i++) { 544 boolean thisIsNumber = hextets[i] >= 0; 545 if (thisIsNumber) { 546 if (lastWasNumber) { 547 buf.append(':'); 548 } 549 buf.append(Integer.toHexString(hextets[i])); 550 } else { 551 if (i == 0 || lastWasNumber) { 552 buf.append("::"); 553 } 554 } 555 lastWasNumber = thisIsNumber; 556 } 557 return buf.toString(); 558 } 559 560 /** 561 * Returns the string representation of an {@link InetAddress} suitable for inclusion in a URI. 562 * 563 * <p>For IPv4 addresses, this is identical to {@link InetAddress#getHostAddress()}, but for IPv6 564 * addresses it compresses zeroes and surrounds the text with square brackets; for example {@code 565 * "[2001:db8::1]"}. 566 * 567 * <p>Per section 3.2.2 of <a target="_parent" 568 * href="http://tools.ietf.org/html/rfc3986#section-3.2.2">RFC 3986</a>, a URI containing an IPv6 569 * string literal is of the form {@code "http://[2001:db8::1]:8888/index.html"}. 570 * 571 * <p>Use of either {@link InetAddresses#toAddrString}, {@link InetAddress#getHostAddress()}, or 572 * this method is recommended over {@link InetAddress#toString()} when an IP address string 573 * literal is desired. This is because {@link InetAddress#toString()} prints the hostname and the 574 * IP address string joined by a "/". 575 * 576 * @param ip {@link InetAddress} to be converted to URI string literal 577 * @return {@code String} containing URI-safe string literal 578 */ 579 public static String toUriString(InetAddress ip) { 580 if (ip instanceof Inet6Address) { 581 return "[" + toAddrString(ip) + "]"; 582 } 583 return toAddrString(ip); 584 } 585 586 /** 587 * Returns an InetAddress representing the literal IPv4 or IPv6 host portion of a URL, encoded in 588 * the format specified by RFC 3986 section 3.2.2. 589 * 590 * <p>This method is similar to {@link InetAddresses#forString(String)}, however, it requires that 591 * IPv6 addresses are surrounded by square brackets. 592 * 593 * <p>This method is the inverse of {@link InetAddresses#toUriString(java.net.InetAddress)}. 594 * 595 * <p>This method accepts non-ASCII digits, for example {@code "192.168.0.1"} (those are fullwidth 596 * characters). That is consistent with {@link InetAddress}, but not with various RFCs. If you 597 * want to accept ASCII digits only, you can use something like {@code 598 * CharMatcher.ascii().matchesAllOf(ipString)}. 599 * 600 * @param hostAddr an RFC 3986 section 3.2.2 encoded IPv4 or IPv6 address 601 * @return an InetAddress representing the address in {@code hostAddr} 602 * @throws IllegalArgumentException if {@code hostAddr} is not a valid IPv4 address, or IPv6 603 * address surrounded by square brackets, or if the address has a scope id that fails 604 * validation against interfaces on the machine 605 */ 606 public static InetAddress forUriString(String hostAddr) { 607 InetAddress addr = forUriStringOrNull(hostAddr, /* parseScope= */ true); 608 if (addr == null) { 609 throw formatIllegalArgumentException("Not a valid URI IP literal: '%s'", hostAddr); 610 } 611 612 return addr; 613 } 614 615 @CheckForNull 616 private static InetAddress forUriStringOrNull(String hostAddr, boolean parseScope) { 617 checkNotNull(hostAddr); 618 619 // Decide if this should be an IPv6 or IPv4 address. 620 String ipString; 621 int expectBytes; 622 if (hostAddr.startsWith("[") && hostAddr.endsWith("]")) { 623 ipString = hostAddr.substring(1, hostAddr.length() - 1); 624 expectBytes = 16; 625 } else { 626 ipString = hostAddr; 627 expectBytes = 4; 628 } 629 630 // Parse the address, and make sure the length/version is correct. 631 Scope scope = parseScope ? new Scope() : null; 632 byte[] addr = ipStringToBytes(ipString, scope); 633 if (addr == null || addr.length != expectBytes) { 634 return null; 635 } 636 637 return bytesToInetAddress(addr, (scope != null) ? scope.scope : null); 638 } 639 640 /** 641 * Returns {@code true} if the supplied string is a valid URI IP string literal, {@code false} 642 * otherwise. 