001/* 002 * Copyright (C) 2008 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 005 * in compliance with the License. You may obtain a copy of the License at 006 * 007 * http://www.apache.org/licenses/LICENSE-2.0 008 * 009 * Unless required by applicable law or agreed to in writing, software distributed under the License 010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express 011 * or implied. See the License for the specific language governing permissions and limitations under 012 * the License. 013 */ 014 015package com.google.common.primitives; 016 017import static com.google.common.base.Preconditions.checkArgument; 018import static com.google.common.base.Preconditions.checkElementIndex; 019import static com.google.common.base.Preconditions.checkNotNull; 020import static com.google.common.base.Preconditions.checkPositionIndexes; 021import static com.google.common.base.Strings.lenientFormat; 022import static java.lang.Double.NEGATIVE_INFINITY; 023import static java.lang.Double.POSITIVE_INFINITY; 024 025import com.google.common.annotations.GwtCompatible; 026import com.google.common.annotations.GwtIncompatible; 027import com.google.common.base.Converter; 028import java.io.Serializable; 029import java.util.AbstractList; 030import java.util.Arrays; 031import java.util.Collection; 032import java.util.Collections; 033import java.util.Comparator; 034import java.util.List; 035import java.util.RandomAccess; 036import javax.annotation.CheckForNull; 037 038/** 039 * Static utility methods pertaining to {@code double} primitives, that are not already found in 040 * either {@link Double} or {@link Arrays}. 041 * 042 * <p>See the Guava User Guide article on <a 043 * href="https://github.com/google/guava/wiki/PrimitivesExplained">primitive utilities</a>. 044 * 045 * @author Kevin Bourrillion 046 * @since 1.0 047 */ 048@GwtCompatible(emulated = true) 049@ElementTypesAreNonnullByDefault 050public final class Doubles extends DoublesMethodsForWeb { 051 private Doubles() {} 052 053 /** 054 * The number of bytes required to represent a primitive {@code double} value. 055 * 056 * <p><b>Java 8+ users:</b> use {@link Double#BYTES} instead. 057 * 058 * @since 10.0 059 */ 060 public static final int BYTES = Double.SIZE / Byte.SIZE; 061 062 /** 063 * Returns a hash code for {@code value}; equal to the result of invoking {@code ((Double) 064 * value).hashCode()}. 065 * 066 * <p><b>Java 8+ users:</b> use {@link Double#hashCode(double)} instead. 067 * 068 * @param value a primitive {@code double} value 069 * @return a hash code for the value 070 */ 071 public static int hashCode(double value) { 072 return ((Double) value).hashCode(); 073 // TODO(kevinb): do it this way when we can (GWT problem): 074 // long bits = Double.doubleToLongBits(value); 075 // return (int) (bits ^ (bits >>> 32)); 076 } 077 078 /** 079 * Compares the two specified {@code double} values. The sign of the value returned is the same as 080 * that of <code>((Double) a).{@linkplain Double#compareTo compareTo}(b)</code>. As with that 081 * method, {@code NaN} is treated as greater than all other values, and {@code 0.0 > -0.0}. 082 * 083 * <p><b>Note:</b> this method simply delegates to the JDK method {@link Double#compare}. It is 084 * provided for consistency with the other primitive types, whose compare methods were not added 085 * to the JDK until JDK 7. 086 * 087 * @param a the first {@code double} to compare 088 * @param b the second {@code double} to compare 089 * @return a negative value if {@code a} is less than {@code b}; a positive value if {@code a} is 090 * greater than {@code b}; or zero if they are equal 091 */ 092 public static int compare(double a, double b) { 093 return Double.compare(a, b); 094 } 095 096 /** 097 * Returns {@code true} if {@code value} represents a real number. This is equivalent to, but not 098 * necessarily implemented as, {@code !(Double.isInfinite(value) || Double.isNaN(value))}. 099 * 100 * <p><b>Java 8+ users:</b> use {@link Double#isFinite(double)} instead. 