001/* 002 * Copyright (C) 2011 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 005 * in compliance with the License. You may obtain a copy of the License at 006 * 007 * http://www.apache.org/licenses/LICENSE-2.0 008 * 009 * Unless required by applicable law or agreed to in writing, software distributed under the License 010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express 011 * or implied. See the License for the specific language governing permissions and limitations under 012 * the License. 013 */ 014 015package com.google.common.math; 016 017import static com.google.common.base.Preconditions.checkArgument; 018import static com.google.common.math.DoubleUtils.IMPLICIT_BIT; 019import static com.google.common.math.DoubleUtils.SIGNIFICAND_BITS; 020import static com.google.common.math.DoubleUtils.getSignificand; 021import static com.google.common.math.DoubleUtils.isFinite; 022import static com.google.common.math.DoubleUtils.isNormal; 023import static com.google.common.math.DoubleUtils.scaleNormalize; 024import static com.google.common.math.MathPreconditions.checkInRangeForRoundingInputs; 025import static com.google.common.math.MathPreconditions.checkNonNegative; 026import static com.google.common.math.MathPreconditions.checkRoundingUnnecessary; 027import static java.lang.Math.abs; 028import static java.lang.Math.copySign; 029import static java.lang.Math.getExponent; 030import static java.lang.Math.log; 031import static java.lang.Math.rint; 032 033import com.google.common.annotations.GwtCompatible; 034import com.google.common.annotations.GwtIncompatible; 035import com.google.common.annotations.VisibleForTesting; 036import com.google.errorprone.annotations.CanIgnoreReturnValue; 037import java.math.BigInteger; 038import java.math.RoundingMode; 039import java.util.Iterator; 040 041/** 042 * A class for arithmetic on doubles that is not covered by {@link java.lang.Math}. 043 * 044 * @author Louis Wasserman 045 * @since 11.0 046 */ 047@GwtCompatible(emulated = true) 048@ElementTypesAreNonnullByDefault 049public final class DoubleMath { 050 /* 051 * This method returns a value y such that rounding y DOWN (towards zero) gives the same result as 052 * rounding x according to the specified mode. 053 */ 054 @GwtIncompatible // #isMathematicalInteger, com.google.common.math.DoubleUtils 055 static double roundIntermediate(double x, RoundingMode mode) { 056 if (!isFinite(x)) { 057 throw new ArithmeticException("input is infinite or NaN"); 058 } 059 switch (mode) { 060 case UNNECESSARY: 061 checkRoundingUnnecessary(isMathematicalInteger(x)); 062 return x; 063 064 case FLOOR: 065 if (x >= 0.0 || isMathematicalInteger(x)) { 066 return x; 067 } else { 068 return (long) x - 1; 069 } 070 071 case CEILING: 072 if (x <= 0.0 || isMathematicalInteger(x)) { 073 return x; 074 } else { 075 return (long) x + 1; 076 } 077 078 case DOWN: 079 return x; 080 081 case UP: 082 if (isMathematicalInteger(x)) { 083 return x; 084 } else { 085 return (long) x + (x > 0 ? 1 : -1); 086 } 087 088 case HALF_EVEN: 089 return rint(x); 090 091 case HALF_UP: 092 { 093 double z = rint(x); 094 if (abs(x - z) == 0.5) { 095 return x + copySign(0.5, x); 096 } else { 097 return z; 098 } 099 } 100 101 case HALF_DOWN: 102 { 103 double z = rint(x); 104 if (abs(x - z) == 0.5) { 105 return x; 106 } else { 107 return z; 108 } 109 } 110 111 default: 112 throw new AssertionError(); 113 } 114 } 115 116 /** 117 * Returns the {@code int} value that is equal to {@code x} rounded with the specified rounding 118 * mode, if possible. 