001/*
002 * Copyright (C) 2008 The Guava Authors
003 *
004 * Licensed under the Apache License, Version 2.0 (the "License");
005 * you may not use this file except in compliance with the License.
006 * You may obtain a copy of the License at
007 *
008 * http://www.apache.org/licenses/LICENSE-2.0
009 *
010 * Unless required by applicable law or agreed to in writing, software
011 * distributed under the License is distributed on an "AS IS" BASIS,
012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
013 * See the License for the specific language governing permissions and
014 * limitations under the License.
015 */
016
017package com.google.common.collect;
018
019import static com.google.common.base.Preconditions.checkArgument;
020import static com.google.common.base.Preconditions.checkNotNull;
021import static com.google.common.collect.CollectPreconditions.checkNonnegative;
022import static java.util.Objects.requireNonNull;
023
024import com.google.common.annotations.GwtCompatible;
025import com.google.common.base.Function;
026import com.google.common.base.Predicate;
027import com.google.common.base.Predicates;
028import com.google.common.math.IntMath;
029import com.google.common.primitives.Ints;
030import java.util.AbstractCollection;
031import java.util.ArrayList;
032import java.util.Arrays;
033import java.util.Collection;
034import java.util.Collections;
035import java.util.Comparator;
036import java.util.Iterator;
037import java.util.List;
038import javax.annotation.CheckForNull;
039import org.checkerframework.checker.nullness.qual.Nullable;
040
041/**
042 * Provides static methods for working with {@code Collection} instances.
043 *
044 * <p><b>Java 8+ users:</b> several common uses for this class are now more comprehensively
045 * addressed by the new {@link java.util.stream.Stream} library. Read the method documentation below
046 * for comparisons. These methods are not being deprecated, but we gently encourage you to migrate
047 * to streams.
048 *
049 * @author Chris Povirk
050 * @author Mike Bostock
051 * @author Jared Levy
052 * @since 2.0
053 */
054@GwtCompatible
055@ElementTypesAreNonnullByDefault
056public final class Collections2 {
057  private Collections2() {}
058
059  /**
060   * Returns the elements of {@code unfiltered} that satisfy a predicate. The returned collection is
061   * a live view of {@code unfiltered}; changes to one affect the other.
062   *
063   * <p>The resulting collection's iterator does not support {@code remove()}, but all other
064   * collection methods are supported. When given an element that doesn't satisfy the predicate, the
065   * collection's {@code add()} and {@code addAll()} methods throw an {@link
066   * IllegalArgumentException}. When methods such as {@code removeAll()} and {@code clear()} are
067   * called on the filtered collection, only elements that satisfy the filter will be removed from
068   * the underlying collection.
069   *
070   * <p>The returned collection isn't threadsafe or serializable, even if {@code unfiltered} is.
071   *
072   * <p>Many of the filtered collection's methods, such as {@code size()}, iterate across every
073   * element in the underlying collection and determine which elements satisfy the filter. When a
074   * live view is <i>not</i> needed, it may be faster to copy {@code Iterables.filter(unfiltered,
075   * predicate)} and use the copy.
076   *
077   * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as documented at
078   * {@link Predicate#apply}. Do not provide a predicate such as {@code
079   * Predicates.instanceOf(ArrayList.class)}, which is inconsistent with equals. (See {@link
080   * Iterables#filter(Iterable, Class)} for related functionality.)
081   *
082   * <p><b>{@code Stream} equivalent:</b> {@link java.util.stream.Stream#filter Stream.filter}.
083   */
084  // TODO(kevinb): how can we omit that Iterables link when building gwt
085  // javadoc?
086  public static <E extends @Nullable Object> Collection<E> filter(
087      Collection<E> unfiltered, Predicate<? super E> predicate) {
088    if (unfiltered instanceof FilteredCollection) {
089      // Support clear(), removeAll(), and retainAll() when filtering a filtered
090      // collection.
