001/*
002 * Copyright (C) 2008 The Guava Authors
003 *
004 * Licensed under the Apache License, Version 2.0 (the "License");
005 * you may not use this file except in compliance with the License.
006 * You may obtain a copy of the License at
007 *
008 * http://www.apache.org/licenses/LICENSE-2.0
009 *
010 * Unless required by applicable law or agreed to in writing, software
011 * distributed under the License is distributed on an "AS IS" BASIS,
012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
013 * See the License for the specific language governing permissions and
014 * limitations under the License.
015 */
016
017package com.google.common.collect;
018
019import static com.google.common.base.Preconditions.checkArgument;
020import static com.google.common.base.Preconditions.checkNotNull;
021import static com.google.common.collect.CollectPreconditions.checkNonnegative;
022import static java.util.Objects.requireNonNull;
023
024import com.google.common.annotations.GwtCompatible;
025import com.google.common.base.Function;
026import com.google.common.base.Predicate;
027import com.google.common.base.Predicates;
028import com.google.common.math.IntMath;
029import com.google.common.primitives.Ints;
030import java.util.AbstractCollection;
031import java.util.ArrayList;
032import java.util.Arrays;
033import java.util.Collection;
034import java.util.Collections;
035import java.util.Comparator;
036import java.util.Iterator;
037import java.util.List;
038import java.util.Spliterator;
039import java.util.function.Consumer;
040import javax.annotation.CheckForNull;
041import org.checkerframework.checker.nullness.qual.Nullable;
042
043/**
044 * Provides static methods for working with {@code Collection} instances.
045 *
046 * <p><b>Java 8+ users:</b> several common uses for this class are now more comprehensively
047 * addressed by the new {@link java.util.stream.Stream} library. Read the method documentation below
048 * for comparisons. These methods are not being deprecated, but we gently encourage you to migrate
049 * to streams.
050 *
051 * @author Chris Povirk
052 * @author Mike Bostock
053 * @author Jared Levy
054 * @since 2.0
055 */
056@GwtCompatible
057@ElementTypesAreNonnullByDefault
058public final class Collections2 {
059  private Collections2() {}
060
061  /**
062   * Returns the elements of {@code unfiltered} that satisfy a predicate. The returned collection is
063   * a live view of {@code unfiltered}; changes to one affect the other.
064   *
065   * <p>The resulting collection's iterator does not support {@code remove()}, but all other
066   * collection methods are supported. When given an element that doesn't satisfy the predicate, the
067   * collection's {@code add()} and {@code addAll()} methods throw an {@link
068   * IllegalArgumentException}. When methods such as {@code removeAll()} and {@code clear()} are
069   * called on the filtered collection, only elements that satisfy the filter will be removed from
070   * the underlying collection.
071   *
072   * <p>The returned collection isn't threadsafe or serializable, even if {@code unfiltered} is.
073   *
074   * <p>Many of the filtered collection's methods, such as {@code size()}, iterate across every
075   * element in the underlying collection and determine which elements satisfy the filter. When a
076   * live view is <i>not</i> needed, it may be faster to copy {@code Iterables.filter(unfiltered,
077   * predicate)} and use the copy.
078   *
079   * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as documented at
080   * {@link Predicate#apply}. Do not provide a predicate such as {@code
081   * Predicates.instanceOf(ArrayList.class)}, which is inconsistent with equals. (See {@link
082   * Iterables#filter(Iterable, Class)} for related functionality.)
083   *
084   * <p><b>{@code Stream} equivalent:</b> {@link java.util.stream.Stream#filter Stream.filter}.
085   */
086  // TODO(kevinb): how can we omit that Iterables link when building gwt
087  // javadoc?
088  public static <E extends @Nullable Object> Collection<E> filter(
089      Collection<E> unfiltered, Predicate<? super E> predicate) {
090    if (unfiltered instanceof FilteredCollection) {
091      // Support clear(), removeAll(), and retainAll() when filtering a filtered
092      // collection.
