001/*
002 * Copyright (C) 2011 The Guava Authors
003 *
004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
005 * in compliance with the License. You may obtain a copy of the License at
006 *
007 * http://www.apache.org/licenses/LICENSE-2.0
008 *
009 * Unless required by applicable law or agreed to in writing, software distributed under the License
010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
011 * or implied. See the License for the specific language governing permissions and limitations under
012 * the License.
013 */
014
015package com.google.common.math;
016
017import static com.google.common.base.Preconditions.checkArgument;
018import static com.google.common.base.Preconditions.checkNotNull;
019import static com.google.common.math.MathPreconditions.checkNoOverflow;
020import static com.google.common.math.MathPreconditions.checkNonNegative;
021import static com.google.common.math.MathPreconditions.checkPositive;
022import static com.google.common.math.MathPreconditions.checkRoundingUnnecessary;
023import static java.lang.Math.abs;
024import static java.lang.Math.min;
025import static java.math.RoundingMode.HALF_EVEN;
026import static java.math.RoundingMode.HALF_UP;
027
028import com.google.common.annotations.GwtCompatible;
029import com.google.common.annotations.GwtIncompatible;
030import com.google.common.annotations.VisibleForTesting;
031import com.google.common.primitives.Ints;
032import java.math.BigInteger;
033import java.math.RoundingMode;
034
035/**
036 * A class for arithmetic on values of type {@code int}. Where possible, methods are defined and
037 * named analogously to their {@code BigInteger} counterparts.
038 *
039 * <p>The implementations of many methods in this class are based on material from Henry S. Warren,
040 * Jr.'s <i>Hacker's Delight</i>, (Addison Wesley, 2002).
041 *
042 * <p>Similar functionality for {@code long} and for {@link BigInteger} can be found in {@link
043 * LongMath} and {@link BigIntegerMath} respectively. For other common operations on {@code int}
044 * values, see {@link com.google.common.primitives.Ints}.
045 *
046 * @author Louis Wasserman
047 * @since 11.0
048 */
049@GwtCompatible(emulated = true)
050@ElementTypesAreNonnullByDefault
051public final class IntMath {
052  // NOTE: Whenever both tests are cheap and functional, it's faster to use &, | instead of &&, ||
053
054  @VisibleForTesting static final int MAX_SIGNED_POWER_OF_TWO = 1 << (Integer.SIZE - 2);
055
056  /**
057   * Returns the smallest power of two greater than or equal to {@code x}. This is equivalent to
058   * {@code checkedPow(2, log2(x, CEILING))}.
059   *
060   * @throws IllegalArgumentException if {@code x <= 0}
061   * @throws ArithmeticException of the next-higher power of two is not representable as an {@code
062   *     int}, i.e. when {@code x > 2^30}
063   * @since 20.0
064   */
065  public static int ceilingPowerOfTwo(int x) {
066    checkPositive("x", x);
067    if (x > MAX_SIGNED_POWER_OF_TWO) {
068      throw new ArithmeticException("ceilingPowerOfTwo(" + x + ") not representable as an int");
069    }
070    return 1 << -Integer.numberOfLeadingZeros(x - 1);
071  }
072
073  /**
074   * Returns the largest power of two less than or equal to {@code x}. This is equivalent to {@code
075   * checkedPow(2, log2(x, FLOOR))}.
076   *
077   * @throws IllegalArgumentException if {@code x <= 0}
078   * @since 20.0
079   */
080  public static int floorPowerOfTwo(int x) {
081    checkPositive("x", x);
082    return Integer.highestOneBit(x);
083  }
084
085  /**
086   * Returns {@code true} if {@code x} represents a power of two.
087   *
088   * <p>This differs from {@code Integer.bitCount(x) == 1}, because {@code
089   * Integer.bitCount(Integer.MIN_VALUE) == 1}, but {@link Integer#MIN_VALUE} is not a power of two.