091      return ((FilteredCollection<E>) unfiltered).createCombined(predicate);
092    }
093
094    return new FilteredCollection<>(checkNotNull(unfiltered), checkNotNull(predicate));
095  }
096
097  /**
098   * Delegates to {@link Collection#contains}. Returns {@code false} if the {@code contains} method
099   * throws a {@code ClassCastException} or {@code NullPointerException}.
100   */
101  static boolean safeContains(Collection<?> collection, @CheckForNull Object object) {
102    checkNotNull(collection);
103    try {
104      return collection.contains(object);
105    } catch (ClassCastException | NullPointerException e) {
106      return false;
107    }
108  }
109
110  /**
111   * Delegates to {@link Collection#remove}. Returns {@code false} if the {@code remove} method
112   * throws a {@code ClassCastException} or {@code NullPointerException}.
113   */
114  static boolean safeRemove(Collection<?> collection, @CheckForNull Object object) {
115    checkNotNull(collection);
116    try {
117      return collection.remove(object);
118    } catch (ClassCastException | NullPointerException e) {
119      return false;
120    }
121  }
122
123  static class FilteredCollection<E extends @Nullable Object> extends AbstractCollection<E> {
124    final Collection<E> unfiltered;
125    final Predicate<? super E> predicate;
126
127    FilteredCollection(Collection<E> unfiltered, Predicate<? super E> predicate) {
128      this.unfiltered = unfiltered;
129      this.predicate = predicate;
130    }
131
132    FilteredCollection<E> createCombined(Predicate<? super E> newPredicate) {
133      return new FilteredCollection<>(unfiltered, Predicates.and(predicate, newPredicate));
134    }
135
136    @Override
137    public boolean add(@ParametricNullness E element) {
138      checkArgument(predicate.apply(element));
139      return unfiltered.add(element);
140    }
141
142    @Override
143    public boolean addAll(Collection<? extends E> collection) {
144      for (E element : collection) {
145        checkArgument(predicate.apply(element));
146      }
147      return unfiltered.addAll(collection);
148    }
149
150    @Override
151    public void clear() {
152      Iterables.removeIf(unfiltered, predicate);
153    }
154
155    @Override
156    public boolean contains(@CheckForNull Object element) {
157      if (safeContains(unfiltered, element)) {
158        @SuppressWarnings("unchecked") // element is in unfiltered, so it must be an E
159        E e = (E) element;
160        return predicate.apply(e);
161      }
162      return false;
163    }
164
165    @Override
166    public boolean containsAll(Collection<?> collection) {
167      return containsAllImpl(this, collection);
168    }
169
170    @Override
171    public boolean isEmpty() {
172      return !Iterables.any(unfiltered, predicate);
173    }
174
175    @Override
176    public Iterator<E> iterator() {
177      return Iterators.filter(unfiltered.iterator(), predicate);
178    }
179
180    @Override
181    public boolean remove(@CheckForNull Object element) {
182      return contains(element) && unfiltered.remove(element);
183    }
184
185    @Override
186    public boolean removeAll(final Collection<?> collection) {
187      boolean changed = false;
188      Iterator<E> itr = unfiltered.iterator();
189      while (itr.hasNext()) {
190        E e = itr.next();
191        if (predicate.apply(e) && collection.contains(e)) {
192          itr.remove();
193          changed = true;
194        }
195      }
196      return changed;
197    }
198
199    @Override
200    public boolean retainAll(final Collection<?> collection) {
201      boolean changed = false;
202      Iterator<E> itr = unfiltered.iterator();
203      while (itr.hasNext()) {
204        E e = itr.next();
205        if (predicate.apply(e) && !collection.contains(e)) {
206          itr.remove();
207          changed = true;
208        }
209      }
210      return changed;
211    }
212
213    @Override
214    public int size() {
215      int size = 0;
216      for (E e : unfiltered) {
217        if (predicate.apply(e)) {
218          size++;
219        }
220      }
221      return size;
222    }
223
224    @Override
225    public @Nullable Object[] toArray() {
226      // creating an ArrayList so filtering happens once
227      return Lists.newArrayList(iterator()).toArray();
228    }
229
230    @Override
231    @SuppressWarnings("nullness") // b/192354773 in our checker affects toArray declarations
232    public <T extends @Nullable Object> T[] toArray(T[] array) {
233      return Lists.newArrayList(iterator()).toArray(array);
234    }
235  }
236
237  /**
238   * Returns a collection that applies {@code function} to each element of {@code fromCollection}.