093      return ((FilteredCollection<E>) unfiltered).createCombined(predicate);
094    }
095
096    return new FilteredCollection<>(checkNotNull(unfiltered), checkNotNull(predicate));
097  }
098
099  /**
100   * Delegates to {@link Collection#contains}. Returns {@code false} if the {@code contains} method
101   * throws a {@code ClassCastException} or {@code NullPointerException}.
102   */
103  static boolean safeContains(Collection<?> collection, @CheckForNull Object object) {
104    checkNotNull(collection);
105    try {
106      return collection.contains(object);
107    } catch (ClassCastException | NullPointerException e) {
108      return false;
109    }
110  }
111
112  /**
113   * Delegates to {@link Collection#remove}. Returns {@code false} if the {@code remove} method
114   * throws a {@code ClassCastException} or {@code NullPointerException}.
115   */
116  static boolean safeRemove(Collection<?> collection, @CheckForNull Object object) {
117    checkNotNull(collection);
118    try {
119      return collection.remove(object);
120    } catch (ClassCastException | NullPointerException e) {
121      return false;
122    }
123  }
124
125  static class FilteredCollection<E extends @Nullable Object> extends AbstractCollection<E> {
126    final Collection<E> unfiltered;
127    final Predicate<? super E> predicate;
128
129    FilteredCollection(Collection<E> unfiltered, Predicate<? super E> predicate) {
130      this.unfiltered = unfiltered;
131      this.predicate = predicate;
132    }
133
134    FilteredCollection<E> createCombined(Predicate<? super E> newPredicate) {
135      return new FilteredCollection<>(unfiltered, Predicates.and(predicate, newPredicate));
136    }
137
138    @Override
139    public boolean add(@ParametricNullness E element) {
140      checkArgument(predicate.apply(element));
141      return unfiltered.add(element);
142    }
143
144    @Override
145    public boolean addAll(Collection<? extends E> collection) {
146      for (E element : collection) {
147        checkArgument(predicate.apply(element));
148      }
149      return unfiltered.addAll(collection);
150    }
151
152    @Override
153    public void clear() {
154      Iterables.removeIf(unfiltered, predicate);
155    }
156
157    @Override
158    public boolean contains(@CheckForNull Object element) {
159      if (safeContains(unfiltered, element)) {
160        @SuppressWarnings("unchecked") // element is in unfiltered, so it must be an E
161        E e = (E) element;
162        return predicate.apply(e);
163      }
164      return false;
165    }
166
167    @Override
168    public boolean containsAll(Collection<?> collection) {
169      return containsAllImpl(this, collection);
170    }
171
172    @Override
173    public boolean isEmpty() {
174      return !Iterables.any(unfiltered, predicate);
175    }
176
177    @Override
178    public Iterator<E> iterator() {
179      return Iterators.filter(unfiltered.iterator(), predicate);
180    }
181
182    @Override
183    public Spliterator<E> spliterator() {
184      return CollectSpliterators.filter(unfiltered.spliterator(), predicate);
185    }
186
187    @Override
188    public void forEach(Consumer<? super E> action) {
189      checkNotNull(action);
190      unfiltered.forEach(
191          (E e) -> {
192            if (predicate.test(e)) {
193              action.accept(e);
194            }
195          });
196    }
197
198    @Override
199    public boolean remove(@CheckForNull Object element) {
200      return contains(element) && unfiltered.remove(element);
201    }
202
203    @Override
204    public boolean removeAll(final Collection<?> collection) {
205      return removeIf(collection::contains);
206    }
207
208    @Override
209    public boolean retainAll(final Collection<?> collection) {
210      return removeIf(element -> !collection.contains(element));
211    }
212
213    @Override
214    public boolean removeIf(java.util.function.Predicate<? super E> filter) {
215      checkNotNull(filter);
216      return unfiltered.removeIf(element -> predicate.apply(element) && filter.test(element));
217    }
218
219    @Override
220    public int size() {
221      int size = 0;
222      for (E e : unfiltered) {
223        if (predicate.apply(e)) {
224          size++;
225        }
226      }
227      return size;
228    }
229
230    @Override
231    public @Nullable Object[] toArray() {
232      // creating an ArrayList so filtering happens once
233      return Lists.newArrayList(iterator()).toArray();
234    }
235
236    @Override
237    @SuppressWarnings("nullness") // b/192354773 in our checker affects toArray declarations
238    public <T extends @Nullable Object> T[] toArray(T[] array) {
239      return Lists.newArrayList(iterator()).toArray(array);
240    }
241  }
242
243  /**
244   * Returns a collection that applies {@code function} to each element of {@code fromCollection}.
