001/* 002 * Copyright (C) 2014 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.graph; 018 019import static com.google.common.base.Preconditions.checkArgument; 020import static com.google.common.graph.GraphConstants.NODE_NOT_IN_GRAPH; 021import static java.util.Objects.requireNonNull; 022 023import com.google.common.annotations.Beta; 024import com.google.common.base.Objects; 025import com.google.common.collect.ImmutableSet; 026import com.google.common.collect.Iterables; 027import com.google.common.collect.Iterators; 028import com.google.common.collect.Maps; 029import com.google.errorprone.annotations.CanIgnoreReturnValue; 030import java.util.Collection; 031import java.util.HashSet; 032import java.util.Iterator; 033import java.util.Map; 034import java.util.Optional; 035import java.util.Set; 036import javax.annotation.CheckForNull; 037 038/** 039 * Static utility methods for {@link Graph}, {@link ValueGraph}, and {@link Network} instances. 040 * 041 * @author James Sexton 042 * @author Joshua O'Madadhain 043 * @since 20.0 044 */ 045@Beta 046@ElementTypesAreNonnullByDefault 047public final class Graphs extends GraphsBridgeMethods { 048 049 private Graphs() {} 050 051 // Graph query methods 052 053 /** 054 * Returns true if {@code graph} has at least one cycle. A cycle is defined as a non-empty subset 055 * of edges in a graph arranged to form a path (a sequence of adjacent outgoing edges) starting 056 * and ending with the same node. 057 * 058 * <p>This method will detect any non-empty cycle, including self-loops (a cycle of length 1). 059 */ 060 public static <N> boolean hasCycle(Graph<N> graph) { 061 int numEdges = graph.edges().size(); 062 if (numEdges == 0) { 063 return false; // An edge-free graph is acyclic by definition. 064 } 065 if (!graph.isDirected() && numEdges >= graph.nodes().size()) { 066 return true; // Optimization for the undirected case: at least one cycle must exist. 067 } 068 069 Map<Object, NodeVisitState> visitedNodes = 070 Maps.newHashMapWithExpectedSize(graph.nodes().size()); 071 for (N node : graph.nodes()) { 072 if (subgraphHasCycle(graph, visitedNodes, node, null)) { 073 return true; 074 } 075 } 076 return false; 077 } 078 079 /** 080 * Returns true if {@code network} has at least one cycle. A cycle is defined as a non-empty 081 * subset of edges in a graph arranged to form a path (a sequence of adjacent outgoing edges) 082 * starting and ending with the same node. 083 * 084 * <p>This method will detect any non-empty cycle, including self-loops (a cycle of length 1). 085 */ 086 public static boolean hasCycle(Network<?, ?> network) { 087 // In a directed graph, parallel edges cannot introduce a cycle in an acyclic graph. 088 // However, in an undirected graph, any parallel edge induces a cycle in the graph. 089 if (!network.isDirected() 090 && network.allowsParallelEdges() 091 && network.edges().size() > network.asGraph().edges().size()) { 092 return true; 093 } 094 return hasCycle(network.asGraph()); 095 } 096 097 /** 098 * Performs a traversal of the nodes reachable from {@code node}. If we ever reach a node we've 099 * already visited (following only outgoing edges and without reusing edges), we know there's a 100 * cycle in the graph. 