119 * 120 * @throws ArithmeticException if 121 * <ul> 122 * <li>{@code x} is infinite or NaN 123 * <li>{@code x}, after being rounded to a mathematical integer using the specified rounding 124 * mode, is either less than {@code Integer.MIN_VALUE} or greater than {@code 125 * Integer.MAX_VALUE} 126 * <li>{@code x} is not a mathematical integer and {@code mode} is {@link 127 * RoundingMode#UNNECESSARY} 128 * </ul> 129 */ 130 @GwtIncompatible // #roundIntermediate 131 // Whenever both tests are cheap and functional, it's faster to use &, | instead of &&, || 132 @SuppressWarnings("ShortCircuitBoolean") 133 public static int roundToInt(double x, RoundingMode mode) { 134 double z = roundIntermediate(x, mode); 135 checkInRangeForRoundingInputs( 136 z > MIN_INT_AS_DOUBLE - 1.0 & z < MAX_INT_AS_DOUBLE + 1.0, x, mode); 137 return (int) z; 138 } 139 140 private static final double MIN_INT_AS_DOUBLE = -0x1p31; 141 private static final double MAX_INT_AS_DOUBLE = 0x1p31 - 1.0; 142 143 /** 144 * Returns the {@code long} value that is equal to {@code x} rounded with the specified rounding 145 * mode, if possible. 146 * 147 * @throws ArithmeticException if 148 * <ul> 149 * <li>{@code x} is infinite or NaN 150 * <li>{@code x}, after being rounded to a mathematical integer using the specified rounding 151 * mode, is either less than {@code Long.MIN_VALUE} or greater than {@code 152 * Long.MAX_VALUE} 153 * <li>{@code x} is not a mathematical integer and {@code mode} is {@link 154 * RoundingMode#UNNECESSARY} 155 * </ul> 156 */ 157 @GwtIncompatible // #roundIntermediate 158 // Whenever both tests are cheap and functional, it's faster to use &, | instead of &&, || 159 @SuppressWarnings("ShortCircuitBoolean") 160 public static long roundToLong(double x, RoundingMode mode) { 161 double z = roundIntermediate(x, mode); 162 checkInRangeForRoundingInputs( 163 MIN_LONG_AS_DOUBLE - z < 1.0 & z < MAX_LONG_AS_DOUBLE_PLUS_ONE, x, mode); 164 return (long) z; 165 } 166 167 private static final double MIN_LONG_AS_DOUBLE = -0x1p63; 168 /* 169 * We cannot store Long.MAX_VALUE as a double without losing precision. Instead, we store 170 * Long.MAX_VALUE + 1 == -Long.MIN_VALUE, and then offset all comparisons by 1. 171 */ 172 private static final double MAX_LONG_AS_DOUBLE_PLUS_ONE = 0x1p63; 173 174 /** 175 * Returns the {@code BigInteger} value that is equal to {@code x} rounded with the specified 176 * rounding mode, if possible. 177 * 178 * @throws ArithmeticException if 179 * <ul> 180 * <li>{@code x} is infinite or NaN 181 * <li>{@code x} is not a mathematical integer and {@code mode} is {@link 182 * RoundingMode#UNNECESSARY} 183 * </ul> 184 */ 185 // #roundIntermediate, java.lang.Math.getExponent, com.google.common.math.DoubleUtils 186 @GwtIncompatible 187 // Whenever both tests are cheap and functional, it's faster to use &, | instead of &&, || 188 @SuppressWarnings("ShortCircuitBoolean") 189 public static BigInteger roundToBigInteger(double x, RoundingMode mode) { 190 x = roundIntermediate(x, mode); 191 if (MIN_LONG_AS_DOUBLE - x < 1.0 & x < MAX_LONG_AS_DOUBLE_PLUS_ONE) { 192 return BigInteger.valueOf((long) x); 193 } 194 int exponent = getExponent(x); 195 long significand = getSignificand(x); 196 BigInteger result = BigInteger.valueOf(significand).shiftLeft(exponent - SIGNIFICAND_BITS); 197 return (x < 0) ? result.negate() : result; 198 } 199 200 /** 201 * Returns {@code true} if {@code x} is exactly equal to {@code 2^k} for some finite integer 202 * {@code k}. 203 */ 204 @GwtIncompatible // com.google.common.math.DoubleUtils 205 public static boolean isPowerOfTwo(double x) { 206 if (x > 0.0 && isFinite(x)) { 207 long significand = getSignificand(x); 208 return (significand & (significand - 1)) == 0; 209 } 210 return false; 211 } 212 213 /** 214 * Returns the base 2 logarithm of a double value. 215 * 216 * <p>Special cases: 217 * 218 * <ul> 219 * <li>If {@code x} is NaN or less than zero, the result is NaN. 220 * <li>If {@code x} is positive infinity, the result is positive infinity. 221 * <li>If {@code x} is positive or negative zero, the result is negative infinity. 222 * </ul> 223 * 224 * <p>The computed result is within 1 ulp of the exact result. 225 * 226 * <p>If the result of this method will be immediately rounded to an {@code int}, {@link 227 * #log2(double, RoundingMode)} is faster. 