245   * The returned collection is a live view of {@code fromCollection}; changes to one affect the
246   * other.
247   *
248   * <p>The returned collection's {@code add()} and {@code addAll()} methods throw an {@link
249   * UnsupportedOperationException}. All other collection methods are supported, as long as {@code
250   * fromCollection} supports them.
251   *
252   * <p>The returned collection isn't threadsafe or serializable, even if {@code fromCollection} is.
253   *
254   * <p>When a live view is <i>not</i> needed, it may be faster to copy the transformed collection
255   * and use the copy.
256   *
257   * <p>If the input {@code Collection} is known to be a {@code List}, consider {@link
258   * Lists#transform}. If only an {@code Iterable} is available, use {@link Iterables#transform}.
259   *
260   * <p><b>{@code Stream} equivalent:</b> {@link java.util.stream.Stream#map Stream.map}.
261   */
262  public static <F extends @Nullable Object, T extends @Nullable Object> Collection<T> transform(
263      Collection<F> fromCollection, Function<? super F, T> function) {
264    return new TransformedCollection<>(fromCollection, function);
265  }
266
267  static class TransformedCollection<F extends @Nullable Object, T extends @Nullable Object>
268      extends AbstractCollection<T> {
269    final Collection<F> fromCollection;
270    final Function<? super F, ? extends T> function;
271
272    TransformedCollection(Collection<F> fromCollection, Function<? super F, ? extends T> function) {
273      this.fromCollection = checkNotNull(fromCollection);
274      this.function = checkNotNull(function);
275    }
276
277    @Override
278    public void clear() {
279      fromCollection.clear();
280    }
281
282    @Override
283    public boolean isEmpty() {
284      return fromCollection.isEmpty();
285    }
286
287    @Override
288    public Iterator<T> iterator() {
289      return Iterators.transform(fromCollection.iterator(), function);
290    }
291
292    @Override
293    public Spliterator<T> spliterator() {
294      return CollectSpliterators.map(fromCollection.spliterator(), function);
295    }
296
297    @Override
298    public void forEach(Consumer<? super T> action) {
299      checkNotNull(action);
300      fromCollection.forEach((F f) -> action.accept(function.apply(f)));
301    }
302
303    @Override
304    public boolean removeIf(java.util.function.Predicate<? super T> filter) {
305      checkNotNull(filter);
306      return fromCollection.removeIf(element -> filter.test(function.apply(element)));
307    }
308
309    @Override
310    public int size() {
311      return fromCollection.size();
312    }
313  }
314
315  /**
316   * Returns {@code true} if the collection {@code self} contains all of the elements in the
317   * collection {@code c}.
318   *
319   * <p>This method iterates over the specified collection {@code c}, checking each element returned
320   * by the iterator in turn to see if it is contained in the specified collection {@code self}. If
321   * all elements are so contained, {@code true} is returned, otherwise {@code false}.
322   *
323   * @param self a collection which might contain all elements in {@code c}
324   * @param c a collection whose elements might be contained by {@code self}
325   */
326  static boolean containsAllImpl(Collection<?> self, Collection<?> c) {
327    for (Object o : c) {
328      if (!self.contains(o)) {
329        return false;
330      }
331    }
332    return true;
333  }
334
335  /** An implementation of {@link Collection#toString()}. */
336  static String toStringImpl(final Collection<?> collection) {
337    StringBuilder sb = newStringBuilderForCollection(collection.size()).append('[');
338    boolean first = true;
339    for (Object o : collection) {
340      if (!first) {
341        sb.append(", ");
342      }
343      first = false;
344      if (o == collection) {
345        sb.append("(this Collection)");
346      } else {
347        sb.append(o);
348      }
349    }
350    return sb.append(']').toString();
351  }
352
353  /** Returns best-effort-sized StringBuilder based on the given collection size. */
354  static StringBuilder newStringBuilderForCollection(int size) {
355    checkNonnegative(size, "size");
356    return new StringBuilder((int) Math.min(size * 8L, Ints.MAX_POWER_OF_TWO));
357  }
358
359  /**
360   * Returns a {@link Collection} of all the permutations of the specified {@link Iterable}.