239   * The returned collection is a live view of {@code fromCollection}; changes to one affect the
240   * other.
241   *
242   * <p>The returned collection's {@code add()} and {@code addAll()} methods throw an {@link
243   * UnsupportedOperationException}. All other collection methods are supported, as long as {@code
244   * fromCollection} supports them.
245   *
246   * <p>The returned collection isn't threadsafe or serializable, even if {@code fromCollection} is.
247   *
248   * <p>When a live view is <i>not</i> needed, it may be faster to copy the transformed collection
249   * and use the copy.
250   *
251   * <p>If the input {@code Collection} is known to be a {@code List}, consider {@link
252   * Lists#transform}. If only an {@code Iterable} is available, use {@link Iterables#transform}.
253   *
254   * <p><b>{@code Stream} equivalent:</b> {@link java.util.stream.Stream#map Stream.map}.
255   */
256  public static <F extends @Nullable Object, T extends @Nullable Object> Collection<T> transform(
257      Collection<F> fromCollection, Function<? super F, T> function) {
258    return new TransformedCollection<>(fromCollection, function);
259  }
260
261  static class TransformedCollection<F extends @Nullable Object, T extends @Nullable Object>
262      extends AbstractCollection<T> {
263    final Collection<F> fromCollection;
264    final Function<? super F, ? extends T> function;
265
266    TransformedCollection(Collection<F> fromCollection, Function<? super F, ? extends T> function) {
267      this.fromCollection = checkNotNull(fromCollection);
268      this.function = checkNotNull(function);
269    }
270
271    @Override
272    public void clear() {
273      fromCollection.clear();
274    }
275
276    @Override
277    public boolean isEmpty() {
278      return fromCollection.isEmpty();
279    }
280
281    @Override
282    public Iterator<T> iterator() {
283      return Iterators.transform(fromCollection.iterator(), function);
284    }
285
286    @Override
287    public int size() {
288      return fromCollection.size();
289    }
290  }
291
292  /**
293   * Returns {@code true} if the collection {@code self} contains all of the elements in the
294   * collection {@code c}.
295   *
296   * <p>This method iterates over the specified collection {@code c}, checking each element returned
297   * by the iterator in turn to see if it is contained in the specified collection {@code self}. If
298   * all elements are so contained, {@code true} is returned, otherwise {@code false}.
299   *
300   * @param self a collection which might contain all elements in {@code c}
301   * @param c a collection whose elements might be contained by {@code self}
302   */
303  static boolean containsAllImpl(Collection<?> self, Collection<?> c) {
304    for (Object o : c) {
305      if (!self.contains(o)) {
306        return false;
307      }
308    }
309    return true;
310  }
311
312  /** An implementation of {@link Collection#toString()}. */
313  static String toStringImpl(final Collection<?> collection) {
314    StringBuilder sb = newStringBuilderForCollection(collection.size()).append('[');
315    boolean first = true;
316    for (Object o : collection) {
317      if (!first) {
318        sb.append(", ");
319      }
320      first = false;
321      if (o == collection) {
322        sb.append("(this Collection)");
323      } else {
324        sb.append(o);
325      }
326    }
327    return sb.append(']').toString();
328  }
329
330  /** Returns best-effort-sized StringBuilder based on the given collection size. */
331  static StringBuilder newStringBuilderForCollection(int size) {
332    checkNonnegative(size, "size");
333    return new StringBuilder((int) Math.min(size * 8L, Ints.MAX_POWER_OF_TWO));
334  }
335
336  /**
337   * Returns a {@link Collection} of all the permutations of the specified {@link Iterable}.