101 */ 102 private static <N> boolean subgraphHasCycle( 103 Graph<N> graph, 104 Map<Object, NodeVisitState> visitedNodes, 105 N node, 106 @CheckForNull N previousNode) { 107 NodeVisitState state = visitedNodes.get(node); 108 if (state == NodeVisitState.COMPLETE) { 109 return false; 110 } 111 if (state == NodeVisitState.PENDING) { 112 return true; 113 } 114 115 visitedNodes.put(node, NodeVisitState.PENDING); 116 for (N nextNode : graph.successors(node)) { 117 if (canTraverseWithoutReusingEdge(graph, nextNode, previousNode) 118 && subgraphHasCycle(graph, visitedNodes, nextNode, node)) { 119 return true; 120 } 121 } 122 visitedNodes.put(node, NodeVisitState.COMPLETE); 123 return false; 124 } 125 126 /** 127 * Determines whether an edge has already been used during traversal. In the directed case a cycle 128 * is always detected before reusing an edge, so no special logic is required. In the undirected 129 * case, we must take care not to "backtrack" over an edge (i.e. going from A to B and then going 130 * from B to A). 131 */ 132 private static boolean canTraverseWithoutReusingEdge( 133 Graph<?> graph, Object nextNode, @CheckForNull Object previousNode) { 134 if (graph.isDirected() || !Objects.equal(previousNode, nextNode)) { 135 return true; 136 } 137 // This falls into the undirected A->B->A case. The Graph interface does not support parallel 138 // edges, so this traversal would require reusing the undirected AB edge. 139 return false; 140 } 141 142 /** 143 * Returns the transitive closure of {@code graph}. The transitive closure of a graph is another 144 * graph with an edge connecting node A to node B if node B is {@link #reachableNodes(Graph, 145 * Object) reachable} from node A. 146 * 147 * <p>This is a "snapshot" based on the current topology of {@code graph}, rather than a live view 148 * of the transitive closure of {@code graph}. In other words, the returned {@link Graph} will not 149 * be updated after modifications to {@code graph}. 150 * 151 * @since 33.1.0 (present with return type {@code Graph} since 20.0) 152 */ 153 // TODO(b/31438252): Consider potential optimizations for this algorithm. 154 public static <N> ImmutableGraph<N> transitiveClosure(Graph<N> graph) { 155 ImmutableGraph.Builder<N> transitiveClosure = 156 GraphBuilder.from(graph).allowsSelfLoops(true).<N>immutable(); 157 // Every node is, at a minimum, reachable from itself. Since the resulting transitive closure 158 // will have no isolated nodes, we can skip adding nodes explicitly and let putEdge() do it. 159 160 if (graph.isDirected()) { 161 // Note: works for both directed and undirected graphs, but we only use in the directed case. 162 for (N node : graph.nodes()) { 163 for (N reachableNode : reachableNodes(graph, node)) { 164 transitiveClosure.putEdge(node, reachableNode); 165 } 166 } 167 } else { 168 // An optimization for the undirected case: for every node B reachable from node A, 169 // node A and node B have the same reachability set. 170 Set<N> visitedNodes = new HashSet<>(); 171 for (N node : graph.nodes()) { 172 if (!visitedNodes.contains(node)) { 173 Set<N> reachableNodes = reachableNodes(graph, node); 174 visitedNodes.addAll(reachableNodes); 175 int pairwiseMatch = 1; // start at 1 to include self-loops 176 for (N nodeU : reachableNodes) { 177 for (N nodeV : Iterables.limit(reachableNodes, pairwiseMatch++)) { 178 transitiveClosure.putEdge(nodeU, nodeV); 179 } 180 } 181 } 182 } 183 } 184 185 return transitiveClosure.build(); 186 } 187 188 /** 189 * Returns the set of nodes that are reachable from {@code node}. Node B is defined as reachable 190 * from node A if there exists a path (a sequence of adjacent outgoing edges) starting at node A 191 * and ending at node B. Note that a node is always reachable from itself via a zero-length path. 192 * 193 * <p>This is a "snapshot" based on the current topology of {@code graph}, rather than a live view 194 * of the set of nodes reachable from {@code node}. In other words, the returned {@link Set} will 195 * not be updated after modifications to {@code graph}. 