361   *
362   * <p><i>Notes:</i> This is an implementation of the algorithm for Lexicographical Permutations
363   * Generation, described in Knuth's "The Art of Computer Programming", Volume 4, Chapter 7,
364   * Section 7.2.1.2. The iteration order follows the lexicographical order. This means that the
365   * first permutation will be in ascending order, and the last will be in descending order.
366   *
367   * <p>Duplicate elements are considered equal. For example, the list [1, 1] will have only one
368   * permutation, instead of two. This is why the elements have to implement {@link Comparable}.
369   *
370   * <p>An empty iterable has only one permutation, which is an empty list.
371   *
372   * <p>This method is equivalent to {@code Collections2.orderedPermutations(list,
373   * Ordering.natural())}.
374   *
375   * @param elements the original iterable whose elements have to be permuted.
376   * @return an immutable {@link Collection} containing all the different permutations of the
377   *     original iterable.
378   * @throws NullPointerException if the specified iterable is null or has any null elements.
379   * @since 12.0
380   */
381  public static <E extends Comparable<? super E>> Collection<List<E>> orderedPermutations(
382      Iterable<E> elements) {
383    return orderedPermutations(elements, Ordering.natural());
384  }
385
386  /**
387   * Returns a {@link Collection} of all the permutations of the specified {@link Iterable} using
388   * the specified {@link Comparator} for establishing the lexicographical ordering.
389   *
390   * <p>Examples:
391   *
392   * <pre>{@code
393   * for (List<String> perm : orderedPermutations(asList("b", "c", "a"))) {
394   *   println(perm);
395   * }
396   * // -> ["a", "b", "c"]
397   * // -> ["a", "c", "b"]
398   * // -> ["b", "a", "c"]
399   * // -> ["b", "c", "a"]
400   * // -> ["c", "a", "b"]
401   * // -> ["c", "b", "a"]
402   *
403   * for (List<Integer> perm : orderedPermutations(asList(1, 2, 2, 1))) {
404   *   println(perm);
405   * }
406   * // -> [1, 1, 2, 2]
407   * // -> [1, 2, 1, 2]
408   * // -> [1, 2, 2, 1]
409   * // -> [2, 1, 1, 2]
410   * // -> [2, 1, 2, 1]
411   * // -> [2, 2, 1, 1]
412   * }</pre>
413   *
414   * <p><i>Notes:</i> This is an implementation of the algorithm for Lexicographical Permutations
415   * Generation, described in Knuth's "The Art of Computer Programming", Volume 4, Chapter 7,
416   * Section 7.2.1.2. The iteration order follows the lexicographical order. This means that the
417   * first permutation will be in ascending order, and the last will be in descending order.
418   *
419   * <p>Elements that compare equal are considered equal and no new permutations are created by
420   * swapping them.
421   *
422   * <p>An empty iterable has only one permutation, which is an empty list.
423   *
424   * @param elements the original iterable whose elements have to be permuted.
425   * @param comparator a comparator for the iterable's elements.
426   * @return an immutable {@link Collection} containing all the different permutations of the
427   *     original iterable.
428   * @throws NullPointerException If the specified iterable is null, has any null elements, or if
429   *     the specified comparator is null.