643 * 644 * <p>This method accepts non-ASCII digits, for example {@code "192.168.0.1"} (those are fullwidth 645 * characters). That is consistent with {@link InetAddress}, but not with various RFCs. If you 646 * want to accept ASCII digits only, you can use something like {@code 647 * CharMatcher.ascii().matchesAllOf(ipString)}. 648 * 649 * <p>Note that if this method returns {@code true}, a call to {@link #forUriString(String)} can 650 * throw if the address has a scope id fails validation against interfaces on the machine. 651 * 652 * @param ipString {@code String} to evaluated as an IP URI host string literal 653 * @return {@code true} if the argument is a valid IP URI host 654 */ 655 public static boolean isUriInetAddress(String ipString) { 656 return forUriStringOrNull(ipString, /* parseScope= */ false) != null; 657 } 658 659 /** 660 * Evaluates whether the argument is an IPv6 "compat" address. 661 * 662 * <p>An "IPv4 compatible", or "compat", address is one with 96 leading bits of zero, with the 663 * remaining 32 bits interpreted as an IPv4 address. These are conventionally represented in 664 * string literals as {@code "::192.168.0.1"}, though {@code "::c0a8:1"} is also considered an 665 * IPv4 compatible address (and equivalent to {@code "::192.168.0.1"}). 666 * 667 * <p>For more on IPv4 compatible addresses see section 2.5.5.1 of <a target="_parent" 668 * href="http://tools.ietf.org/html/rfc4291#section-2.5.5.1">RFC 4291</a>. 669 * 670 * <p>NOTE: This method is different from {@link Inet6Address#isIPv4CompatibleAddress} in that it 671 * more correctly classifies {@code "::"} and {@code "::1"} as proper IPv6 addresses (which they 672 * are), NOT IPv4 compatible addresses (which they are generally NOT considered to be). 673 * 674 * @param ip {@link Inet6Address} to be examined for embedded IPv4 compatible address format 675 * @return {@code true} if the argument is a valid "compat" address 676 */ 677 public static boolean isCompatIPv4Address(Inet6Address ip) { 678 if (!ip.isIPv4CompatibleAddress()) { 679 return false; 680 } 681 682 byte[] bytes = ip.getAddress(); 683 if ((bytes[12] == 0) 684 && (bytes[13] == 0) 685 && (bytes[14] == 0) 686 && ((bytes[15] == 0) || (bytes[15] == 1))) { 687 return false; 688 } 689 690 return true; 691 } 692 693 /** 694 * Returns the IPv4 address embedded in an IPv4 compatible address. 695 * 696 * @param ip {@link Inet6Address} to be examined for an embedded IPv4 address 697 * @return {@link Inet4Address} of the embedded IPv4 address 698 * @throws IllegalArgumentException if the argument is not a valid IPv4 compatible address 699 */ 700 public static Inet4Address getCompatIPv4Address(Inet6Address ip) { 701 checkArgument( 702 isCompatIPv4Address(ip), "Address '%s' is not IPv4-compatible.", toAddrString(ip)); 703 704 return getInet4Address(Arrays.copyOfRange(ip.getAddress(), 12, 16)); 705 } 706 707 /** 708 * Evaluates whether the argument is a 6to4 address. 709 * 710 * <p>6to4 addresses begin with the {@code "2002::/16"} prefix. The next 32 bits are the IPv4 711 * address of the host to which IPv6-in-IPv4 tunneled packets should be routed. 712 * 713 * <p>For more on 6to4 addresses see section 2 of <a target="_parent" 714 * href="http://tools.ietf.org/html/rfc3056#section-2">RFC 3056</a>. 715 * 716 * @param ip {@link Inet6Address} to be examined for 6to4 address format 717 * @return {@code true} if the argument is a 6to4 address 718 */ 719 public static boolean is6to4Address(Inet6Address ip) { 720 byte[] bytes = ip.getAddress(); 721 return (bytes[0] == (byte) 0x20) && (bytes[1] == (byte) 0x02); 722 } 723 724 /** 725 * Returns the IPv4 address embedded in a 6to4 address. 