101 * 102 * @since 10.0 103 */ 104 public static boolean isFinite(double value) { 105 return NEGATIVE_INFINITY < value && value < POSITIVE_INFINITY; 106 } 107 108 /** 109 * Returns {@code true} if {@code target} is present as an element anywhere in {@code array}. Note 110 * that this always returns {@code false} when {@code target} is {@code NaN}. 111 * 112 * @param array an array of {@code double} values, possibly empty 113 * @param target a primitive {@code double} value 114 * @return {@code true} if {@code array[i] == target} for some value of {@code i} 115 */ 116 public static boolean contains(double[] array, double target) { 117 for (double value : array) { 118 if (value == target) { 119 return true; 120 } 121 } 122 return false; 123 } 124 125 /** 126 * Returns the index of the first appearance of the value {@code target} in {@code array}. Note 127 * that this always returns {@code -1} when {@code target} is {@code NaN}. 128 * 129 * @param array an array of {@code double} values, possibly empty 130 * @param target a primitive {@code double} value 131 * @return the least index {@code i} for which {@code array[i] == target}, or {@code -1} if no 132 * such index exists. 133 */ 134 public static int indexOf(double[] array, double target) { 135 return indexOf(array, target, 0, array.length); 136 } 137 138 // TODO(kevinb): consider making this public 139 private static int indexOf(double[] array, double target, int start, int end) { 140 for (int i = start; i < end; i++) { 141 if (array[i] == target) { 142 return i; 143 } 144 } 145 return -1; 146 } 147 148 /** 149 * Returns the start position of the first occurrence of the specified {@code target} within 150 * {@code array}, or {@code -1} if there is no such occurrence. 151 * 152 * <p>More formally, returns the lowest index {@code i} such that {@code Arrays.copyOfRange(array, 153 * i, i + target.length)} contains exactly the same elements as {@code target}. 154 * 155 * <p>Note that this always returns {@code -1} when {@code target} contains {@code NaN}. 156 * 157 * @param array the array to search for the sequence {@code target} 158 * @param target the array to search for as a sub-sequence of {@code array} 159 */ 160 public static int indexOf(double[] array, double[] target) { 161 checkNotNull(array, "array"); 162 checkNotNull(target, "target"); 163 if (target.length == 0) { 164 return 0; 165 } 166 167 outer: 168 for (int i = 0; i < array.length - target.length + 1; i++) { 169 for (int j = 0; j < target.length; j++) { 170 if (array[i + j] != target[j]) { 171 continue outer; 172 } 173 } 174 return i; 175 } 176 return -1; 177 } 178 179 /** 180 * Returns the index of the last appearance of the value {@code target} in {@code array}. Note 181 * that this always returns {@code -1} when {@code target} is {@code NaN}. 182 * 183 * @param array an array of {@code double} values, possibly empty 184 * @param target a primitive {@code double} value 185 * @return the greatest index {@code i} for which {@code array[i] == target}, or {@code -1} if no 186 * such index exists. 187 */ 188 public static int lastIndexOf(double[] array, double target) { 189 return lastIndexOf(array, target, 0, array.length); 190 } 191 192 // TODO(kevinb): consider making this public 193 private static int lastIndexOf(double[] array, double target, int start, int end) { 194 for (int i = end - 1; i >= start; i--) { 195 if (array[i] == target) { 196 return i; 197 } 198 } 199 return -1; 200 } 201 202 /** 203 * Returns the least value present in {@code array}, using the same rules of comparison as {@link 204 * Math#min(double, double)}. 205 * 206 * @param array a <i>nonempty</i> array of {@code double} values 207 * @return the value present in {@code array} that is less than or equal to every other value in 208 * the array 209 * @throws IllegalArgumentException if {@code array} is empty 210 */ 211 @GwtIncompatible( 212 "Available in GWT! Annotation is to avoid conflict with GWT specialization of base class.") 