196 * 197 * @throws IllegalArgumentException if {@code node} is not present in {@code graph} 198 * @since 33.1.0 (present with return type {@code Set} since 20.0) 199 */ 200 public static <N> ImmutableSet<N> reachableNodes(Graph<N> graph, N node) { 201 checkArgument(graph.nodes().contains(node), NODE_NOT_IN_GRAPH, node); 202 return ImmutableSet.copyOf(Traverser.forGraph(graph).breadthFirst(node)); 203 } 204 205 // Graph mutation methods 206 207 // Graph view methods 208 209 /** 210 * Returns a view of {@code graph} with the direction (if any) of every edge reversed. All other 211 * properties remain intact, and further updates to {@code graph} will be reflected in the view. 212 */ 213 public static <N> Graph<N> transpose(Graph<N> graph) { 214 if (!graph.isDirected()) { 215 return graph; // the transpose of an undirected graph is an identical graph 216 } 217 218 if (graph instanceof TransposedGraph) { 219 return ((TransposedGraph<N>) graph).graph; 220 } 221 222 return new TransposedGraph<>(graph); 223 } 224 225 /** 226 * Returns a view of {@code graph} with the direction (if any) of every edge reversed. All other 227 * properties remain intact, and further updates to {@code graph} will be reflected in the view. 228 */ 229 public static <N, V> ValueGraph<N, V> transpose(ValueGraph<N, V> graph) { 230 if (!graph.isDirected()) { 231 return graph; // the transpose of an undirected graph is an identical graph 232 } 233 234 if (graph instanceof TransposedValueGraph) { 235 return ((TransposedValueGraph<N, V>) graph).graph; 236 } 237 238 return new TransposedValueGraph<>(graph); 239 } 240 241 /** 242 * Returns a view of {@code network} with the direction (if any) of every edge reversed. All other 243 * properties remain intact, and further updates to {@code network} will be reflected in the view. 244 */ 245 public static <N, E> Network<N, E> transpose(Network<N, E> network) { 246 if (!network.isDirected()) { 247 return network; // the transpose of an undirected network is an identical network 248 } 249 250 if (network instanceof TransposedNetwork) { 251 return ((TransposedNetwork<N, E>) network).network; 252 } 253 254 return new TransposedNetwork<>(network); 255 } 256 257 static <N> EndpointPair<N> transpose(EndpointPair<N> endpoints) { 258 if (endpoints.isOrdered()) { 259 return EndpointPair.ordered(endpoints.target(), endpoints.source()); 260 } 261 return endpoints; 262 } 263 264 // NOTE: this should work as long as the delegate graph's implementation of edges() (like that of 265 // AbstractGraph) derives its behavior from calling successors(). 266 private static class TransposedGraph<N> extends ForwardingGraph<N> { 267 private final Graph<N> graph; 268 269 TransposedGraph(Graph<N> graph) { 270 this.graph = graph; 271 } 272 273 @Override 274 Graph<N> delegate() { 275 return graph; 276 } 277 278 @Override 279 public Set<N> predecessors(N node) { 280 return delegate().successors(node); // transpose 281 } 282 283 @Override 284 public Set<N> successors(N node) { 285 return delegate().predecessors(node); // transpose 286 } 287 288 @Override 289 public Set<EndpointPair<N>> incidentEdges(N node) { 290 return new IncidentEdgeSet<N>(this, node) { 291 @Override 292 public Iterator<EndpointPair<N>> iterator() { 293 return Iterators.transform( 294 delegate().incidentEdges(node).iterator(), 295 edge -> EndpointPair.of(delegate(), edge.nodeV(), edge.nodeU())); 296 } 297 }; 298 } 299 300 @Override 301 public int inDegree(N node) { 302 return delegate().outDegree(node); // transpose 303 } 