726 * 727 * @param ip {@link Inet6Address} to be examined for embedded IPv4 in 6to4 address 728 * @return {@link Inet4Address} of embedded IPv4 in 6to4 address 729 * @throws IllegalArgumentException if the argument is not a valid IPv6 6to4 address 730 */ 731 public static Inet4Address get6to4IPv4Address(Inet6Address ip) { 732 checkArgument(is6to4Address(ip), "Address '%s' is not a 6to4 address.", toAddrString(ip)); 733 734 return getInet4Address(Arrays.copyOfRange(ip.getAddress(), 2, 6)); 735 } 736 737 /** 738 * A simple immutable data class to encapsulate the information to be found in a Teredo address. 739 * 740 * <p>All of the fields in this class are encoded in various portions of the IPv6 address as part 741 * of the protocol. More protocols details can be found at: <a target="_parent" 742 * href="http://en.wikipedia.org/wiki/Teredo_tunneling">http://en.wikipedia. 743 * org/wiki/Teredo_tunneling</a>. 744 * 745 * <p>The RFC can be found here: <a target="_parent" href="http://tools.ietf.org/html/rfc4380">RFC 746 * 4380</a>. 747 * 748 * @since 5.0 749 */ 750 public static final class TeredoInfo { 751 private final Inet4Address server; 752 private final Inet4Address client; 753 private final int port; 754 private final int flags; 755 756 /** 757 * Constructs a TeredoInfo instance. 758 * 759 * <p>Both server and client can be {@code null}, in which case the value {@code "0.0.0.0"} will 760 * be assumed. 761 * 762 * @throws IllegalArgumentException if either of the {@code port} or the {@code flags} arguments 763 * are out of range of an unsigned short 764 */ 765 // TODO: why is this public? 766 public TeredoInfo( 767 @CheckForNull Inet4Address server, @CheckForNull Inet4Address client, int port, int flags) { 768 checkArgument( 769 (port >= 0) && (port <= 0xffff), "port '%s' is out of range (0 <= port <= 0xffff)", port); 770 checkArgument( 771 (flags >= 0) && (flags <= 0xffff), 772 "flags '%s' is out of range (0 <= flags <= 0xffff)", 773 flags); 774 775 this.server = MoreObjects.firstNonNull(server, ANY4); 776 this.client = MoreObjects.firstNonNull(client, ANY4); 777 this.port = port; 778 this.flags = flags; 779 } 780 781 public Inet4Address getServer() { 782 return server; 783 } 784 785 public Inet4Address getClient() { 786 return client; 787 } 788 789 public int getPort() { 790 return port; 791 } 792 793 public int getFlags() { 794 return flags; 795 } 796 } 797 798 /** 799 * Evaluates whether the argument is a Teredo address. 800 * 801 * <p>Teredo addresses begin with the {@code "2001::/32"} prefix. 802 * 803 * @param ip {@link Inet6Address} to be examined for Teredo address format 804 * @return {@code true} if the argument is a Teredo address 805 */ 806 public static boolean isTeredoAddress(Inet6Address ip) { 807 byte[] bytes = ip.getAddress(); 808 return (bytes[0] == (byte) 0x20) 809 && (bytes[1] == (byte) 0x01) 810 && (bytes[2] == 0) 811 && (bytes[3] == 0); 812 } 813 814 /** 815 * Returns the Teredo information embedded in a Teredo address. 816 * 817 * @param ip {@link Inet6Address} to be examined for embedded Teredo information 818 * @return extracted {@code TeredoInfo} 819 * @throws IllegalArgumentException if the argument is not a valid IPv6 Teredo address 820 */ 821 public static TeredoInfo getTeredoInfo(Inet6Address ip) { 822 checkArgument(isTeredoAddress(ip), "Address '%s' is not a Teredo address.", toAddrString(ip)); 823 824 byte[] bytes = ip.getAddress(); 825 Inet4Address server = getInet4Address(Arrays.copyOfRange(bytes, 4, 8)); 826 827 int flags = ByteStreams.newDataInput(bytes, 8).readShort() & 0xffff; 828 829 // Teredo obfuscates the mapped client port, per section 4 of the RFC. 830 int port = ~ByteStreams.newDataInput(bytes, 10).readShort() & 0xffff; 831 832 byte[] clientBytes = Arrays.copyOfRange(bytes, 12, 16); 833 for (int i = 0; i < clientBytes.length; i++) { 834 // Teredo obfuscates the mapped client IP, per section 4 of the RFC. 835 clientBytes[i] = (byte) ~clientBytes[i]; 836 } 837 Inet4Address client = getInet4Address(clientBytes); 838 839 return new TeredoInfo(server, client, port, flags); 840 } 841 842 /** 843 * Evaluates whether the argument is an ISATAP address. 