213 public static double min(double... array) { 214 checkArgument(array.length > 0); 215 double min = array[0]; 216 for (int i = 1; i < array.length; i++) { 217 min = Math.min(min, array[i]); 218 } 219 return min; 220 } 221 222 /** 223 * Returns the greatest value present in {@code array}, using the same rules of comparison as 224 * {@link Math#max(double, double)}. 225 * 226 * @param array a <i>nonempty</i> array of {@code double} values 227 * @return the value present in {@code array} that is greater than or equal to every other value 228 * in the array 229 * @throws IllegalArgumentException if {@code array} is empty 230 */ 231 @GwtIncompatible( 232 "Available in GWT! Annotation is to avoid conflict with GWT specialization of base class.") 233 public static double max(double... array) { 234 checkArgument(array.length > 0); 235 double max = array[0]; 236 for (int i = 1; i < array.length; i++) { 237 max = Math.max(max, array[i]); 238 } 239 return max; 240 } 241 242 /** 243 * Returns the value nearest to {@code value} which is within the closed range {@code [min..max]}. 244 * 245 * <p>If {@code value} is within the range {@code [min..max]}, {@code value} is returned 246 * unchanged. If {@code value} is less than {@code min}, {@code min} is returned, and if {@code 247 * value} is greater than {@code max}, {@code max} is returned. 248 * 249 * @param value the {@code double} value to constrain 250 * @param min the lower bound (inclusive) of the range to constrain {@code value} to 251 * @param max the upper bound (inclusive) of the range to constrain {@code value} to 252 * @throws IllegalArgumentException if {@code min > max} 253 * @since 21.0 254 */ 255 public static double constrainToRange(double value, double min, double max) { 256 // avoid auto-boxing by not using Preconditions.checkArgument(); see Guava issue 3984 257 // Reject NaN by testing for the good case (min <= max) instead of the bad (min > max). 258 if (min <= max) { 259 return Math.min(Math.max(value, min), max); 260 } 261 throw new IllegalArgumentException( 262 lenientFormat("min (%s) must be less than or equal to max (%s)", min, max)); 263 } 264 265 /** 266 * Returns the values from each provided array combined into a single array. For example, {@code 267 * concat(new double[] {a, b}, new double[] {}, new double[] {c}} returns the array {@code {a, b, 268 * c}}. 269 * 270 * @param arrays zero or more {@code double} arrays 271 * @return a single array containing all the values from the source arrays, in order 272 */ 273 public static double[] concat(double[]... arrays) { 274 int length = 0; 275 for (double[] array : arrays) { 276 length += array.length; 277 } 278 double[] result = new double[length]; 279 int pos = 0; 280 for (double[] array : arrays) { 281 System.arraycopy(array, 0, result, pos, array.length); 282 pos += array.length; 283 } 284 return result; 285 } 286 287 private static final class DoubleConverter extends Converter<String, Double> 288 implements Serializable { 289 static final Converter<String, Double> INSTANCE = new DoubleConverter(); 290 291 @Override 292 protected Double doForward(String value) { 293 return Double.valueOf(value); 294 } 295 296 @Override 297 protected String doBackward(Double value) { 298 return value.toString(); 299 } 300 301 @Override 302 public String toString() { 303 return "Doubles.stringConverter()"; 304 } 305 306 private Object readResolve() { 307 return INSTANCE; 308 } 309 310 private static final long serialVersionUID = 1; 311 } 312 313 /** 314 * Returns a serializable converter object that converts between strings and doubles using {@link 315 * Double#valueOf} and {@link Double#toString()}. 316 * 317 * @since 16.0 318 */ 319 public static Converter<String, Double> stringConverter() { 320 return DoubleConverter.INSTANCE; 321 } 322 323 /** 324 * Returns an array containing the same values as {@code array}, but guaranteed to be of a 325 * specified minimum length. If {@code array} already has a length of at least {@code minLength}, 326 * it is returned directly. Otherwise, a new array of size {@code minLength + padding} is 327 * returned, containing the values of {@code array}, and zeroes in the remaining places. 