430   * @since 12.0
431   */
432  public static <E> Collection<List<E>> orderedPermutations(
433      Iterable<E> elements, Comparator<? super E> comparator) {
434    return new OrderedPermutationCollection<E>(elements, comparator);
435  }
436
437  private static final class OrderedPermutationCollection<E> extends AbstractCollection<List<E>> {
438    final ImmutableList<E> inputList;
439    final Comparator<? super E> comparator;
440    final int size;
441
442    OrderedPermutationCollection(Iterable<E> input, Comparator<? super E> comparator) {
443      this.inputList = ImmutableList.sortedCopyOf(comparator, input);
444      this.comparator = comparator;
445      this.size = calculateSize(inputList, comparator);
446    }
447
448    /**
449     * The number of permutations with repeated elements is calculated as follows:
450     *
451     * <ul>
452     *   <li>For an empty list, it is 1 (base case).
453     *   <li>When r numbers are added to a list of n-r elements, the number of permutations is
454     *       increased by a factor of (n choose r).
455     * </ul>
456     */
457    private static <E> int calculateSize(
458        List<E> sortedInputList, Comparator<? super E> comparator) {
459      int permutations = 1;
460      int n = 1;
461      int r = 1;
462      while (n < sortedInputList.size()) {
463        int comparison = comparator.compare(sortedInputList.get(n - 1), sortedInputList.get(n));
464        if (comparison < 0) {
465          // We move to the next non-repeated element.
466          permutations = IntMath.saturatedMultiply(permutations, IntMath.binomial(n, r));
467          r = 0;
468          if (permutations == Integer.MAX_VALUE) {
469            return Integer.MAX_VALUE;
470          }
471        }
472        n++;
473        r++;
474      }
475      return IntMath.saturatedMultiply(permutations, IntMath.binomial(n, r));
476    }
477
478    @Override
479    public int size() {
480      return size;
481    }
482
483    @Override
484    public boolean isEmpty() {
485      return false;
486    }
487
488    @Override
489    public Iterator<List<E>> iterator() {
490      return new OrderedPermutationIterator<E>(inputList, comparator);
491    }
492
493    @Override
494    public boolean contains(@CheckForNull Object obj) {
495      if (obj instanceof List) {
496        List<?> list = (List<?>) obj;
497        return isPermutation(inputList, list);
498      }
499      return false;
500    }
501
502    @Override
503    public String toString() {
504      return "orderedPermutationCollection(" + inputList + ")";
505    }
506  }
507
508  private static final class OrderedPermutationIterator<E> extends AbstractIterator<List<E>> {
509    @CheckForNull List<E> nextPermutation;
510    final Comparator<? super E> comparator;
511
512    OrderedPermutationIterator(List<E> list, Comparator<? super E> comparator) {
513      this.nextPermutation = Lists.newArrayList(list);
514      this.comparator = comparator;
515    }
516
517    @Override
518    @CheckForNull
519    protected List<E> computeNext() {
520      if (nextPermutation == null) {
521        return endOfData();
522      }
523      ImmutableList<E> next = ImmutableList.copyOf(nextPermutation);
524      calculateNextPermutation();
525      return next;
526    }
527
528    void calculateNextPermutation() {
529      int j = findNextJ();
530      if (j == -1) {
531        nextPermutation = null;
532        return;
533      }
534      /*
535       * requireNonNull is safe because we don't clear nextPermutation until we're done calling this
536       * method.
537       */
538      requireNonNull(nextPermutation);
539
540      int l = findNextL(j);
541      Collections.swap(nextPermutation, j, l);
542      int n = nextPermutation.size();
543      Collections.reverse(nextPermutation.subList(j + 1, n));
544    }
545
546    int findNextJ() {
547      /*
548       * requireNonNull is safe because we don't clear nextPermutation until we're done calling this
549       * method.
550       */
551      requireNonNull(nextPermutation);
552      for (int k = nextPermutation.size() - 2; k >= 0; k--) {
553        if (comparator.compare(nextPermutation.get(k), nextPermutation.get(k + 1)) < 0) {
554          return k;
555        }
556      }
557      return -1;
558    }
559
560    int findNextL(int j) {
561      /*
562       * requireNonNull is safe because we don't clear nextPermutation until we're done calling this
563       * method.