090   */
091  public static boolean isPowerOfTwo(int x) {
092    return x > 0 & (x & (x - 1)) == 0;
093  }
094
095  /**
096   * Returns 1 if {@code x < y} as unsigned integers, and 0 otherwise. Assumes that x - y fits into
097   * a signed int. The implementation is branch-free, and benchmarks suggest it is measurably (if
098   * narrowly) faster than the straightforward ternary expression.
099   */
100  @VisibleForTesting
101  static int lessThanBranchFree(int x, int y) {
102    // The double negation is optimized away by normal Java, but is necessary for GWT
103    // to make sure bit twiddling works as expected.
104    return ~~(x - y) >>> (Integer.SIZE - 1);
105  }
106
107  /**
108   * Returns the base-2 logarithm of {@code x}, rounded according to the specified rounding mode.
109   *
110   * @throws IllegalArgumentException if {@code x <= 0}
111   * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and {@code x}
112   *     is not a power of two
113   */
114  @SuppressWarnings("fallthrough")
115  // TODO(kevinb): remove after this warning is disabled globally
116  public static int log2(int x, RoundingMode mode) {
117    checkPositive("x", x);
118    switch (mode) {
119      case UNNECESSARY:
120        checkRoundingUnnecessary(isPowerOfTwo(x));
121        // fall through
122      case DOWN:
123      case FLOOR:
124        return (Integer.SIZE - 1) - Integer.numberOfLeadingZeros(x);
125
126      case UP:
127      case CEILING:
128        return Integer.SIZE - Integer.numberOfLeadingZeros(x - 1);
129
130      case HALF_DOWN:
131      case HALF_UP:
132      case HALF_EVEN:
133        // Since sqrt(2) is irrational, log2(x) - logFloor cannot be exactly 0.5
134        int leadingZeros = Integer.numberOfLeadingZeros(x);
135        int cmp = MAX_POWER_OF_SQRT2_UNSIGNED >>> leadingZeros;
136        // floor(2^(logFloor + 0.5))
137        int logFloor = (Integer.SIZE - 1) - leadingZeros;
138        return logFloor + lessThanBranchFree(cmp, x);
139
140      default:
141        throw new AssertionError();
142    }
143  }
144
145  /** The biggest half power of two that can fit in an unsigned int. */
146  @VisibleForTesting static final int MAX_POWER_OF_SQRT2_UNSIGNED = 0xB504F333;
147
148  /**
149   * Returns the base-10 logarithm of {@code x}, rounded according to the specified rounding mode.
150   *
151   * @throws IllegalArgumentException if {@code x <= 0}
152   * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and {@code x}
153   *     is not a power of ten
154   */
155  @GwtIncompatible // need BigIntegerMath to adequately test
156  @SuppressWarnings("fallthrough")
157  public static int log10(int x, RoundingMode mode) {
158    checkPositive("x", x);
159    int logFloor = log10Floor(x);
160    int floorPow = powersOf10[logFloor];
161    switch (mode) {
162      case UNNECESSARY:
163        checkRoundingUnnecessary(x == floorPow);
164        // fall through
165      case FLOOR:
166      case DOWN:
167        return logFloor;
168      case CEILING:
169      case UP:
170        return logFloor + lessThanBranchFree(floorPow, x);
171      case HALF_DOWN:
172      case HALF_UP:
173      case HALF_EVEN:
174        // sqrt(10) is irrational, so log10(x) - logFloor is never exactly 0.5
175        return logFloor + lessThanBranchFree(halfPowersOf10[logFloor], x);
176      default:
177        throw new AssertionError();
178    }
179  }
180
181  private static int log10Floor(int x) {
182    /*
183     * Based on Hacker's Delight Fig. 11-5, the two-table-lookup, branch-free implementation.
184     *
185     * The key idea is that based on the number of leading zeros (equivalently, floor(log2(x))), we
186     * can narrow the possible floor(log10(x)) values to two. For example, if floor(log2(x)) is 6,
187     * then 64 <= x < 128, so floor(log10(x)) is either 1 or 2.
