001/* 002 * Copyright (C) 2014 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.graph; 018 019import static com.google.common.base.Preconditions.checkArgument; 020import static com.google.common.graph.GraphConstants.NODE_NOT_IN_GRAPH; 021import static java.util.Objects.requireNonNull; 022 023import com.google.common.annotations.Beta; 024import com.google.common.base.Objects; 025import com.google.common.collect.ImmutableSet; 026import com.google.common.collect.Iterables; 027import com.google.common.collect.Iterators; 028import com.google.common.collect.Maps; 029import com.google.errorprone.annotations.CanIgnoreReturnValue; 030import java.util.Collection; 031import java.util.HashSet; 032import java.util.Iterator; 033import java.util.Map; 034import java.util.Set; 035import javax.annotation.CheckForNull; 036 037/** 038 * Static utility methods for {@link Graph}, {@link ValueGraph}, and {@link Network} instances. 039 * 040 * @author James Sexton 041 * @author Joshua O'Madadhain 042 * @since 20.0 043 */ 044@Beta 045@ElementTypesAreNonnullByDefault 046public final class Graphs extends GraphsBridgeMethods { 047 048 private Graphs() {} 049 050 // Graph query methods 051 052 /** 053 * Returns true if {@code graph} has at least one cycle. A cycle is defined as a non-empty subset 054 * of edges in a graph arranged to form a path (a sequence of adjacent outgoing edges) starting 055 * and ending with the same node. 056 * 057 * <p>This method will detect any non-empty cycle, including self-loops (a cycle of length 1). 058 */ 059 public static <N> boolean hasCycle(Graph<N> graph) { 060 int numEdges = graph.edges().size(); 061 if (numEdges == 0) { 062 return false; // An edge-free graph is acyclic by definition. 063 } 064 if (!graph.isDirected() && numEdges >= graph.nodes().size()) { 065 return true; // Optimization for the undirected case: at least one cycle must exist. 066 } 067 068 Map<Object, NodeVisitState> visitedNodes = 069 Maps.newHashMapWithExpectedSize(graph.nodes().size()); 070 for (N node : graph.nodes()) { 071 if (subgraphHasCycle(graph, visitedNodes, node, null)) { 072 return true; 073 } 074 } 075 return false; 076 } 077 078 /** 079 * Returns true if {@code network} has at least one cycle. A cycle is defined as a non-empty 080 * subset of edges in a graph arranged to form a path (a sequence of adjacent outgoing edges) 081 * starting and ending with the same node. 082 * 083 * <p>This method will detect any non-empty cycle, including self-loops (a cycle of length 1). 084 */ 085 public static boolean hasCycle(Network<?, ?> network) { 086 // In a directed graph, parallel edges cannot introduce a cycle in an acyclic graph. 087 // However, in an undirected graph, any parallel edge induces a cycle in the graph. 088 if (!network.isDirected() 089 && network.allowsParallelEdges() 090 && network.edges().size() > network.asGraph().edges().size()) { 091 return true; 092 } 093 return hasCycle(network.asGraph()); 094 } 095 096 /** 097 * Performs a traversal of the nodes reachable from {@code node}. If we ever reach a node we've 098 * already visited (following only outgoing edges and without reusing edges), we know there's a 099 * cycle in the graph. 100 */ 101 private static <N> boolean subgraphHasCycle( 102 Graph<N> graph, 103 Map<Object, NodeVisitState> visitedNodes, 104 N node, 105 @CheckForNull N previousNode) { 106 NodeVisitState state = visitedNodes.get(node); 107 if (state == NodeVisitState.COMPLETE) { 108 return false; 109 } 110 if (state == NodeVisitState.PENDING) { 111 return true; 112 } 113 114 visitedNodes.put(node, NodeVisitState.PENDING); 115 for (N nextNode : graph.successors(node)) { 116 if (canTraverseWithoutReusingEdge(graph, nextNode, previousNode) 117 && subgraphHasCycle(graph, visitedNodes, nextNode, node)) { 118 return true; 119 } 120 } 121 visitedNodes.put(node, NodeVisitState.COMPLETE); 122 return false; 123 } 124 125 /** 126 * Determines whether an edge has already been used during traversal. In the directed case a cycle 127 * is always detected before reusing an edge, so no special logic is required. In the undirected 128 * case, we must take care not to "backtrack" over an edge (i.e. going from A to B and then going 129 * from B to A). 