844 * 845 * <p>From RFC 5214: "ISATAP interface identifiers are constructed in Modified EUI-64 format [...] 846 * by concatenating the 24-bit IANA OUI (00-00-5E), the 8-bit hexadecimal value 0xFE, and a 32-bit 847 * IPv4 address in network byte order [...]" 848 * 849 * <p>For more on ISATAP addresses see section 6.1 of <a target="_parent" 850 * href="http://tools.ietf.org/html/rfc5214#section-6.1">RFC 5214</a>. 851 * 852 * @param ip {@link Inet6Address} to be examined for ISATAP address format 853 * @return {@code true} if the argument is an ISATAP address 854 */ 855 public static boolean isIsatapAddress(Inet6Address ip) { 856 857 // If it's a Teredo address with the right port (41217, or 0xa101) 858 // which would be encoded as 0x5efe then it can't be an ISATAP address. 859 if (isTeredoAddress(ip)) { 860 return false; 861 } 862 863 byte[] bytes = ip.getAddress(); 864 865 if ((bytes[8] | (byte) 0x03) != (byte) 0x03) { 866 867 // Verify that high byte of the 64 bit identifier is zero, modulo 868 // the U/L and G bits, with which we are not concerned. 869 return false; 870 } 871 872 return (bytes[9] == (byte) 0x00) && (bytes[10] == (byte) 0x5e) && (bytes[11] == (byte) 0xfe); 873 } 874 875 /** 876 * Returns the IPv4 address embedded in an ISATAP address. 877 * 878 * @param ip {@link Inet6Address} to be examined for embedded IPv4 in ISATAP address 879 * @return {@link Inet4Address} of embedded IPv4 in an ISATAP address 880 * @throws IllegalArgumentException if the argument is not a valid IPv6 ISATAP address 881 */ 882 public static Inet4Address getIsatapIPv4Address(Inet6Address ip) { 883 checkArgument(isIsatapAddress(ip), "Address '%s' is not an ISATAP address.", toAddrString(ip)); 884 885 return getInet4Address(Arrays.copyOfRange(ip.getAddress(), 12, 16)); 886 } 887 888 /** 889 * Examines the Inet6Address to determine if it is an IPv6 address of one of the specified address 890 * types that contain an embedded IPv4 address. 891 * 892 * <p>NOTE: ISATAP addresses are explicitly excluded from this method due to their trivial 893 * spoofability. With other transition addresses spoofing involves (at least) infection of one's 894 * BGP routing table. 895 * 896 * @param ip {@link Inet6Address} to be examined for embedded IPv4 client address 897 * @return {@code true} if there is an embedded IPv4 client address 898 * @since 7.0 899 */ 900 public static boolean hasEmbeddedIPv4ClientAddress(Inet6Address ip) { 901 return isCompatIPv4Address(ip) || is6to4Address(ip) || isTeredoAddress(ip); 902 } 903 904 /** 905 * Examines the Inet6Address to extract the embedded IPv4 client address if the InetAddress is an 906 * IPv6 address of one of the specified address types that contain an embedded IPv4 address. 907 * 908 * <p>NOTE: ISATAP addresses are explicitly excluded from this method due to their trivial 909 * spoofability. With other transition addresses spoofing involves (at least) infection of one's 910 * BGP routing table. 911 * 912 * @param ip {@link Inet6Address} to be examined for embedded IPv4 client address 913 * @return {@link Inet4Address} of embedded IPv4 client address 914 * @throws IllegalArgumentException if the argument does not have a valid embedded IPv4 address 915 */ 916 public static Inet4Address getEmbeddedIPv4ClientAddress(Inet6Address ip) { 917 if (isCompatIPv4Address(ip)) { 918 return getCompatIPv4Address(ip); 919 } 920 921 if (is6to4Address(ip)) { 922 return get6to4IPv4Address(ip); 923 } 924 925 if (isTeredoAddress(ip)) { 926 return getTeredoInfo(ip).getClient(); 927 } 928 929 throw formatIllegalArgumentException("'%s' has no embedded IPv4 address.", toAddrString(ip)); 930 } 931 932 /** 933 * Evaluates whether the argument is an "IPv4 mapped" IPv6 address. 