338   *
339   * <p><i>Notes:</i> This is an implementation of the algorithm for Lexicographical Permutations
340   * Generation, described in Knuth's "The Art of Computer Programming", Volume 4, Chapter 7,
341   * Section 7.2.1.2. The iteration order follows the lexicographical order. This means that the
342   * first permutation will be in ascending order, and the last will be in descending order.
343   *
344   * <p>Duplicate elements are considered equal. For example, the list [1, 1] will have only one
345   * permutation, instead of two. This is why the elements have to implement {@link Comparable}.
346   *
347   * <p>An empty iterable has only one permutation, which is an empty list.
348   *
349   * <p>This method is equivalent to {@code Collections2.orderedPermutations(list,
350   * Ordering.natural())}.
351   *
352   * @param elements the original iterable whose elements have to be permuted.
353   * @return an immutable {@link Collection} containing all the different permutations of the
354   *     original iterable.
355   * @throws NullPointerException if the specified iterable is null or has any null elements.
356   * @since 12.0
357   */
358  public static <E extends Comparable<? super E>> Collection<List<E>> orderedPermutations(
359      Iterable<E> elements) {
360    return orderedPermutations(elements, Ordering.natural());
361  }
362
363  /**
364   * Returns a {@link Collection} of all the permutations of the specified {@link Iterable} using
365   * the specified {@link Comparator} for establishing the lexicographical ordering.
366   *
367   * <p>Examples:
368   *
369   * <pre>{@code
370   * for (List<String> perm : orderedPermutations(asList("b", "c", "a"))) {
371   *   println(perm);
372   * }
373   * // -> ["a", "b", "c"]
374   * // -> ["a", "c", "b"]
375   * // -> ["b", "a", "c"]
376   * // -> ["b", "c", "a"]
377   * // -> ["c", "a", "b"]
378   * // -> ["c", "b", "a"]
379   *
380   * for (List<Integer> perm : orderedPermutations(asList(1, 2, 2, 1))) {
381   *   println(perm);
382   * }
383   * // -> [1, 1, 2, 2]
384   * // -> [1, 2, 1, 2]
385   * // -> [1, 2, 2, 1]
386   * // -> [2, 1, 1, 2]
387   * // -> [2, 1, 2, 1]
388   * // -> [2, 2, 1, 1]
389   * }</pre>
390   *
391   * <p><i>Notes:</i> This is an implementation of the algorithm for Lexicographical Permutations
392   * Generation, described in Knuth's "The Art of Computer Programming", Volume 4, Chapter 7,
393   * Section 7.2.1.2. The iteration order follows the lexicographical order. This means that the
394   * first permutation will be in ascending order, and the last will be in descending order.
395   *
396   * <p>Elements that compare equal are considered equal and no new permutations are created by
397   * swapping them.
398   *
399   * <p>An empty iterable has only one permutation, which is an empty list.
400   *
401   * @param elements the original iterable whose elements have to be permuted.
402   * @param comparator a comparator for the iterable's elements.
403   * @return an immutable {@link Collection} containing all the different permutations of the
404   *     original iterable.
405   * @throws NullPointerException If the specified iterable is null, has any null elements, or if
406   *     the specified comparator is null.
407   * @since 12.0
408   */
409  public static <E> Collection<List<E>> orderedPermutations(
410      Iterable<E> elements, Comparator<? super E> comparator) {
411    return new OrderedPermutationCollection<E>(elements, comparator);
412  }
413
414  private static final class OrderedPermutationCollection<E> extends AbstractCollection<List<E>> {
415    final ImmutableList<E> inputList;
416    final Comparator<? super E> comparator;
417    final int size;
418
419    OrderedPermutationCollection(Iterable<E> input, Comparator<? super E> comparator) {
420      this.inputList = ImmutableList.sortedCopyOf(comparator, input);
421      this.comparator = comparator;
422      this.size = calculateSize(inputList, comparator);
423    }
424
425    /**
426     * The number of permutations with repeated elements is calculated as follows:
427     *
428     * <ul>
429     *   <li>For an empty list, it is 1 (base case).