328 * 329 * @param array the source array 330 * @param minLength the minimum length the returned array must guarantee 331 * @param padding an extra amount to "grow" the array by if growth is necessary 332 * @throws IllegalArgumentException if {@code minLength} or {@code padding} is negative 333 * @return an array containing the values of {@code array}, with guaranteed minimum length {@code 334 * minLength} 335 */ 336 public static double[] ensureCapacity(double[] array, int minLength, int padding) { 337 checkArgument(minLength >= 0, "Invalid minLength: %s", minLength); 338 checkArgument(padding >= 0, "Invalid padding: %s", padding); 339 return (array.length < minLength) ? Arrays.copyOf(array, minLength + padding) : array; 340 } 341 342 /** 343 * Returns a string containing the supplied {@code double} values, converted to strings as 344 * specified by {@link Double#toString(double)}, and separated by {@code separator}. For example, 345 * {@code join("-", 1.0, 2.0, 3.0)} returns the string {@code "1.0-2.0-3.0"}. 346 * 347 * <p>Note that {@link Double#toString(double)} formats {@code double} differently in GWT 348 * sometimes. In the previous example, it returns the string {@code "1-2-3"}. 349 * 350 * @param separator the text that should appear between consecutive values in the resulting string 351 * (but not at the start or end) 352 * @param array an array of {@code double} values, possibly empty 353 */ 354 public static String join(String separator, double... array) { 355 checkNotNull(separator); 356 if (array.length == 0) { 357 return ""; 358 } 359 360 // For pre-sizing a builder, just get the right order of magnitude 361 StringBuilder builder = new StringBuilder(array.length * 12); 362 builder.append(array[0]); 363 for (int i = 1; i < array.length; i++) { 364 builder.append(separator).append(array[i]); 365 } 366 return builder.toString(); 367 } 368 369 /** 370 * Returns a comparator that compares two {@code double} arrays <a 371 * href="http://en.wikipedia.org/wiki/Lexicographical_order">lexicographically</a>. That is, it 372 * compares, using {@link #compare(double, double)}), the first pair of values that follow any 373 * common prefix, or when one array is a prefix of the other, treats the shorter array as the 374 * lesser. For example, {@code [] < [1.0] < [1.0, 2.0] < [2.0]}. 375 * 376 * <p>The returned comparator is inconsistent with {@link Object#equals(Object)} (since arrays 377 * support only identity equality), but it is consistent with {@link Arrays#equals(double[], 378 * double[])}. 379 * 380 * @since 2.0 381 */ 382 public static Comparator<double[]> lexicographicalComparator() { 383 return LexicographicalComparator.INSTANCE; 384 } 385 386 private enum LexicographicalComparator implements Comparator<double[]> { 387 INSTANCE; 388 389 @Override 390 public int compare(double[] left, double[] right) { 391 int minLength = Math.min(left.length, right.length); 392 for (int i = 0; i < minLength; i++) { 393 int result = Double.compare(left[i], right[i]); 394 if (result != 0) { 395 return result; 396 } 397 } 398 return left.length - right.length; 399 } 400 401 @Override 402 public String toString() { 403 return "Doubles.lexicographicalComparator()"; 404 } 405 } 406 407 /** 408 * Sorts the elements of {@code array} in descending order. 409 * 410 * <p>Note that this method uses the total order imposed by {@link Double#compare}, which treats 411 * all NaN values as equal and 0.0 as greater than -0.0. 412 * 413 * @since 23.1 414 */ 415 public static void sortDescending(double[] array) { 416 checkNotNull(array); 417 sortDescending(array, 0, array.length); 418 } 419 420 /** 421 * Sorts the elements of {@code array} between {@code fromIndex} inclusive and {@code toIndex} 422 * exclusive in descending order. 