130 */ 131 private static boolean canTraverseWithoutReusingEdge( 132 Graph<?> graph, Object nextNode, @CheckForNull Object previousNode) { 133 if (graph.isDirected() || !Objects.equal(previousNode, nextNode)) { 134 return true; 135 } 136 // This falls into the undirected A->B->A case. The Graph interface does not support parallel 137 // edges, so this traversal would require reusing the undirected AB edge. 138 return false; 139 } 140 141 /** 142 * Returns the transitive closure of {@code graph}. The transitive closure of a graph is another 143 * graph with an edge connecting node A to node B if node B is {@link #reachableNodes(Graph, 144 * Object) reachable} from node A. 145 * 146 * <p>This is a "snapshot" based on the current topology of {@code graph}, rather than a live view 147 * of the transitive closure of {@code graph}. In other words, the returned {@link Graph} will not 148 * be updated after modifications to {@code graph}. 149 * 150 * @since 33.1.0 (present with return type {@code Graph} since 20.0) 151 */ 152 // TODO(b/31438252): Consider potential optimizations for this algorithm. 153 public static <N> ImmutableGraph<N> transitiveClosure(Graph<N> graph) { 154 ImmutableGraph.Builder<N> transitiveClosure = 155 GraphBuilder.from(graph).allowsSelfLoops(true).<N>immutable(); 156 // Every node is, at a minimum, reachable from itself. Since the resulting transitive closure 157 // will have no isolated nodes, we can skip adding nodes explicitly and let putEdge() do it. 158 159 if (graph.isDirected()) { 160 // Note: works for both directed and undirected graphs, but we only use in the directed case. 161 for (N node : graph.nodes()) { 162 for (N reachableNode : reachableNodes(graph, node)) { 163 transitiveClosure.putEdge(node, reachableNode); 164 } 165 } 166 } else { 167 // An optimization for the undirected case: for every node B reachable from node A, 168 // node A and node B have the same reachability set. 169 Set<N> visitedNodes = new HashSet<>(); 170 for (N node : graph.nodes()) { 171 if (!visitedNodes.contains(node)) { 172 Set<N> reachableNodes = reachableNodes(graph, node); 173 visitedNodes.addAll(reachableNodes); 174 int pairwiseMatch = 1; // start at 1 to include self-loops 175 for (N nodeU : reachableNodes) { 176 for (N nodeV : Iterables.limit(reachableNodes, pairwiseMatch++)) { 177 transitiveClosure.putEdge(nodeU, nodeV); 178 } 179 } 180 } 181 } 182 } 183 184 return transitiveClosure.build(); 185 } 186 187 /** 188 * Returns the set of nodes that are reachable from {@code node}. Node B is defined as reachable 189 * from node A if there exists a path (a sequence of adjacent outgoing edges) starting at node A 190 * and ending at node B. Note that a node is always reachable from itself via a zero-length path. 191 * 192 * <p>This is a "snapshot" based on the current topology of {@code graph}, rather than a live view 193 * of the set of nodes reachable from {@code node}. In other words, the returned {@link Set} will 194 * not be updated after modifications to {@code graph}. 195 * 196 * @throws IllegalArgumentException if {@code node} is not present in {@code graph} 197 * @since 33.1.0 (present with return type {@code Set} since 20.0) 198 */ 199 public static <N> ImmutableSet<N> reachableNodes(Graph<N> graph, N node) { 200 checkArgument(graph.nodes().contains(node), NODE_NOT_IN_GRAPH, node); 201 return ImmutableSet.copyOf(Traverser.forGraph(graph).breadthFirst(node)); 202 } 203 204 // Graph mutation methods 205 206 // Graph view methods 207 208 /** 209 * Returns a view of {@code graph} with the direction (if any) of every edge reversed. All other 210 * properties remain intact, and further updates to {@code graph} will be reflected in the view. 211 */ 212 public static <N> Graph<N> transpose(Graph<N> graph) { 213 if (!graph.isDirected()) { 214 return graph; // the transpose of an undirected graph is an identical graph 215 } 216 217 if (graph instanceof TransposedGraph) { 218 return ((TransposedGraph<N>) graph).graph; 219 } 220 221 return new TransposedGraph<>(graph); 222 } 223 224 /** 225 * Returns a view of {@code graph} with the direction (if any) of every edge reversed. All other 226 * properties remain