188     */
189    int y = maxLog10ForLeadingZeros[Integer.numberOfLeadingZeros(x)];
190    /*
191     * y is the higher of the two possible values of floor(log10(x)). If x < 10^y, then we want the
192     * lower of the two possible values, or y - 1, otherwise, we want y.
193     */
194    return y - lessThanBranchFree(x, powersOf10[y]);
195  }
196
197  // maxLog10ForLeadingZeros[i] == floor(log10(2^(Long.SIZE - i)))
198  @VisibleForTesting
199  static final byte[] maxLog10ForLeadingZeros = {
200    9, 9, 9, 8, 8, 8, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1, 0, 0, 0,
201    0
202  };
203
204  @VisibleForTesting
205  static final int[] powersOf10 = {
206    1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000
207  };
208
209  // halfPowersOf10[i] = largest int less than 10^(i + 0.5)
210  @VisibleForTesting
211  static final int[] halfPowersOf10 = {
212    3, 31, 316, 3162, 31622, 316227, 3162277, 31622776, 316227766, Integer.MAX_VALUE
213  };
214
215  /**
216   * Returns {@code b} to the {@code k}th power. Even if the result overflows, it will be equal to
217   * {@code BigInteger.valueOf(b).pow(k).intValue()}. This implementation runs in {@code O(log k)}
218   * time.
219   *
220   * <p>Compare {@link #checkedPow}, which throws an {@link ArithmeticException} upon overflow.
221   *
222   * @throws IllegalArgumentException if {@code k < 0}
223   */
224  @GwtIncompatible // failing tests
225  public static int pow(int b, int k) {
226    checkNonNegative("exponent", k);
227    switch (b) {
228      case 0:
229        return (k == 0) ? 1 : 0;
230      case 1:
231        return 1;
232      case (-1):
233        return ((k & 1) == 0) ? 1 : -1;
234      case 2:
235        return (k < Integer.SIZE) ? (1 << k) : 0;
236      case (-2):
237        if (k < Integer.SIZE) {
238          return ((k & 1) == 0) ? (1 << k) : -(1 << k);
239        } else {
240          return 0;
241        }
242      default:
243        // continue below to handle the general case
244    }
245    for (int accum = 1; ; k >>= 1) {
246      switch (k) {
247        case 0:
248          return accum;
249        case 1:
250          return b * accum;
251        default:
252          accum *= ((k & 1) == 0) ? 1 : b;
253          b *= b;
254      }
255    }
256  }
257
258  /**
259   * Returns the square root of {@code x}, rounded with the specified rounding mode.
260   *
261   * @throws IllegalArgumentException if {@code x < 0}
262   * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and {@code
263   *     sqrt(x)} is not an integer
264   */
265  @GwtIncompatible // need BigIntegerMath to adequately test
266  @SuppressWarnings("fallthrough")
267  public static int sqrt(int x, RoundingMode mode) {
268    checkNonNegative("x", x);
269    int sqrtFloor = sqrtFloor(x);
270    switch (mode) {
271      case UNNECESSARY:
272        checkRoundingUnnecessary(sqrtFloor * sqrtFloor == x); // fall through
273      case FLOOR:
274      case DOWN:
275        return sqrtFloor;
276      case CEILING:
277      case UP:
278        return sqrtFloor + lessThanBranchFree(sqrtFloor * sqrtFloor, x);
279      case HALF_DOWN:
280      case HALF_UP:
281      case HALF_EVEN:
282        int halfSquare = sqrtFloor * sqrtFloor + sqrtFloor;
283        /*
284         * We wish to test whether or not x <= (sqrtFloor + 0.5)^2 = halfSquare + 0.25. Since both x
285         * and halfSquare are integers, this is equivalent to testing whether or not x <=
286         * halfSquare. (We have to deal with overflow, though.)