423 * 424 * <p>Note that this method uses the total order imposed by {@link Double#compare}, which treats 425 * all NaN values as equal and 0.0 as greater than -0.0. 426 * 427 * @since 23.1 428 */ 429 public static void sortDescending(double[] array, int fromIndex, int toIndex) { 430 checkNotNull(array); 431 checkPositionIndexes(fromIndex, toIndex, array.length); 432 Arrays.sort(array, fromIndex, toIndex); 433 reverse(array, fromIndex, toIndex); 434 } 435 436 /** 437 * Reverses the elements of {@code array}. This is equivalent to {@code 438 * Collections.reverse(Doubles.asList(array))}, but is likely to be more efficient. 439 * 440 * @since 23.1 441 */ 442 public static void reverse(double[] array) { 443 checkNotNull(array); 444 reverse(array, 0, array.length); 445 } 446 447 /** 448 * Reverses the elements of {@code array} between {@code fromIndex} inclusive and {@code toIndex} 449 * exclusive. This is equivalent to {@code 450 * Collections.reverse(Doubles.asList(array).subList(fromIndex, toIndex))}, but is likely to be 451 * more efficient. 452 * 453 * @throws IndexOutOfBoundsException if {@code fromIndex < 0}, {@code toIndex > array.length}, or 454 * {@code toIndex > fromIndex} 455 * @since 23.1 456 */ 457 public static void reverse(double[] array, int fromIndex, int toIndex) { 458 checkNotNull(array); 459 checkPositionIndexes(fromIndex, toIndex, array.length); 460 for (int i = fromIndex, j = toIndex - 1; i < j; i++, j--) { 461 double tmp = array[i]; 462 array[i] = array[j]; 463 array[j] = tmp; 464 } 465 } 466 467 /** 468 * Performs a right rotation of {@code array} of "distance" places, so that the first element is 469 * moved to index "distance", and the element at index {@code i} ends up at index {@code (distance 470 * + i) mod array.length}. This is equivalent to {@code Collections.rotate(Bytes.asList(array), 471 * distance)}, but is considerably faster and avoids allocation and garbage collection. 472 * 473 * <p>The provided "distance" may be negative, which will rotate left. 474 * 475 * @since 32.0.0 476 */ 477 public static void rotate(double[] array, int distance) { 478 rotate(array, distance, 0, array.length); 479 } 480 481 /** 482 * Performs a right rotation of {@code array} between {@code fromIndex} inclusive and {@code 483 * toIndex} exclusive. This is equivalent to {@code 484 * Collections.rotate(Bytes.asList(array).subList(fromIndex, toIndex), distance)}, but is 485 * considerably faster and avoids allocations and garbage collection. 486 * 487 * <p>The provided "distance" may be negative, which will rotate left. 488 * 489 * @throws IndexOutOfBoundsException if {@code fromIndex < 0}, {@code toIndex > array.length}, or 490 * {@code toIndex > fromIndex} 491 * @since 32.0.0 492 */ 493 public static void rotate(double[] array, int distance, int fromIndex, int toIndex) { 494 // See Ints.rotate for more details about possible algorithms here. 495 checkNotNull(array); 496 checkPositionIndexes(fromIndex, toIndex, array.length); 497 if (array.length <= 1) { 498 return; 499 } 500 501 int length = toIndex - fromIndex; 502 // Obtain m = (-distance mod length), a non-negative value less than "length". This is how many 503 // places left to rotate. 504 int m = -distance % length; 505 m = (m < 0) ? m + length : m; 506 // The current index of what will become the first element of the rotated section. 507 int newFirstIndex = m + fromIndex; 508 if (newFirstIndex == fromIndex) { 509 return; 510 } 511 512 reverse(array, fromIndex, newFirstIndex); 513 reverse(array, newFirstIndex, toIndex); 514 reverse(array, fromIndex, toIndex); 515 } 516 517 /** 518 * Returns an array containing each value of {@code collection}, converted to a {@code double} 519 * value in the manner of {@link Number#doubleValue}. 520 * 521 * <p>Elements are copied from the argument collection as if by {@code collection.toArray()}. 522 * Calling this method is as thread-safe as calling that method. 