430     *   <li>When r numbers are added to a list of n-r elements, the number of permutations is
431     *       increased by a factor of (n choose r).
432     * </ul>
433     */
434    private static <E> int calculateSize(
435        List<E> sortedInputList, Comparator<? super E> comparator) {
436      int permutations = 1;
437      int n = 1;
438      int r = 1;
439      while (n < sortedInputList.size()) {
440        int comparison = comparator.compare(sortedInputList.get(n - 1), sortedInputList.get(n));
441        if (comparison < 0) {
442          // We move to the next non-repeated element.
443          permutations = IntMath.saturatedMultiply(permutations, IntMath.binomial(n, r));
444          r = 0;
445          if (permutations == Integer.MAX_VALUE) {
446            return Integer.MAX_VALUE;
447          }
448        }
449        n++;
450        r++;
451      }
452      return IntMath.saturatedMultiply(permutations, IntMath.binomial(n, r));
453    }
454
455    @Override
456    public int size() {
457      return size;
458    }
459
460    @Override
461    public boolean isEmpty() {
462      return false;
463    }
464
465    @Override
466    public Iterator<List<E>> iterator() {
467      return new OrderedPermutationIterator<E>(inputList, comparator);
468    }
469
470    @Override
471    public boolean contains(@CheckForNull Object obj) {
472      if (obj instanceof List) {
473        List<?> list = (List<?>) obj;
474        return isPermutation(inputList, list);
475      }
476      return false;
477    }
478
479    @Override
480    public String toString() {
481      return "orderedPermutationCollection(" + inputList + ")";
482    }
483  }
484
485  private static final class OrderedPermutationIterator<E> extends AbstractIterator<List<E>> {
486    @CheckForNull List<E> nextPermutation;
487    final Comparator<? super E> comparator;
488
489    OrderedPermutationIterator(List<E> list, Comparator<? super E> comparator) {
490      this.nextPermutation = Lists.newArrayList(list);
491      this.comparator = comparator;
492    }
493
494    @Override
495    @CheckForNull
496    protected List<E> computeNext() {
497      if (nextPermutation == null) {
498        return endOfData();
499      }
500      ImmutableList<E> next = ImmutableList.copyOf(nextPermutation);
501      calculateNextPermutation();
502      return next;
503    }
504
505    void calculateNextPermutation() {
506      int j = findNextJ();
507      if (j == -1) {
508        nextPermutation = null;
509        return;
510      }
511      /*
512       * requireNonNull is safe because we don't clear nextPermutation until we're done calling this
513       * method.
514       */
515      requireNonNull(nextPermutation);
516
517      int l = findNextL(j);
518      Collections.swap(nextPermutation, j, l);
519      int n = nextPermutation.size();
520      Collections.reverse(nextPermutation.subList(j + 1, n));
521    }
522
523    int findNextJ() {
524      /*
525       * requireNonNull is safe because we don't clear nextPermutation until we're done calling this
526       * method.
527       */
528      requireNonNull(nextPermutation);
529      for (int k = nextPermutation.size() - 2; k >= 0; k--) {
530        if (comparator.compare(nextPermutation.get(k), nextPermutation.get(k + 1)) < 0) {
531          return k;
532        }
533      }
534      return -1;
535    }
536
537    int findNextL(int j) {
538      /*
539       * requireNonNull is safe because we don't clear nextPermutation until we're done calling this
540       * method.
541       */
542      requireNonNull(nextPermutation);
543      E ak = nextPermutation.get(j);
544      for (int l = nextPermutation.size() - 1; l > j; l--) {
545        if (comparator.compare(ak, nextPermutation.get(l)) < 0) {
546          return l;
547        }
548      }
549      throw new AssertionError("this statement should be unreachable");
550    }
551  }
552
553  /**
554   * Returns a {@link Collection} of all the permutations of the specified {@link Collection}.
555   *
556   * <p><i>Notes:</i> This is an implementation of the Plain Changes algorithm for permutations
557   * generation, described in Knuth's "The Art of Computer Programming", Volume 4, Chapter 7,
558   * Section 7.2.1.2.