287         *
288         * If we treat halfSquare as an unsigned int, we know that
289         *            sqrtFloor^2 <= x < (sqrtFloor + 1)^2
290         * halfSquare - sqrtFloor <= x < halfSquare + sqrtFloor + 1
291         * so |x - halfSquare| <= sqrtFloor.  Therefore, it's safe to treat x - halfSquare as a
292         * signed int, so lessThanBranchFree is safe for use.
293         */
294        return sqrtFloor + lessThanBranchFree(halfSquare, x);
295      default:
296        throw new AssertionError();
297    }
298  }
299
300  private static int sqrtFloor(int x) {
301    // There is no loss of precision in converting an int to a double, according to
302    // http://java.sun.com/docs/books/jls/third_edition/html/conversions.html#5.1.2
303    return (int) Math.sqrt(x);
304  }
305
306  /**
307   * Returns the result of dividing {@code p} by {@code q}, rounding using the specified {@code
308   * RoundingMode}.
309   *
310   * @throws ArithmeticException if {@code q == 0}, or if {@code mode == UNNECESSARY} and {@code a}
311   *     is not an integer multiple of {@code b}
312   */
313  @SuppressWarnings("fallthrough")
314  public static int divide(int p, int q, RoundingMode mode) {
315    checkNotNull(mode);
316    if (q == 0) {
317      throw new ArithmeticException("/ by zero"); // for GWT
318    }
319    int div = p / q;
320    int rem = p - q * div; // equal to p % q
321
322    if (rem == 0) {
323      return div;
324    }
325
326    /*
327     * Normal Java division rounds towards 0, consistently with RoundingMode.DOWN. We just have to
328     * deal with the cases where rounding towards 0 is wrong, which typically depends on the sign of
329     * p / q.
330     *
331     * signum is 1 if p and q are both nonnegative or both negative, and -1 otherwise.
332     */
333    int signum = 1 | ((p ^ q) >> (Integer.SIZE - 1));
334    boolean increment;
335    switch (mode) {
336      case UNNECESSARY:
337        checkRoundingUnnecessary(rem == 0);
338        // fall through
339      case DOWN:
340        increment = false;
341        break;
342      case UP:
343        increment = true;
344        break;
345      case CEILING:
346        increment = signum > 0;
347        break;
348      case FLOOR:
349        increment = signum < 0;
350        break;
351      case HALF_EVEN:
352      case HALF_DOWN:
353      case HALF_UP:
354        int absRem = abs(rem);
355        int cmpRemToHalfDivisor = absRem - (abs(q) - absRem);
356        // subtracting two nonnegative ints can't overflow
357        // cmpRemToHalfDivisor has the same sign as compare(abs(rem), abs(q) / 2).
358        if (cmpRemToHalfDivisor == 0) { // exactly on the half mark
359          increment = (mode == HALF_UP || (mode == HALF_EVEN & (div & 1) != 0));
360        } else {
361          increment = cmpRemToHalfDivisor > 0; // closer to the UP value
362        }
363        break;
364      default:
365        throw new AssertionError();
366    }
367    return increment ? div + signum : div;
368  }
369
370  /**
371   * Returns {@code x mod m}, a non-negative value less than {@code m}. This differs from {@code x %
372   * m}, which might be negative.
373   *
374   * <p>For example:
375   *
376   * <pre>{@code
377   * mod(7, 4) == 3
378   * mod(-7, 4) == 1
379   * mod(-1, 4) == 3
380   * mod(-8, 4) == 0
381   * mod(8, 4) == 0
382   * }</pre>
383   *
384   * @throws ArithmeticException if {@code m <= 0}
385   * @see <a href="http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.17.3">
386   *     Remainder Operator</a>
387   */
388  public static int mod(int x, int m) {
389    if (m <= 0) {
390      throw new ArithmeticException("Modulus " + m + " must be > 0");
391    }
392    int result = x % m;
393    return (result >= 0) ? result : result + m;
394  }
395
396  /**
397   * Returns the greatest common divisor of {@code a, b}. Returns {@code 0} if {@code a == 0 && b ==
398   * 0}.