intact, and further updates to {@code graph} will be reflected in the view. 227 */ 228 public static <N, V> ValueGraph<N, V> transpose(ValueGraph<N, V> graph) { 229 if (!graph.isDirected()) { 230 return graph; // the transpose of an undirected graph is an identical graph 231 } 232 233 if (graph instanceof TransposedValueGraph) { 234 return ((TransposedValueGraph<N, V>) graph).graph; 235 } 236 237 return new TransposedValueGraph<>(graph); 238 } 239 240 /** 241 * Returns a view of {@code network} with the direction (if any) of every edge reversed. All other 242 * properties remain intact, and further updates to {@code network} will be reflected in the view. 243 */ 244 public static <N, E> Network<N, E> transpose(Network<N, E> network) { 245 if (!network.isDirected()) { 246 return network; // the transpose of an undirected network is an identical network 247 } 248 249 if (network instanceof TransposedNetwork) { 250 return ((TransposedNetwork<N, E>) network).network; 251 } 252 253 return new TransposedNetwork<>(network); 254 } 255 256 static <N> EndpointPair<N> transpose(EndpointPair<N> endpoints) { 257 if (endpoints.isOrdered()) { 258 return EndpointPair.ordered(endpoints.target(), endpoints.source()); 259 } 260 return endpoints; 261 } 262 263 // NOTE: this should work as long as the delegate graph's implementation of edges() (like that of 264 // AbstractGraph) derives its behavior from calling successors(). 265 private static class TransposedGraph<N> extends ForwardingGraph<N> { 266 private final Graph<N> graph; 267 268 TransposedGraph(Graph<N> graph) { 269 this.graph = graph; 270 } 271 272 @Override 273 Graph<N> delegate() { 274 return graph; 275 } 276 277 @Override 278 public Set<N> predecessors(N node) { 279 return delegate().successors(node); // transpose 280 } 281 282 @Override 283 public Set<N> successors(N node) { 284 return delegate().predecessors(node); // transpose 285 } 286 287 @Override 288 public Set<EndpointPair<N>> incidentEdges(N node) { 289 return new IncidentEdgeSet<N>(this, node) { 290 @Override 291 public Iterator<EndpointPair<N>> iterator() { 292 return Iterators.transform( 293 delegate().incidentEdges(node).iterator(), 294 edge -> EndpointPair.of(delegate(), edge.nodeV(), edge.nodeU())); 295 } 296 }; 297 } 298 299 @Override 300 public int inDegree(N node) { 301 return delegate().outDegree(node); // transpose 302 } 303 304 @Override 305 public int outDegree(N node) { 306 return delegate().inDegree(node); // transpose 307 } 308 309 @Override 310 public boolean hasEdgeConnecting(N nodeU, N nodeV) { 311 return delegate().hasEdgeConnecting(nodeV, nodeU); // transpose 312 } 313 314 @Override 315 public boolean hasEdgeConnecting(EndpointPair<N> endpoints) { 316 return delegate().hasEdgeConnecting(transpose(endpoints)); 317 } 318 } 319 320 // NOTE: this should work as long as the delegate graph's implementation of edges() (like that of 321 // AbstractValueGraph) derives its behavior from calling successors(). 322 private static class TransposedValueGraph<N, V> extends ForwardingValueGraph<N, V> { 323 private final ValueGraph<N, V> graph; 324 325 TransposedValueGraph(ValueGraph<N, V> graph) { 326 this.graph = graph; 327 } 328 329 @Override 330 ValueGraph<N, V> delegate() { 331 return graph; 332 } 333 334 @Override 335 public Set<N> predecessors(N node) { 336 return delegate().successors(node); // transpose 337 } 338 339 @Override 340 public Set<N> successors(N node) { 341 return delegate().predecessors(node); // transpose 342 } 343 344 @Override 345 public int inDegree(N node) { 346 return delegate().outDegree(node); // transpose 347 } 348 349 @Override 350 public int outDegree(N node) { 351 return delegate().inDegree(node); // transpose 352 } 353 354 @Override 355 public boolean hasEdgeConnecting(N nodeU, N nodeV) { 356 return delegate().hasEdgeConnecting(nodeV, nodeU); // transpose 357 } 358 359 @Override 360 public boolean hasEdgeConnecting(EndpointPair<N> endpoints) { 361 return delegate().hasEdgeConnecting(transpose(endpoints)); 362 } 363 364 @Override 365 @CheckForNull 366 public V edgeValueOrDefault(N nodeU, N nodeV, @CheckForNull V defaultValue) { 367 return delegate().edgeValueOrDefault(nodeV, nodeU, defaultValue); // transpose 