228 */ 229 public static double log2(double x) { 230 return log(x) / LN_2; // surprisingly within 1 ulp according to tests 231 } 232 233 /** 234 * Returns the base 2 logarithm of a double value, rounded with the specified rounding mode to an 235 * {@code int}. 236 * 237 * <p>Regardless of the rounding mode, this is faster than {@code (int) log2(x)}. 238 * 239 * @throws IllegalArgumentException if {@code x <= 0.0}, {@code x} is NaN, or {@code x} is 240 * infinite 241 */ 242 @GwtIncompatible // java.lang.Math.getExponent, com.google.common.math.DoubleUtils 243 // Whenever both tests are cheap and functional, it's faster to use &, | instead of &&, || 244 @SuppressWarnings({"fallthrough", "ShortCircuitBoolean"}) 245 public static int log2(double x, RoundingMode mode) { 246 checkArgument(x > 0.0 && isFinite(x), "x must be positive and finite"); 247 int exponent = getExponent(x); 248 if (!isNormal(x)) { 249 return log2(x * IMPLICIT_BIT, mode) - SIGNIFICAND_BITS; 250 // Do the calculation on a normal value. 251 } 252 // x is positive, finite, and normal 253 boolean increment; 254 switch (mode) { 255 case UNNECESSARY: 256 checkRoundingUnnecessary(isPowerOfTwo(x)); 257 // fall through 258 case FLOOR: 259 increment = false; 260 break; 261 case CEILING: 262 increment = !isPowerOfTwo(x); 263 break; 264 case DOWN: 265 increment = exponent < 0 & !isPowerOfTwo(x); 266 break; 267 case UP: 268 increment = exponent >= 0 & !isPowerOfTwo(x); 269 break; 270 case HALF_DOWN: 271 case HALF_EVEN: 272 case HALF_UP: 273 double xScaled = scaleNormalize(x); 274 // sqrt(2) is irrational, and the spec is relative to the "exact numerical result," 275 // so log2(x) is never exactly exponent + 0.5. 276 increment = (xScaled * xScaled) > 2.0; 277 break; 278 default: 279 throw new AssertionError(); 280 } 281 return increment ? exponent + 1 : exponent; 282 } 283 284 private static final double LN_2 = log(2); 285 286 /** 287 * Returns {@code true} if {@code x} represents a mathematical integer. 288 * 289 * <p>This is equivalent to, but not necessarily implemented as, the expression {@code 290 * !Double.isNaN(x) && !Double.isInfinite(x) && x == Math.rint(x)}. 291 */ 292 @GwtIncompatible // java.lang.Math.getExponent, com.google.common.math.DoubleUtils 293 public static boolean isMathematicalInteger(double x) { 294 return isFinite(x) 295 && (x == 0.0 296 || SIGNIFICAND_BITS - Long.numberOfTrailingZeros(getSignificand(x)) <= getExponent(x)); 297 } 298 299 /** 300 * Returns {@code n!}, that is, the product of the first {@code n} positive integers, {@code 1} if 301 * {@code n == 0}, or {@code n!}, or {@link Double#POSITIVE_INFINITY} if {@code n! > 302 * Double.MAX_VALUE}. 303 * 304 * <p>The result is within 1 ulp of the true value. 305 * 306 * @throws IllegalArgumentException if {@code n < 0} 307 */ 308 public static double factorial(int n) { 309 checkNonNegative("n", n); 310 if (n > MAX_FACTORIAL) { 311 return Double.POSITIVE_INFINITY; 312 } else { 313 // Multiplying the last (n & 0xf) values into their own accumulator gives a more accurate 314 // result than multiplying by everySixteenthFactorial[n >> 4] directly. 315 double accum = 1.0; 316 for (int i = 1 + (n & ~0xf); i <= n; i++) { 317 accum *= i; 318 } 319 return accum * everySixteenthFactorial[n >> 4]; 320 } 321 } 322 323 @VisibleForTesting static final int MAX_FACTORIAL = 170; 324 325 @VisibleForTesting 326 static final double[] everySixteenthFactorial = { 327 0x1.0p0, 328 0x1.30777758p44, 329 0x1.956ad0aae33a4p117, 330 0x1.ee69a78d72cb6p202, 331 0x1.fe478ee34844ap295, 332 0x1.c619094edabffp394, 333 0x1.3638dd7bd6347p498, 334 0x1.7cac197cfe503p605, 335 0x1.1e5dfc140e1e5p716, 336 0x1.8ce85fadb707ep829, 337 0x1.95d5f3d928edep945 338 }; 339 340 /** 341 * Returns {@code true} if {@code a} and {@code b} are within {@code tolerance} of each other. 342 * 343 * <p>Technically speaking, this is equivalent to {@code Math.abs(a - b) <= tolerance || 344 * Double.valueOf(a).equals(Double.valueOf(b))}. 