934 * 935 * <p>An "IPv4 mapped" address is anything in the range ::ffff:0:0/96 (sometimes written as 936 * ::ffff:0.0.0.0/96), with the last 32 bits interpreted as an IPv4 address. 937 * 938 * <p>For more on IPv4 mapped addresses see section 2.5.5.2 of <a target="_parent" 939 * href="http://tools.ietf.org/html/rfc4291#section-2.5.5.2">RFC 4291</a>. 940 * 941 * <p>Note: This method takes a {@code String} argument because {@link InetAddress} automatically 942 * collapses mapped addresses to IPv4. (It is actually possible to avoid this using one of the 943 * obscure {@link Inet6Address} methods, but it would be unwise to depend on such a 944 * poorly-documented feature.) 945 * 946 * <p>This method accepts non-ASCII digits. That is consistent with {@link InetAddress}, but not 947 * with various RFCs. If you want to accept ASCII digits only, you can use something like {@code 948 * CharMatcher.ascii().matchesAllOf(ipString)}. 949 * 950 * @param ipString {@code String} to be examined for embedded IPv4-mapped IPv6 address format 951 * @return {@code true} if the argument is a valid "mapped" address 952 * @since 10.0 953 */ 954 public static boolean isMappedIPv4Address(String ipString) { 955 byte[] bytes = ipStringToBytes(ipString, null); 956 if (bytes != null && bytes.length == 16) { 957 for (int i = 0; i < 10; i++) { 958 if (bytes[i] != 0) { 959 return false; 960 } 961 } 962 for (int i = 10; i < 12; i++) { 963 if (bytes[i] != (byte) 0xff) { 964 return false; 965 } 966 } 967 return true; 968 } 969 return false; 970 } 971 972 /** 973 * Coerces an IPv6 address into an IPv4 address. 974 * 975 * <p>HACK: As long as applications continue to use IPv4 addresses for indexing into tables, 976 * accounting, et cetera, it may be necessary to <b>coerce</b> IPv6 addresses into IPv4 addresses. 977 * This method does so by hashing 64 bits of the IPv6 address into {@code 224.0.0.0/3} (64 bits 978 * into 29 bits): 979 * 980 * <ul> 981 * <li>If the IPv6 address contains an embedded IPv4 address, the function hashes that. 982 * <li>Otherwise, it hashes the upper 64 bits of the IPv6 address. 983 * </ul> 984 * 985 * <p>A "coerced" IPv4 address is equivalent to itself. 986 * 987 * <p>NOTE: This method is failsafe for security purposes: ALL IPv6 addresses (except localhost 988 * (::1)) are hashed to avoid the security risk associated with extracting an embedded IPv4 989 * address that might permit elevated privileges. 990 * 991 * @param ip {@link InetAddress} to "coerce" 992 * @return {@link Inet4Address} represented "coerced" address 993 * @since 7.0 994 */ 995 public static Inet4Address getCoercedIPv4Address(InetAddress ip) { 996 if (ip instanceof Inet4Address) { 997 return (Inet4Address) ip; 998 } 999 1000 // Special cases: 1001 byte[] bytes = ip.getAddress(); 1002 boolean leadingBytesOfZero = true; 1003 for (int i = 0; i < 15; ++i) { 1004 if (bytes[i] != 0) { 1005 leadingBytesOfZero = false; 1006 break; 1007 } 1008 } 1009 if (leadingBytesOfZero && (bytes[15] == 1)) { 1010 return LOOPBACK4; // ::1 1011 } else if (leadingBytesOfZero && (bytes[15] == 0)) { 1012 return ANY4; // ::0 1013 } 1014 1015 Inet6Address ip6 = (Inet6Address) ip; 1016 long addressAsLong = 0; 1017 if (hasEmbeddedIPv4ClientAddress(ip6)) { 1018 addressAsLong = getEmbeddedIPv4ClientAddress(ip6).hashCode(); 1019 } else { 1020 // Just extract the high 64 bits (assuming the rest is user-modifiable). 1021 addressAsLong = ByteBuffer.wrap(ip6.getAddress(), 0, 8).getLong(); 1022 } 1023 1024 // Many strategies for hashing are possible. This might suffice for now. 1025 int coercedHash = Hashing.murmur3_32_fixed().hashLong(addressAsLong).asInt(); 1026 1027 // Squash into 224/4 Multicast and 240/4 Reserved space (i.e. 224/3). 1028 coercedHash |= 0xe0000000; 1029 1030 // Fixup to avoid some "illegal" values. Currently the only potential 1031 // illegal value is 255.255.255.255. 