399   *
400   * @throws IllegalArgumentException if {@code a < 0} or {@code b < 0}
401   */
402  public static int gcd(int a, int b) {
403    /*
404     * The reason we require both arguments to be >= 0 is because otherwise, what do you return on
405     * gcd(0, Integer.MIN_VALUE)? BigInteger.gcd would return positive 2^31, but positive 2^31 isn't
406     * an int.
407     */
408    checkNonNegative("a", a);
409    checkNonNegative("b", b);
410    if (a == 0) {
411      // 0 % b == 0, so b divides a, but the converse doesn't hold.
412      // BigInteger.gcd is consistent with this decision.
413      return b;
414    } else if (b == 0) {
415      return a; // similar logic
416    }
417    /*
418     * Uses the binary GCD algorithm; see http://en.wikipedia.org/wiki/Binary_GCD_algorithm. This is
419     * >40% faster than the Euclidean algorithm in benchmarks.
420     */
421    int aTwos = Integer.numberOfTrailingZeros(a);
422    a >>= aTwos; // divide out all 2s
423    int bTwos = Integer.numberOfTrailingZeros(b);
424    b >>= bTwos; // divide out all 2s
425    while (a != b) { // both a, b are odd
426      // The key to the binary GCD algorithm is as follows:
427      // Both a and b are odd. Assume a > b; then gcd(a - b, b) = gcd(a, b).
428      // But in gcd(a - b, b), a - b is even and b is odd, so we can divide out powers of two.
429
430      // We bend over backwards to avoid branching, adapting a technique from
431      // http://graphics.stanford.edu/~seander/bithacks.html#IntegerMinOrMax
432
433      int delta = a - b; // can't overflow, since a and b are nonnegative
434
435      int minDeltaOrZero = delta & (delta >> (Integer.SIZE - 1));
436      // equivalent to Math.min(delta, 0)
437
438      a = delta - minDeltaOrZero - minDeltaOrZero; // sets a to Math.abs(a - b)
439      // a is now nonnegative and even
440
441      b += minDeltaOrZero; // sets b to min(old a, b)
442      a >>= Integer.numberOfTrailingZeros(a); // divide out all 2s, since 2 doesn't divide b
443    }
444    return a << min(aTwos, bTwos);
445  }
446
447  /**
448   * Returns the sum of {@code a} and {@code b}, provided it does not overflow.
449   *
450   * @throws ArithmeticException if {@code a + b} overflows in signed {@code int} arithmetic
451   */
452  public static int checkedAdd(int a, int b) {
453    long result = (long) a + b;
454    checkNoOverflow(result == (int) result, "checkedAdd", a, b);
455    return (int) result;
456  }
457
458  /**
459   * Returns the difference of {@code a} and {@code b}, provided it does not overflow.
460   *
461   * @throws ArithmeticException if {@code a - b} overflows in signed {@code int} arithmetic
462   */
463  public static int checkedSubtract(int a, int b) {
464    long result = (long) a - b;
465    checkNoOverflow(result == (int) result, "checkedSubtract", a, b);
466    return (int) result;
467  }
468
469  /**
470   * Returns the product of {@code a} and {@code b}, provided it does not overflow.
471   *
472   * @throws ArithmeticException if {@code a * b} overflows in signed {@code int} arithmetic
473   */
474  public static int checkedMultiply(int a, int b) {
475    long result = (long) a * b;
476    checkNoOverflow(result == (int) result, "checkedMultiply", a, b);
477    return (int) result;
478  }
479
480  /**
481   * Returns the {@code b} to the {@code k}th power, provided it does not overflow.
482   *
483   * <p>{@link #pow} may be faster, but does not check for overflow.