345 * 346 * <p>Notable special cases include: 347 * 348 * <ul> 349 * <li>All NaNs are fuzzily equal. 350 * <li>If {@code a == b}, then {@code a} and {@code b} are always fuzzily equal. 351 * <li>Positive and negative zero are always fuzzily equal. 352 * <li>If {@code tolerance} is zero, and neither {@code a} nor {@code b} is NaN, then {@code a} 353 * and {@code b} are fuzzily equal if and only if {@code a == b}. 354 * <li>With {@link Double#POSITIVE_INFINITY} tolerance, all non-NaN values are fuzzily equal. 355 * <li>With finite tolerance, {@code Double.POSITIVE_INFINITY} and {@code 356 * Double.NEGATIVE_INFINITY} are fuzzily equal only to themselves. 357 * </ul> 358 * 359 * <p>This is reflexive and symmetric, but <em>not</em> transitive, so it is <em>not</em> an 360 * equivalence relation and <em>not</em> suitable for use in {@link Object#equals} 361 * implementations. 362 * 363 * @throws IllegalArgumentException if {@code tolerance} is {@code < 0} or NaN 364 * @since 13.0 365 */ 366 public static boolean fuzzyEquals(double a, double b, double tolerance) { 367 MathPreconditions.checkNonNegative("tolerance", tolerance); 368 return Math.copySign(a - b, 1.0) <= tolerance 369 // copySign(x, 1.0) is a branch-free version of abs(x), but with different NaN semantics 370 || (a == b) // needed to ensure that infinities equal themselves 371 || (Double.isNaN(a) && Double.isNaN(b)); 372 } 373 374 /** 375 * Compares {@code a} and {@code b} "fuzzily," with a tolerance for nearly-equal values. 376 * 377 * <p>This method is equivalent to {@code fuzzyEquals(a, b, tolerance) ? 0 : Double.compare(a, 378 * b)}. In particular, like {@link Double#compare(double, double)}, it treats all NaN values as 379 * equal and greater than all other values (including {@link Double#POSITIVE_INFINITY}). 380 * 381 * <p>This is <em>not</em> a total ordering and is <em>not</em> suitable for use in {@link 382 * Comparable#compareTo} implementations. In particular, it is not transitive. 383 * 384 * @throws IllegalArgumentException if {@code tolerance} is {@code < 0} or NaN 385 * @since 13.0 386 */ 387 public static int fuzzyCompare(double a, double b, double tolerance) { 388 if (fuzzyEquals(a, b, tolerance)) { 389 return 0; 390 } else if (a < b) { 391 return -1; 392 } else if (a > b) { 393 return 1; 394 } else { 395 return Boolean.compare(Double.isNaN(a), Double.isNaN(b)); 396 } 397 } 398 399 /** 400 * Returns the <a href="http://en.wikipedia.org/wiki/Arithmetic_mean">arithmetic mean</a> of 401 * {@code values}. 402 * 403 * <p>If these values are a sample drawn from a population, this is also an unbiased estimator of 404 * the arithmetic mean of the population. 405 * 406 * @param values a nonempty series of values 407 * @throws IllegalArgumentException if {@code values} is empty or contains any non-finite value 408 * @deprecated Use {@link Stats#meanOf} instead, noting the less strict handling of non-finite 409 * values. 410 */ 411 @Deprecated 412 // com.google.common.math.DoubleUtils 413 @GwtIncompatible 414 public static double mean(double... values) { 415 checkArgument(values.length > 0, "Cannot take mean of 0 values"); 416 long count = 1; 417 double mean = checkFinite(values[0]); 418 for (int index = 1; index < values.length; ++index) { 419 checkFinite(values[index]); 420 count++; 421 // Art of Computer Programming vol. 2, Knuth, 4.2.2, (15) 422 mean += (values[index] - mean) / count; 423 } 424 return mean; 425 } 426 427 /** 428 * Returns the <a href="http://en.wikipedia.org/wiki/Arithmetic_mean">arithmetic mean</a> of 429 * {@code values}. 430 * 431 * <p>If these values are a sample drawn from a population, this is also an unbiased estimator of 432 * the arithmetic mean of the population. 433 * 434 * @param values a nonempty series of values 435 * @throws IllegalArgumentException if {@code values} is empty 436 * @deprecated Use {@link Stats#meanOf} instead, noting the less strict handling of non-finite 437 * values. 