304 305 @Override 306 public int outDegree(N node) { 307 return delegate().inDegree(node); // transpose 308 } 309 310 @Override 311 public boolean hasEdgeConnecting(N nodeU, N nodeV) { 312 return delegate().hasEdgeConnecting(nodeV, nodeU); // transpose 313 } 314 315 @Override 316 public boolean hasEdgeConnecting(EndpointPair<N> endpoints) { 317 return delegate().hasEdgeConnecting(transpose(endpoints)); 318 } 319 } 320 321 // NOTE: this should work as long as the delegate graph's implementation of edges() (like that of 322 // AbstractValueGraph) derives its behavior from calling successors(). 323 private static class TransposedValueGraph<N, V> extends ForwardingValueGraph<N, V> { 324 private final ValueGraph<N, V> graph; 325 326 TransposedValueGraph(ValueGraph<N, V> graph) { 327 this.graph = graph; 328 } 329 330 @Override 331 ValueGraph<N, V> delegate() { 332 return graph; 333 } 334 335 @Override 336 public Set<N> predecessors(N node) { 337 return delegate().successors(node); // transpose 338 } 339 340 @Override 341 public Set<N> successors(N node) { 342 return delegate().predecessors(node); // transpose 343 } 344 345 @Override 346 public int inDegree(N node) { 347 return delegate().outDegree(node); // transpose 348 } 349 350 @Override 351 public int outDegree(N node) { 352 return delegate().inDegree(node); // transpose 353 } 354 355 @Override 356 public boolean hasEdgeConnecting(N nodeU, N nodeV) { 357 return delegate().hasEdgeConnecting(nodeV, nodeU); // transpose 358 } 359 360 @Override 361 public boolean hasEdgeConnecting(EndpointPair<N> endpoints) { 362 return delegate().hasEdgeConnecting(transpose(endpoints)); 363 } 364 365 @Override 366 public Optional<V> edgeValue(N nodeU, N nodeV) { 367 return delegate().edgeValue(nodeV, nodeU); // transpose 368 } 369 370 @Override 371 public Optional<V> edgeValue(EndpointPair<N> endpoints) { 372 return delegate().edgeValue(transpose(endpoints)); 373 } 374 375 @Override 376 @CheckForNull 377 public V edgeValueOrDefault(N nodeU, N nodeV, @CheckForNull V defaultValue) { 378 return delegate().edgeValueOrDefault(nodeV, nodeU, defaultValue); // transpose 379 } 380 381 @Override 382 @CheckForNull 383 public V edgeValueOrDefault(EndpointPair<N> endpoints, @CheckForNull V defaultValue) { 384 return delegate().edgeValueOrDefault(transpose(endpoints), defaultValue); 385 } 386 } 387 388 private static class TransposedNetwork<N, E> extends ForwardingNetwork<N, E> { 389 private final Network<N, E> network; 390 391 TransposedNetwork(Network<N, E> network) { 392 this.network = network; 393 } 394 395 @Override 396 Network<N, E> delegate() { 397 return network; 398 } 399 400 @Override 401 public Set<N> predecessors(N node) { 402 return delegate().successors(node); // transpose 403 } 404 405 @Override 406 public Set<N> successors(N node) { 407 return delegate().predecessors(node); // transpose 408 } 409 410 @Override 411 public int inDegree(N node) { 412 return delegate().outDegree(node); // transpose 413 } 414 415 @Override 416 public int outDegree(N node) { 417 return delegate().inDegree(node); // transpose 418 } 419 420 @Override 421 public Set<E> inEdges(N node) { 422 return delegate().outEdges(node); // transpose 423 } 424 425 @Override 426 public Set<E> outEdges(N node) { 427 return delegate().inEdges(node); // transpose 428 } 429 430 @Override 431 public EndpointPair<N> incidentNodes(E edge) { 432 EndpointPair<N> endpointPair = delegate().incidentNodes(edge); 433 return EndpointPair.of(network, endpointPair.nodeV(), endpointPair.nodeU()); // transpose 434 } 435 436 @Override 437 public Set<E> edgesConnecting(N