1032 if (coercedHash == 0xffffffff) { 1033 coercedHash = 0xfffffffe; 1034 } 1035 1036 return getInet4Address(Ints.toByteArray(coercedHash)); 1037 } 1038 1039 /** 1040 * Returns an integer representing an IPv4 address regardless of whether the supplied argument is 1041 * an IPv4 address or not. 1042 * 1043 * <p>IPv6 addresses are <b>coerced</b> to IPv4 addresses before being converted to integers. 1044 * 1045 * <p>As long as there are applications that assume that all IP addresses are IPv4 addresses and 1046 * can therefore be converted safely to integers (for whatever purpose) this function can be used 1047 * to handle IPv6 addresses as well until the application is suitably fixed. 1048 * 1049 * <p>NOTE: an IPv6 address coerced to an IPv4 address can only be used for such purposes as 1050 * rudimentary identification or indexing into a collection of real {@link InetAddress}es. They 1051 * cannot be used as real addresses for the purposes of network communication. 1052 * 1053 * @param ip {@link InetAddress} to convert 1054 * @return {@code int}, "coerced" if ip is not an IPv4 address 1055 * @since 7.0 1056 */ 1057 public static int coerceToInteger(InetAddress ip) { 1058 return ByteStreams.newDataInput(getCoercedIPv4Address(ip).getAddress()).readInt(); 1059 } 1060 1061 /** 1062 * Returns a BigInteger representing the address. 1063 * 1064 * <p>Unlike {@code coerceToInteger}, IPv6 addresses are not coerced to IPv4 addresses. 1065 * 1066 * @param address {@link InetAddress} to convert 1067 * @return {@code BigInteger} representation of the address 1068 * @since 28.2 1069 */ 1070 public static BigInteger toBigInteger(InetAddress address) { 1071 return new BigInteger(1, address.getAddress()); 1072 } 1073 1074 /** 1075 * Returns an Inet4Address having the integer value specified by the argument. 1076 * 1077 * @param address {@code int}, the 32bit integer address to be converted 1078 * @return {@link Inet4Address} equivalent of the argument 1079 */ 1080 public static Inet4Address fromInteger(int address) { 1081 return getInet4Address(Ints.toByteArray(address)); 1082 } 1083 1084 /** 1085 * Returns the {@code Inet4Address} corresponding to a given {@code BigInteger}. 1086 * 1087 * @param address BigInteger representing the IPv4 address 1088 * @return Inet4Address representation of the given BigInteger 1089 * @throws IllegalArgumentException if the BigInteger is not between 0 and 2^32-1 1090 * @since 28.2 1091 */ 1092 public static Inet4Address fromIPv4BigInteger(BigInteger address) { 1093 return (Inet4Address) fromBigInteger(address, false); 1094 } 1095 /** 1096 * Returns the {@code Inet6Address} corresponding to a given {@code BigInteger}. 1097 * 1098 * @param address BigInteger representing the IPv6 address 1099 * @return Inet6Address representation of the given BigInteger 1100 * @throws IllegalArgumentException if the BigInteger is not between 0 and 2^128-1 1101 * @since 28.2 1102 */ 1103 public static Inet6Address fromIPv6BigInteger(BigInteger address) { 1104 return (Inet6Address) fromBigInteger(address, true); 1105 } 1106 1107 /** 1108 * Converts a BigInteger to either an IPv4 or IPv6 address. If the IP is IPv4, it must be 1109 * constrained to 32 bits, otherwise it is constrained to 128 bits. 1110 * 1111 * @param address the address represented as a big integer 1112 * @param isIpv6 whether the created address should be IPv4 or IPv6 1113 * @return the BigInteger converted to an address 1114 * @throws IllegalArgumentException if the BigInteger is not between 0 and maximum value for IPv4 1115 * or IPv6 respectively 1116 */ 1117 private static InetAddress fromBigInteger(BigInteger address, boolean isIpv6) { 1118 checkArgument(address.signum() >= 0, "BigInteger must be greater than or equal to 0"); 1119 1120 int numBytes = isIpv6 ? 