523 * 524 * @param collection a collection of {@code Number} instances 525 * @return an array containing the same values as {@code collection}, in the same order, converted 526 * to primitives 527 * @throws NullPointerException if {@code collection} or any of its elements is null 528 * @since 1.0 (parameter was {@code Collection<Double>} before 12.0) 529 */ 530 public static double[] toArray(Collection<? extends Number> collection) { 531 if (collection instanceof DoubleArrayAsList) { 532 return ((DoubleArrayAsList) collection).toDoubleArray(); 533 } 534 535 Object[] boxedArray = collection.toArray(); 536 int len = boxedArray.length; 537 double[] array = new double[len]; 538 for (int i = 0; i < len; i++) { 539 // checkNotNull for GWT (do not optimize) 540 array[i] = ((Number) checkNotNull(boxedArray[i])).doubleValue(); 541 } 542 return array; 543 } 544 545 /** 546 * Returns a fixed-size list backed by the specified array, similar to {@link 547 * Arrays#asList(Object[])}. The list supports {@link List#set(int, Object)}, but any attempt to 548 * set a value to {@code null} will result in a {@link NullPointerException}. 549 * 550 * <p>The returned list maintains the values, but not the identities, of {@code Double} objects 551 * written to or read from it. For example, whether {@code list.get(0) == list.get(0)} is true for 552 * the returned list is unspecified. 553 * 554 * <p>The returned list may have unexpected behavior if it contains {@code NaN}, or if {@code NaN} 555 * is used as a parameter to any of its methods. 556 * 557 * <p>The returned list is serializable. 558 * 559 * <p><b>Note:</b> when possible, you should represent your data as an {@link 560 * ImmutableDoubleArray} instead, which has an {@link ImmutableDoubleArray#asList asList} view. 561 * 562 * @param backingArray the array to back the list 563 * @return a list view of the array 564 */ 565 public static List<Double> asList(double... backingArray) { 566 if (backingArray.length == 0) { 567 return Collections.emptyList(); 568 } 569 return new DoubleArrayAsList(backingArray); 570 } 571 572 @GwtCompatible 573 private static class DoubleArrayAsList extends AbstractList<Double> 574 implements RandomAccess, Serializable { 575 final double[] array; 576 final int start; 577 final int end; 578 579 DoubleArrayAsList(double[] array) { 580 this(array, 0, array.length); 581 } 582 583 DoubleArrayAsList(double[] array, int start, int end) { 584 this.array = array; 585 this.start = start; 586 this.end = end; 587 } 588 589 @Override 590 public int size() { 591 return end - start; 592 } 593 594 @Override 595 public boolean isEmpty() { 596 return false; 597 } 598 599 @Override 600 public Double get(int index) { 601 checkElementIndex(index, size()); 602 return array[start + index]; 603 } 604 605 @Override 606 public boolean contains(@CheckForNull Object target) { 607 // Overridden to prevent a ton of boxing 608 return (target instanceof Double) 609 && Doubles.indexOf(array, (Double) target, start, end) != -1; 610 } 611 612 @Override 613 public int indexOf(@CheckForNull Object target) { 614 // Overridden to prevent a ton of boxing 615 if (target instanceof Double) { 616 int i = Doubles.indexOf(array, (Double) target, start, end); 617 if (i >= 0) { 618 return i - start; 619 } 620 } 621 return -1; 622 } 623 624 @Override 625 public int lastIndexOf(@CheckForNull Object target) { 626 // Overridden to prevent a ton of boxing 627 if (target instanceof Double) { 628 int i = Doubles.lastIndexOf(array, (Double) target, start, end); 629 if (i >= 0) { 630 return i - start; 631 } 632 } 633 return -1; 634 } 635 636 @Override 637 public Double set(int index, Double element) { 638 checkElementIndex(index, size()); 639 double oldValue = array[start + index]; 640 // checkNotNull for GWT (do not optimize) 641 array[start + index] = checkNotNull(element); 642 return oldValue; 643 } 644 645 @Override 646 public List<Double> subList(int fromIndex, int toIndex) { 647 int size = size(); 648 checkPositionIndexes(fromIndex, toIndex, size); 649 if (fromIndex == toIndex) { 650 return Collections.emptyList(); 