484   *
485   * @throws ArithmeticException if {@code b} to the {@code k}th power overflows in signed {@code
486   *     int} arithmetic
487   */
488  public static int checkedPow(int b, int k) {
489    checkNonNegative("exponent", k);
490    switch (b) {
491      case 0:
492        return (k == 0) ? 1 : 0;
493      case 1:
494        return 1;
495      case (-1):
496        return ((k & 1) == 0) ? 1 : -1;
497      case 2:
498        checkNoOverflow(k < Integer.SIZE - 1, "checkedPow", b, k);
499        return 1 << k;
500      case (-2):
501        checkNoOverflow(k < Integer.SIZE, "checkedPow", b, k);
502        return ((k & 1) == 0) ? 1 << k : -1 << k;
503      default:
504        // continue below to handle the general case
505    }
506    int accum = 1;
507    while (true) {
508      switch (k) {
509        case 0:
510          return accum;
511        case 1:
512          return checkedMultiply(accum, b);
513        default:
514          if ((k & 1) != 0) {
515            accum = checkedMultiply(accum, b);
516          }
517          k >>= 1;
518          if (k > 0) {
519            checkNoOverflow(-FLOOR_SQRT_MAX_INT <= b & b <= FLOOR_SQRT_MAX_INT, "checkedPow", b, k);
520            b *= b;
521          }
522      }
523    }
524  }
525
526  /**
527   * Returns the sum of {@code a} and {@code b} unless it would overflow or underflow in which case
528   * {@code Integer.MAX_VALUE} or {@code Integer.MIN_VALUE} is returned, respectively.
529   *
530   * @since 20.0
531   */
532  public static int saturatedAdd(int a, int b) {
533    return Ints.saturatedCast((long) a + b);
534  }
535
536  /**
537   * Returns the difference of {@code a} and {@code b} unless it would overflow or underflow in
538   * which case {@code Integer.MAX_VALUE} or {@code Integer.MIN_VALUE} is returned, respectively.
539   *
540   * @since 20.0
541   */
542  public static int saturatedSubtract(int a, int b) {
543    return Ints.saturatedCast((long) a - b);
544  }
545
546  /**
547   * Returns the product of {@code a} and {@code b} unless it would overflow or underflow in which
548   * case {@code Integer.MAX_VALUE} or {@code Integer.MIN_VALUE} is returned, respectively.
549   *
550   * @since 20.0
551   */
552  public static int saturatedMultiply(int a, int b) {
553    return Ints.saturatedCast((long) a * b);
554  }
555
556  /**
557   * Returns the {@code b} to the {@code k}th power, unless it would overflow or underflow in which
558   * case {@code Integer.MAX_VALUE} or {@code Integer.MIN_VALUE} is returned, respectively.
559   *
560   * @since 20.0
561   */
562  public static int saturatedPow(int b, int k) {
563    checkNonNegative("exponent", k);
564    switch (b) {
565      case 0:
566        return (k == 0) ? 1 : 0;
567      case 1:
568        return 1;
569      case (-1):
570        return ((k & 1) == 0) ? 1 : -1;
571      case 2:
572        if (k >= Integer.SIZE - 1) {
573          return Integer.MAX_VALUE;
574        }
575        return 1 << k;
576      case (-2):
577        if (k >= Integer.SIZE) {
578          return Integer.MAX_VALUE + (k & 1);
579        }
580        return ((k & 1) == 0) ? 1 << k : -1 << k;
581      default:
582        // continue below to handle the general case
583    }
584    int accum = 1;
585    // if b is negative and k is odd then the limit is MIN otherwise the limit is MAX
586    int limit = Integer.MAX_VALUE + ((b >>> Integer.SIZE - 1) & (k & 1));
587    while (true) {
588      switch (k) {
589        case 0:
590          return accum;
591        case 1:
592          return saturatedMultiply(accum, b);
593        default:
594          if ((k & 1) != 0) {
595            accum = saturatedMultiply(accum, b);
596          }
597          k >>= 1;
598          if (k > 0) {
599            if (-FLOOR_SQRT_MAX_INT > b | b > FLOOR_SQRT_MAX_INT) {
600              return limit;
601            }
602            b *= b;
603          }
604      }
605    }
606  }
607
608  @VisibleForTesting static final int FLOOR_SQRT_MAX_INT = 46340;
609
610  /**
611   * Returns {@code n!}, that is, the product of the first {@code n} positive integers, {@code 1} if
612   * {@code n == 0}, or {@link Integer#MAX_VALUE} if the result does not fit in a {@code int}.