16 : 4; 1121 1122 byte[] addressBytes = address.toByteArray(); 1123 byte[] targetCopyArray = new byte[numBytes]; 1124 1125 int srcPos = Math.max(0, addressBytes.length - numBytes); 1126 int copyLength = addressBytes.length - srcPos; 1127 int destPos = numBytes - copyLength; 1128 1129 // Check the extra bytes in the BigInteger are all zero. 1130 for (int i = 0; i < srcPos; i++) { 1131 if (addressBytes[i] != 0x00) { 1132 throw formatIllegalArgumentException( 1133 "BigInteger cannot be converted to InetAddress because it has more than %d" 1134 + " bytes: %s", 1135 numBytes, address); 1136 } 1137 } 1138 1139 // Copy the bytes into the least significant positions. 1140 System.arraycopy(addressBytes, srcPos, targetCopyArray, destPos, copyLength); 1141 1142 try { 1143 return InetAddress.getByAddress(targetCopyArray); 1144 } catch (UnknownHostException impossible) { 1145 throw new AssertionError(impossible); 1146 } 1147 } 1148 1149 /** 1150 * Returns an address from a <b>little-endian ordered</b> byte array (the opposite of what {@link 1151 * InetAddress#getByAddress} expects). 1152 * 1153 * <p>IPv4 address byte array must be 4 bytes long and IPv6 byte array must be 16 bytes long. 1154 * 1155 * @param addr the raw IP address in little-endian byte order 1156 * @return an InetAddress object created from the raw IP address 1157 * @throws UnknownHostException if IP address is of illegal length 1158 */ 1159 public static InetAddress fromLittleEndianByteArray(byte[] addr) throws UnknownHostException { 1160 byte[] reversed = new byte[addr.length]; 1161 for (int i = 0; i < addr.length; i++) { 1162 reversed[i] = addr[addr.length - i - 1]; 1163 } 1164 return InetAddress.getByAddress(reversed); 1165 } 1166 1167 /** 1168 * Returns a new InetAddress that is one less than the passed in address. This method works for 1169 * both IPv4 and IPv6 addresses. 1170 * 1171 * @param address the InetAddress to decrement 1172 * @return a new InetAddress that is one less than the passed in address 1173 * @throws IllegalArgumentException if InetAddress is at the beginning of its range 1174 * @since 18.0 1175 */ 1176 public static InetAddress decrement(InetAddress address) { 1177 byte[] addr = address.getAddress(); 1178 int i = addr.length - 1; 1179 while (i >= 0 && addr[i] == (byte) 0x00) { 1180 addr[i] = (byte) 0xff; 1181 i--; 1182 } 1183 1184 checkArgument(i >= 0, "Decrementing %s would wrap.", address); 1185 1186 addr[i]--; 1187 return bytesToInetAddress(addr, null); 1188 } 1189 1190 /** 1191 * Returns a new InetAddress that is one more than the passed in address. This method works for 1192 * both IPv4 and IPv6 addresses. 1193 * 1194 * @param address the InetAddress to increment 1195 * @return a new InetAddress that is one more than the passed in address 1196 * @throws IllegalArgumentException if InetAddress is at the end of its range 1197 * @since 10.0 1198 */ 1199 public static InetAddress increment(InetAddress address) { 1200 byte[] addr = address.getAddress(); 1201 int i = addr.length - 1; 1202 while (i >= 0 && addr[i] == (byte) 0xff) { 1203 addr[i] = 0; 1204 i--; 1205 } 1206 1207 checkArgument(i >= 0, "Incrementing %s would wrap.", address); 1208 1209 addr[i]++; 1210 return bytesToInetAddress(addr, null); 1211 } 1212 1213 /** 1214 * Returns true if the InetAddress is either 255.255.255.255 for IPv4 or 1215 * ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff for IPv6. 1216 * 1217 * @return true if the InetAddress is either 255.255.255.255 for IPv4 or 1218 * ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff for IPv6 1219 * @since 10.0 1220 */ 1221 public static boolean isMaximum(InetAddress address) { 1222 byte[] addr = address.getAddress(); 1223 for (byte b : addr) { 1224 if (b != (byte) 0xff) { 1225 return false; 1226 } 1227 } 1228 return true; 1229 } 1230 1231 private static IllegalArgumentException formatIllegalArgumentException( 1232 String format, Object... args) { 1233 return new IllegalArgumentException(String.format(Locale.ROOT, format, args)); 1234 } 1235}