368 } 369 370 @Override 371 @CheckForNull 372 public V edgeValueOrDefault(EndpointPair<N> endpoints, @CheckForNull V defaultValue) { 373 return delegate().edgeValueOrDefault(transpose(endpoints), defaultValue); 374 } 375 } 376 377 private static class TransposedNetwork<N, E> extends ForwardingNetwork<N, E> { 378 private final Network<N, E> network; 379 380 TransposedNetwork(Network<N, E> network) { 381 this.network = network; 382 } 383 384 @Override 385 Network<N, E> delegate() { 386 return network; 387 } 388 389 @Override 390 public Set<N> predecessors(N node) { 391 return delegate().successors(node); // transpose 392 } 393 394 @Override 395 public Set<N> successors(N node) { 396 return delegate().predecessors(node); // transpose 397 } 398 399 @Override 400 public int inDegree(N node) { 401 return delegate().outDegree(node); // transpose 402 } 403 404 @Override 405 public int outDegree(N node) { 406 return delegate().inDegree(node); // transpose 407 } 408 409 @Override 410 public Set<E> inEdges(N node) { 411 return delegate().outEdges(node); // transpose 412 } 413 414 @Override 415 public Set<E> outEdges(N node) { 416 return delegate().inEdges(node); // transpose 417 } 418 419 @Override 420 public EndpointPair<N> incidentNodes(E edge) { 421 EndpointPair<N> endpointPair = delegate().incidentNodes(edge); 422 return EndpointPair.of(network, endpointPair.nodeV(), endpointPair.nodeU()); // transpose 423 } 424 425 @Override 426 public Set<E> edgesConnecting(N nodeU, N nodeV) { 427 return delegate().edgesConnecting(nodeV, nodeU); // transpose 428 } 429 430 @Override 431 public Set<E> edgesConnecting(EndpointPair<N> endpoints) { 432 return delegate().edgesConnecting(transpose(endpoints)); 433 } 434 435 @Override 436 @CheckForNull 437 public E edgeConnectingOrNull(N nodeU, N nodeV) { 438 return delegate().edgeConnectingOrNull(nodeV, nodeU); // transpose 439 } 440 441 @Override 442 @CheckForNull 443 public E edgeConnectingOrNull(EndpointPair<N> endpoints) { 444 return delegate().edgeConnectingOrNull(transpose(endpoints)); 445 } 446 447 @Override 448 public boolean hasEdgeConnecting(N nodeU, N nodeV) { 449 return delegate().hasEdgeConnecting(nodeV, nodeU); // transpose 450 } 451 452 @Override 453 public boolean hasEdgeConnecting(EndpointPair<N> endpoints) { 454 return delegate().hasEdgeConnecting(transpose(endpoints)); 455 } 456 } 457 458 // Graph copy methods 459 460 /** 461 * Returns the subgraph of {@code graph} induced by {@code nodes}. This subgraph is a new graph 462 * that contains all of the nodes in {@code nodes}, and all of the {@link Graph#edges() edges} 463 * from {@code graph} for which both nodes are contained by {@code nodes}. 464 * 465 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 466 */ 467 public static <N> MutableGraph<N> inducedSubgraph(Graph<N> graph, Iterable<? extends N> nodes) { 468 MutableGraph<N> subgraph = 469 (nodes instanceof Collection) 470 ? GraphBuilder.from(graph).expectedNodeCount(((Collection) nodes).size()).build() 471 : GraphBuilder.from(graph).build(); 472 for (N node : nodes) { 473 subgraph.addNode(node); 474 } 475 for (N node : subgraph.nodes()) { 476 for (N successorNode : graph.successors(node)) { 477 if (subgraph.nodes().contains(successorNode)) { 478 subgraph.putEdge(node, successorNode); 479 } 480 } 481 } 482 return subgraph; 483 } 484 485 /** 486 * Returns the subgraph of {@code graph} induced by {@code nodes}. This subgraph is a new graph 487 * that contains all of the nodes in {@code nodes}, and all of the {@link Graph#edges() edges} 488 * (and associated edge values) from {@code graph} for which both nodes are contained by {@code 489 * nodes}. 490 * 491 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 492 */ 493 public static <N, V> MutableValueGraph<N, V> inducedSubgraph( 494 ValueGraph<N, V> graph, Iterable<? extends N> nodes) { 495 MutableValueGraph<N, V> subgraph = 496 (nodes instanceof Collection) 497 ? ValueGraphBuilder.from(graph).expectedNodeCount(((Collection) nodes).size()).build() 498 : ValueGraphBuilder.from(graph).build(); 499 for (N node : nodes) { 500 subgraph.addNode(node); 501 } 502 for (N node : subgraph.nodes()) { 503 for (N successorNode : graph.successors(node)) { 504 if (subgraph.nodes().contains(successorNode)) { 505 // requireNonNull is safe because the endpoint pair comes from the graph. 