613   *
614   * @throws IllegalArgumentException if {@code n < 0}
615   */
616  public static int factorial(int n) {
617    checkNonNegative("n", n);
618    return (n < factorials.length) ? factorials[n] : Integer.MAX_VALUE;
619  }
620
621  private static final int[] factorials = {
622    1,
623    1,
624    1 * 2,
625    1 * 2 * 3,
626    1 * 2 * 3 * 4,
627    1 * 2 * 3 * 4 * 5,
628    1 * 2 * 3 * 4 * 5 * 6,
629    1 * 2 * 3 * 4 * 5 * 6 * 7,
630    1 * 2 * 3 * 4 * 5 * 6 * 7 * 8,
631    1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9,
632    1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10,
633    1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11,
634    1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12
635  };
636
637  /**
638   * Returns {@code n} choose {@code k}, also known as the binomial coefficient of {@code n} and
639   * {@code k}, or {@link Integer#MAX_VALUE} if the result does not fit in an {@code int}.
640   *
641   * @throws IllegalArgumentException if {@code n < 0}, {@code k < 0} or {@code k > n}
642   */
643  public static int binomial(int n, int k) {
644    checkNonNegative("n", n);
645    checkNonNegative("k", k);
646    checkArgument(k <= n, "k (%s) > n (%s)", k, n);
647    if (k > (n >> 1)) {
648      k = n - k;
649    }
650    if (k >= biggestBinomials.length || n > biggestBinomials[k]) {
651      return Integer.MAX_VALUE;
652    }
653    switch (k) {
654      case 0:
655        return 1;
656      case 1:
657        return n;
658      default:
659        long result = 1;
660        for (int i = 0; i < k; i++) {
661          result *= n - i;
662          result /= i + 1;
663        }
664        return (int) result;
665    }
666  }
667
668  // binomial(biggestBinomials[k], k) fits in an int, but not binomial(biggestBinomials[k]+1,k).
669  @VisibleForTesting
670  static int[] biggestBinomials = {
671    Integer.MAX_VALUE,
672    Integer.MAX_VALUE,
673    65536,
674    2345,
675    477,
676    193,
677    110,
678    75,
679    58,
680    49,
681    43,
682    39,
683    37,
684    35,
685    34,
686    34,
687    33
688  };
689
690  /**
691   * Returns the arithmetic mean of {@code x} and {@code y}, rounded towards negative infinity. This
692   * method is overflow resilient.
693   *
694   * @since 14.0
695   */
696  public static int mean(int x, int y) {
697    // Efficient method for computing the arithmetic mean.
698    // The alternative (x + y) / 2 fails for large values.
699    // The alternative (x + y) >>> 1 fails for negative values.
700    return (x & y) + ((x ^ y) >> 1);
701  }
702
703  /**
704   * Returns {@code true} if {@code n} is a <a
705   * href="http://mathworld.wolfram.com/PrimeNumber.html">prime number</a>: an integer <i>greater
706   * than one</i> that cannot be factored into a product of <i>smaller</i> positive integers.
707   * Returns {@code false} if {@code n} is zero, one, or a composite number (one which <i>can</i> be
708   * factored into smaller positive integers).
709   *
710   * <p>To test larger numbers, use {@link LongMath#isPrime} or {@link BigInteger#isProbablePrime}.
711   *
712   * @throws IllegalArgumentException if {@code n} is negative
713   * @since 20.0
714   */
715  @GwtIncompatible // TODO
716  public static boolean isPrime(int n) {
717    return LongMath.isPrime(n);
718  }
719
720  private IntMath() {}
721}