nodeU, N nodeV) { 438 return delegate().edgesConnecting(nodeV, nodeU); // transpose 439 } 440 441 @Override 442 public Set<E> edgesConnecting(EndpointPair<N> endpoints) { 443 return delegate().edgesConnecting(transpose(endpoints)); 444 } 445 446 @Override 447 public Optional<E> edgeConnecting(N nodeU, N nodeV) { 448 return delegate().edgeConnecting(nodeV, nodeU); // transpose 449 } 450 451 @Override 452 public Optional<E> edgeConnecting(EndpointPair<N> endpoints) { 453 return delegate().edgeConnecting(transpose(endpoints)); 454 } 455 456 @Override 457 @CheckForNull 458 public E edgeConnectingOrNull(N nodeU, N nodeV) { 459 return delegate().edgeConnectingOrNull(nodeV, nodeU); // transpose 460 } 461 462 @Override 463 @CheckForNull 464 public E edgeConnectingOrNull(EndpointPair<N> endpoints) { 465 return delegate().edgeConnectingOrNull(transpose(endpoints)); 466 } 467 468 @Override 469 public boolean hasEdgeConnecting(N nodeU, N nodeV) { 470 return delegate().hasEdgeConnecting(nodeV, nodeU); // transpose 471 } 472 473 @Override 474 public boolean hasEdgeConnecting(EndpointPair<N> endpoints) { 475 return delegate().hasEdgeConnecting(transpose(endpoints)); 476 } 477 } 478 479 // Graph copy methods 480 481 /** 482 * Returns the subgraph of {@code graph} induced by {@code nodes}. This subgraph is a new graph 483 * that contains all of the nodes in {@code nodes}, and all of the {@link Graph#edges() edges} 484 * from {@code graph} for which both nodes are contained by {@code nodes}. 485 * 486 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 487 */ 488 public static <N> MutableGraph<N> inducedSubgraph(Graph<N> graph, Iterable<? extends N> nodes) { 489 MutableGraph<N> subgraph = 490 (nodes instanceof Collection) 491 ? GraphBuilder.from(graph).expectedNodeCount(((Collection) nodes).size()).build() 492 : GraphBuilder.from(graph).build(); 493 for (N node : nodes) { 494 subgraph.addNode(node); 495 } 496 for (N node : subgraph.nodes()) { 497 for (N successorNode : graph.successors(node)) { 498 if (subgraph.nodes().contains(successorNode)) { 499 subgraph.putEdge(node, successorNode); 500 } 501 } 502 } 503 return subgraph; 504 } 505 506 /** 507 * Returns the subgraph of {@code graph} induced by {@code nodes}. This subgraph is a new graph 508 * that contains all of the nodes in {@code nodes}, and all of the {@link Graph#edges() edges} 509 * (and associated edge values) from {@code graph} for which both nodes are contained by {@code 510 * nodes}. 511 * 512 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 513 */ 514 public static <N, V> MutableValueGraph<N, V> inducedSubgraph( 515 ValueGraph<N, V> graph, Iterable<? extends N> nodes) { 516 MutableValueGraph<N, V> subgraph = 517 (nodes instanceof Collection) 518 ? ValueGraphBuilder.from(graph).expectedNodeCount(((Collection) nodes).size()).build() 519 : ValueGraphBuilder.from(graph).build(); 520 for (N node : nodes) { 521 subgraph.addNode(node); 522 } 523 for (N node : subgraph.nodes()) { 524 for (N successorNode : graph.successors(node)) { 525 if (subgraph.nodes().contains(successorNode)) { 526 // requireNonNull is safe because the endpoint pair comes from the graph. 527 subgraph.putEdgeValue( 528 node, 529 successorNode, 530 requireNonNull(graph.edgeValueOrDefault(node, successorNode, null))); 531 } 532 } 533 } 534 return subgraph; 535 } 536 537 /** 538 * Returns the subgraph of {@code network} induced by {@code nodes}. This subgraph is a new graph 539 * that contains all of the nodes in {@code nodes}, and all of the {@link Network#edges() edges} 540 * from {@code network} for which the {@link Network#incidentNodes(Object) incident nodes} are 541 * both contained by {@code nodes}. 