438 */ 439 @Deprecated 440 public static double mean(int... values) { 441 checkArgument(values.length > 0, "Cannot take mean of 0 values"); 442 // The upper bound on the length of an array and the bounds on the int values mean that, in 443 // this case only, we can compute the sum as a long without risking overflow or loss of 444 // precision. So we do that, as it's slightly quicker than the Knuth algorithm. 445 long sum = 0; 446 for (int index = 0; index < values.length; ++index) { 447 sum += values[index]; 448 } 449 return (double) sum / values.length; 450 } 451 452 /** 453 * Returns the <a href="http://en.wikipedia.org/wiki/Arithmetic_mean">arithmetic mean</a> of 454 * {@code values}. 455 * 456 * <p>If these values are a sample drawn from a population, this is also an unbiased estimator of 457 * the arithmetic mean of the population. 458 * 459 * @param values a nonempty series of values, which will be converted to {@code double} values 460 * (this may cause loss of precision for longs of magnitude over 2^53 (slightly over 9e15)) 461 * @throws IllegalArgumentException if {@code values} is empty 462 * @deprecated Use {@link Stats#meanOf} instead, noting the less strict handling of non-finite 463 * values. 464 */ 465 @Deprecated 466 public static double mean(long... values) { 467 checkArgument(values.length > 0, "Cannot take mean of 0 values"); 468 long count = 1; 469 double mean = values[0]; 470 for (int index = 1; index < values.length; ++index) { 471 count++; 472 // Art of Computer Programming vol. 2, Knuth, 4.2.2, (15) 473 mean += (values[index] - mean) / count; 474 } 475 return mean; 476 } 477 478 /** 479 * Returns the <a href="http://en.wikipedia.org/wiki/Arithmetic_mean">arithmetic mean</a> of 480 * {@code values}. 481 * 482 * <p>If these values are a sample drawn from a population, this is also an unbiased estimator of 483 * the arithmetic mean of the population. 484 * 485 * @param values a nonempty series of values, which will be converted to {@code double} values 486 * (this may cause loss of precision) 487 * @throws IllegalArgumentException if {@code values} is empty or contains any non-finite value 488 * @deprecated Use {@link Stats#meanOf} instead, noting the less strict handling of non-finite 489 * values. 490 */ 491 @Deprecated 492 // com.google.common.math.DoubleUtils 493 @GwtIncompatible 494 public static double mean(Iterable<? extends Number> values) { 495 return mean(values.iterator()); 496 } 497 498 /** 499 * Returns the <a href="http://en.wikipedia.org/wiki/Arithmetic_mean">arithmetic mean</a> of 500 * {@code values}. 501 * 502 * <p>If these values are a sample drawn from a population, this is also an unbiased estimator of 503 * the arithmetic mean of the population. 504 * 505 * @param values a nonempty series of values, which will be converted to {@code double} values 506 * (this may cause loss of precision) 507 * @throws IllegalArgumentException if {@code values} is empty or contains any non-finite value 508 * @deprecated Use {@link Stats#meanOf} instead, noting the less strict handling of non-finite 509 * values. 510 */ 511 @Deprecated 512 // com.google.common.math.DoubleUtils 513 @GwtIncompatible 514 public static double mean(Iterator<? extends Number> values) { 515 checkArgument(values.hasNext(), "Cannot take mean of 0 values"); 516 long count = 1; 517 double mean = checkFinite(values.next().doubleValue()); 518 while (values.hasNext()) { 519 double value = checkFinite(values.next().doubleValue()); 520 count++; 521 // Art of Computer Programming vol. 2, Knuth, 4.2.2, (15) 522 mean += (value - mean) / count; 523 } 524 return mean; 525 } 526 527 @GwtIncompatible // com.google.common.math.DoubleUtils 528 @CanIgnoreReturnValue 529 private static double checkFinite(double argument) { 530 checkArgument(isFinite(argument)); 531 return argument; 532 } 533 534 private DoubleMath() {} 535}