506 subgraph.putEdgeValue( 507 node, 508 successorNode, 509 requireNonNull(graph.edgeValueOrDefault(node, successorNode, null))); 510 } 511 } 512 } 513 return subgraph; 514 } 515 516 /** 517 * Returns the subgraph of {@code network} induced by {@code nodes}. This subgraph is a new graph 518 * that contains all of the nodes in {@code nodes}, and all of the {@link Network#edges() edges} 519 * from {@code network} for which the {@link Network#incidentNodes(Object) incident nodes} are 520 * both contained by {@code nodes}. 521 * 522 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 523 */ 524 public static <N, E> MutableNetwork<N, E> inducedSubgraph( 525 Network<N, E> network, Iterable<? extends N> nodes) { 526 MutableNetwork<N, E> subgraph = 527 (nodes instanceof Collection) 528 ? NetworkBuilder.from(network).expectedNodeCount(((Collection) nodes).size()).build() 529 : NetworkBuilder.from(network).build(); 530 for (N node : nodes) { 531 subgraph.addNode(node); 532 } 533 for (N node : subgraph.nodes()) { 534 for (E edge : network.outEdges(node)) { 535 N successorNode = network.incidentNodes(edge).adjacentNode(node); 536 if (subgraph.nodes().contains(successorNode)) { 537 subgraph.addEdge(node, successorNode, edge); 538 } 539 } 540 } 541 return subgraph; 542 } 543 544 /** Creates a mutable copy of {@code graph} with the same nodes and edges. */ 545 public static <N> MutableGraph<N> copyOf(Graph<N> graph) { 546 MutableGraph<N> copy = GraphBuilder.from(graph).expectedNodeCount(graph.nodes().size()).build(); 547 for (N node : graph.nodes()) { 548 copy.addNode(node); 549 } 550 for (EndpointPair<N> edge : graph.edges()) { 551 copy.putEdge(edge.nodeU(), edge.nodeV()); 552 } 553 return copy; 554 } 555 556 /** Creates a mutable copy of {@code graph} with the same nodes, edges, and edge values. */ 557 public static <N, V> MutableValueGraph<N, V> copyOf(ValueGraph<N, V> graph) { 558 MutableValueGraph<N, V> copy = 559 ValueGraphBuilder.from(graph).expectedNodeCount(graph.nodes().size()).build(); 560 for (N node : graph.nodes()) { 561 copy.addNode(node); 562 } 563 for (EndpointPair<N> edge : graph.edges()) { 564 // requireNonNull is safe because the endpoint pair comes from the graph. 565 copy.putEdgeValue( 566 edge.nodeU(), 567 edge.nodeV(), 568 requireNonNull(graph.edgeValueOrDefault(edge.nodeU(), edge.nodeV(), null))); 569 } 570 return copy; 571 } 572 573 /** Creates a mutable copy of {@code network} with the same nodes and edges. */ 574 public static <N, E> MutableNetwork<N, E> copyOf(Network<N, E> network) { 575 MutableNetwork<N, E> copy = 576 NetworkBuilder.from(network) 577 .expectedNodeCount(network.nodes().size()) 578 .expectedEdgeCount(network.edges().size()) 579 .build(); 580 for (N node : network.nodes()) { 581 copy.addNode(node); 582 } 583 for (E edge : network.edges()) { 584 EndpointPair<N> endpointPair = network.incidentNodes(edge); 585 copy.addEdge(endpointPair.nodeU(), endpointPair.nodeV(), edge); 586 } 587 return copy; 588 } 589 590 @CanIgnoreReturnValue 591 static int checkNonNegative(int value) { 592 checkArgument(value >= 0, "Not true that %s is non-negative.", value); 593 return value; 594 } 595 596 @CanIgnoreReturnValue 597 static long checkNonNegative(long value) { 598 checkArgument(value >= 0, "Not true that %s is non-negative.", value); 599 return value; 600 } 601 602 @CanIgnoreReturnValue 603 static int checkPositive(int value) { 604 checkArgument(value > 0, "Not true that %s is positive.", value); 605 return value; 606 } 607 608 @CanIgnoreReturnValue 609 static long checkPositive(long value) { 610 checkArgument(value > 0, "Not true that %s is positive.", value); 611 return value; 612 } 613 614 /** 615 * An enum representing the state of a node during DFS. {@code PENDING} means that the node is on 616 * the stack of the DFS, while {@code COMPLETE} means that the node and all its successors have 617 * been already explored. Any node that has not been explored will not have a state at all. 618 */ 619 private enum NodeVisitState { 620 PENDING, 621 COMPLETE 622 } 623}