559   *
560   * <p>If the input list contains equal elements, some of the generated permutations will be equal.
561   *
562   * <p>An empty collection has only one permutation, which is an empty list.
563   *
564   * @param elements the original collection whose elements have to be permuted.
565   * @return an immutable {@link Collection} containing all the different permutations of the
566   *     original collection.
567   * @throws NullPointerException if the specified collection is null or has any null elements.
568   * @since 12.0
569   */
570  public static <E> Collection<List<E>> permutations(Collection<E> elements) {
571    return new PermutationCollection<E>(ImmutableList.copyOf(elements));
572  }
573
574  private static final class PermutationCollection<E> extends AbstractCollection<List<E>> {
575    final ImmutableList<E> inputList;
576
577    PermutationCollection(ImmutableList<E> input) {
578      this.inputList = input;
579    }
580
581    @Override
582    public int size() {
583      return IntMath.factorial(inputList.size());
584    }
585
586    @Override
587    public boolean isEmpty() {
588      return false;
589    }
590
591    @Override
592    public Iterator<List<E>> iterator() {
593      return new PermutationIterator<E>(inputList);
594    }
595
596    @Override
597    public boolean contains(@CheckForNull Object obj) {
598      if (obj instanceof List) {
599        List<?> list = (List<?>) obj;
600        return isPermutation(inputList, list);
601      }
602      return false;
603    }
604
605    @Override
606    public String toString() {
607      return "permutations(" + inputList + ")";
608    }
609  }
610
611  private static class PermutationIterator<E> extends AbstractIterator<List<E>> {
612    final List<E> list;
613    final int[] c;
614    final int[] o;
615    int j;
616
617    PermutationIterator(List<E> list) {
618      this.list = new ArrayList<>(list);
619      int n = list.size();
620      c = new int[n];
621      o = new int[n];
622      Arrays.fill(c, 0);
623      Arrays.fill(o, 1);
624      j = Integer.MAX_VALUE;
625    }
626
627    @Override
628    @CheckForNull
629    protected List<E> computeNext() {
630      if (j <= 0) {
631        return endOfData();
632      }
633      ImmutableList<E> next = ImmutableList.copyOf(list);
634      calculateNextPermutation();
635      return next;
636    }
637
638    void calculateNextPermutation() {
639      j = list.size() - 1;
640      int s = 0;
641
642      // Handle the special case of an empty list. Skip the calculation of the
643      // next permutation.
644      if (j == -1) {
645        return;
646      }
647
648      while (true) {
649        int q = c[j] + o[j];
650        if (q < 0) {
651          switchDirection();
652          continue;
653        }
654        if (q == j + 1) {
655          if (j == 0) {
656            break;
657          }
658          s++;
659          switchDirection();
660          continue;
661        }
662
663        Collections.swap(list, j - c[j] + s, j - q + s);
664        c[j] = q;
665        break;
666      }
667    }
668
669    void switchDirection() {
670      o[j] = -o[j];
671      j--;
672    }
673  }
674
675  /** Returns {@code true} if the second list is a permutation of the first. */
676  private static boolean isPermutation(List<?> first, List<?> second) {
677    if (first.size() != second.size()) {
678      return false;
679    }
680    ObjectCountHashMap<?> firstCounts = counts(first);
681    ObjectCountHashMap<?> secondCounts = counts(second);
682    if (first.size() != second.size()) {
683      return false;
684    }
685    for (int i = 0; i < first.size(); i++) {
686      if (firstCounts.getValue(i) != secondCounts.get(firstCounts.getKey(i))) {
687        return false;
688      }
689    }
690    return true;
691  }
692
693  private static <E extends @Nullable Object> ObjectCountHashMap<E> counts(
694      Collection<E> collection) {
695    ObjectCountHashMap<E> map = new ObjectCountHashMap<>();
696    for (E e : collection) {
697      map.put(e, map.get(e) + 1);
698    }
699    return map;
700  }
701}