651 } 652 return new DoubleArrayAsList(array, start + fromIndex, start + toIndex); 653 } 654 655 @Override 656 public boolean equals(@CheckForNull Object object) { 657 if (object == this) { 658 return true; 659 } 660 if (object instanceof DoubleArrayAsList) { 661 DoubleArrayAsList that = (DoubleArrayAsList) object; 662 int size = size(); 663 if (that.size() != size) { 664 return false; 665 } 666 for (int i = 0; i < size; i++) { 667 if (array[start + i] != that.array[that.start + i]) { 668 return false; 669 } 670 } 671 return true; 672 } 673 return super.equals(object); 674 } 675 676 @Override 677 public int hashCode() { 678 int result = 1; 679 for (int i = start; i < end; i++) { 680 result = 31 * result + Doubles.hashCode(array[i]); 681 } 682 return result; 683 } 684 685 @Override 686 public String toString() { 687 StringBuilder builder = new StringBuilder(size() * 12); 688 builder.append('[').append(array[start]); 689 for (int i = start + 1; i < end; i++) { 690 builder.append(", ").append(array[i]); 691 } 692 return builder.append(']').toString(); 693 } 694 695 double[] toDoubleArray() { 696 return Arrays.copyOfRange(array, start, end); 697 } 698 699 private static final long serialVersionUID = 0; 700 } 701 702 /** 703 * This is adapted from the regex suggested by {@link Double#valueOf(String)} for prevalidating 704 * inputs. All valid inputs must pass this regex, but it's semantically fine if not all inputs 705 * that pass this regex are valid -- only a performance hit is incurred, not a semantics bug. 706 */ 707 @GwtIncompatible // regular expressions 708 static final 709 java.util.regex.Pattern 710 FLOATING_POINT_PATTERN = fpPattern(); 711 712 @GwtIncompatible // regular expressions 713 private static 714 java.util.regex.Pattern 715 fpPattern() { 716 /* 717 * We use # instead of * for possessive quantifiers. This lets us strip them out when building 718 * the regex for RE2 (which doesn't support them) but leave them in when building it for 719 * java.util.regex (where we want them in order to avoid catastrophic backtracking). 720 */ 721 String decimal = "(?:\\d+#(?:\\.\\d*#)?|\\.\\d+#)"; 722 String completeDec = decimal + "(?:[eE][+-]?\\d+#)?[fFdD]?"; 723 String hex = "(?:[0-9a-fA-F]+#(?:\\.[0-9a-fA-F]*#)?|\\.[0-9a-fA-F]+#)"; 724 String completeHex = "0[xX]" + hex + "[pP][+-]?\\d+#[fFdD]?"; 725 String fpPattern = "[+-]?(?:NaN|Infinity|" + completeDec + "|" + completeHex + ")"; 726 fpPattern = 727 fpPattern.replace( 728 "#", 729 "+" 730 ); 731 return 732 java.util.regex.Pattern 733 .compile(fpPattern); 734 } 735 736 /** 737 * Parses the specified string as a double-precision floating point value. The ASCII character 738 * {@code '-'} (<code>'\u002D'</code>) is recognized as the minus sign. 739 * 740 * <p>Unlike {@link Double#parseDouble(String)}, this method returns {@code null} instead of 741 * throwing an exception if parsing fails. Valid inputs are exactly those accepted by {@link 742 * Double#valueOf(String)}, except that leading and trailing whitespace is not permitted. 743 * 744 * <p>This implementation is likely to be faster than {@code Double.parseDouble} if many failures 745 * are expected. 746 * 747 * @param string the string representation of a {@code double} value 748 * @return the floating point value represented by {@code string}, or {@code null} if {@code 749 * string} has a length of zero or cannot be parsed as a {@code double} value 750 * @throws NullPointerException if {@code string} is {@code null} 751 * @since 14.0 752 */ 753 @GwtIncompatible // regular expressions 754 @CheckForNull 755 public static Double tryParse(String string) { 756 if (FLOATING_POINT_PATTERN.matcher(string).matches()) { 757 // TODO(lowasser): could be potentially optimized, but only with 758 // extensive testing 759 try { 760 return Double.parseDouble(string); 761 } catch (NumberFormatException e) { 762 // Double.parseDouble has changed specs several times, so fall through 763 // gracefully 764 } 765 } 766 return null; 767 } 768}