542 * 543 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 544 */ 545 public static <N, E> MutableNetwork<N, E> inducedSubgraph( 546 Network<N, E> network, Iterable<? extends N> nodes) { 547 MutableNetwork<N, E> subgraph = 548 (nodes instanceof Collection) 549 ? NetworkBuilder.from(network).expectedNodeCount(((Collection) nodes).size()).build() 550 : NetworkBuilder.from(network).build(); 551 for (N node : nodes) { 552 subgraph.addNode(node); 553 } 554 for (N node : subgraph.nodes()) { 555 for (E edge : network.outEdges(node)) { 556 N successorNode = network.incidentNodes(edge).adjacentNode(node); 557 if (subgraph.nodes().contains(successorNode)) { 558 subgraph.addEdge(node, successorNode, edge); 559 } 560 } 561 } 562 return subgraph; 563 } 564 565 /** Creates a mutable copy of {@code graph} with the same nodes and edges. */ 566 public static <N> MutableGraph<N> copyOf(Graph<N> graph) { 567 MutableGraph<N> copy = GraphBuilder.from(graph).expectedNodeCount(graph.nodes().size()).build(); 568 for (N node : graph.nodes()) { 569 copy.addNode(node); 570 } 571 for (EndpointPair<N> edge : graph.edges()) { 572 copy.putEdge(edge.nodeU(), edge.nodeV()); 573 } 574 return copy; 575 } 576 577 /** Creates a mutable copy of {@code graph} with the same nodes, edges, and edge values. */ 578 public static <N, V> MutableValueGraph<N, V> copyOf(ValueGraph<N, V> graph) { 579 MutableValueGraph<N, V> copy = 580 ValueGraphBuilder.from(graph).expectedNodeCount(graph.nodes().size()).build(); 581 for (N node : graph.nodes()) { 582 copy.addNode(node); 583 } 584 for (EndpointPair<N> edge : graph.edges()) { 585 // requireNonNull is safe because the endpoint pair comes from the graph. 586 copy.putEdgeValue( 587 edge.nodeU(), 588 edge.nodeV(), 589 requireNonNull(graph.edgeValueOrDefault(edge.nodeU(), edge.nodeV(), null))); 590 } 591 return copy; 592 } 593 594 /** Creates a mutable copy of {@code network} with the same nodes and edges. */ 595 public static <N, E> MutableNetwork<N, E> copyOf(Network<N, E> network) { 596 MutableNetwork<N, E> copy = 597 NetworkBuilder.from(network) 598 .expectedNodeCount(network.nodes().size()) 599 .expectedEdgeCount(network.edges().size()) 600 .build(); 601 for (N node : network.nodes()) { 602 copy.addNode(node); 603 } 604 for (E edge : network.edges()) { 605 EndpointPair<N> endpointPair = network.incidentNodes(edge); 606 copy.addEdge(endpointPair.nodeU(), endpointPair.nodeV(), edge); 607 } 608 return copy; 609 } 610 611 @CanIgnoreReturnValue 612 static int checkNonNegative(int value) { 613 checkArgument(value >= 0, "Not true that %s is non-negative.", value); 614 return value; 615 } 616 617 @CanIgnoreReturnValue 618 static long checkNonNegative(long value) { 619 checkArgument(value >= 0, "Not true that %s is non-negative.", value); 620 return value; 621 } 622 623 @CanIgnoreReturnValue 624 static int checkPositive(int value) { 625 checkArgument(value > 0, "Not true that %s is positive.", value); 626 return value; 627 } 628 629 @CanIgnoreReturnValue 630 static long checkPositive(long value) { 631 checkArgument(value > 0, "Not true that %s is positive.", value); 632 return value; 633 } 634 635 /** 636 * An enum representing the state of a node during DFS. {@code PENDING} means that the node is on 637 * the stack of the DFS, while {@code COMPLETE} means that the node and all its successors have 638 * been already explored. Any node that has not been explored will not have a state at all. 639 */ 640 private enum NodeVisitState { 641 PENDING, 642 COMPLETE 643 } 644}