564       */
565      requireNonNull(nextPermutation);
566      E ak = nextPermutation.get(j);
567      for (int l = nextPermutation.size() - 1; l > j; l--) {
568        if (comparator.compare(ak, nextPermutation.get(l)) < 0) {
569          return l;
570        }
571      }
572      throw new AssertionError("this statement should be unreachable");
573    }
574  }
575
576  /**
577   * Returns a {@link Collection} of all the permutations of the specified {@link Collection}.
578   *
579   * <p><i>Notes:</i> This is an implementation of the Plain Changes algorithm for permutations
580   * generation, described in Knuth's "The Art of Computer Programming", Volume 4, Chapter 7,
581   * Section 7.2.1.2.
582   *
583   * <p>If the input list contains equal elements, some of the generated permutations will be equal.
584   *
585   * <p>An empty collection has only one permutation, which is an empty list.
586   *
587   * @param elements the original collection whose elements have to be permuted.
588   * @return an immutable {@link Collection} containing all the different permutations of the
589   *     original collection.
590   * @throws NullPointerException if the specified collection is null or has any null elements.
591   * @since 12.0
592   */
593  public static <E> Collection<List<E>> permutations(Collection<E> elements) {
594    return new PermutationCollection<E>(ImmutableList.copyOf(elements));
595  }
596
597  private static final class PermutationCollection<E> extends AbstractCollection<List<E>> {
598    final ImmutableList<E> inputList;
599
600    PermutationCollection(ImmutableList<E> input) {
601      this.inputList = input;
602    }
603
604    @Override
605    public int size() {
606      return IntMath.factorial(inputList.size());
607    }
608
609    @Override
610    public boolean isEmpty() {
611      return false;
612    }
613
614    @Override
615    public Iterator<List<E>> iterator() {
616      return new PermutationIterator<E>(inputList);
617    }
618
619    @Override
620    public boolean contains(@CheckForNull Object obj) {
621      if (obj instanceof List) {
622        List<?> list = (List<?>) obj;
623        return isPermutation(inputList, list);
624      }
625      return false;
626    }
627
628    @Override
629    public String toString() {
630      return "permutations(" + inputList + ")";
631    }
632  }
633
634  private static class PermutationIterator<E> extends AbstractIterator<List<E>> {
635    final List<E> list;
636    final int[] c;
637    final int[] o;
638    int j;
639
640    PermutationIterator(List<E> list) {
641      this.list = new ArrayList<>(list);
642      int n = list.size();
643      c = new int[n];
644      o = new int[n];
645      Arrays.fill(c, 0);
646      Arrays.fill(o, 1);
647      j = Integer.MAX_VALUE;
648    }
649
650    @Override
651    @CheckForNull
652    protected List<E> computeNext() {
653      if (j <= 0) {
654        return endOfData();
655      }
656      ImmutableList<E> next = ImmutableList.copyOf(list);
657      calculateNextPermutation();
658      return next;
659    }
660
661    void calculateNextPermutation() {
662      j = list.size() - 1;
663      int s = 0;
664
665      // Handle the special case of an empty list. Skip the calculation of the
666      // next permutation.
667      if (j == -1) {
668        return;
669      }
670
671      while (true) {
672        int q = c[j] + o[j];
673        if (q < 0) {
674          switchDirection();
675          continue;
676        }
677        if (q == j + 1) {
678          if (j == 0) {
679            break;
680          }
681          s++;
682          switchDirection();
683          continue;
684        }
685
686        Collections.swap(list, j - c[j] + s, j - q + s);
687        c[j] = q;
688        break;
689      }
690    }
691
692    void switchDirection() {
693      o[j] = -o[j];
694      j--;
695    }
696  }
697
698  /** Returns {@code true} if the second list is a permutation of the first. */
699  private static boolean isPermutation(List<?> first, List<?> second) {
700    if (first.size() != second.size()) {
701      return false;
702    }
703    Multiset<?> firstMultiset = HashMultiset.create(first);
704    Multiset<?> secondMultiset = HashMultiset.create(second);
705    return firstMultiset.equals(secondMultiset);
706  }
707}