001/*
002 * Copyright (C) 2007 The Guava Authors
003 *
004 * Licensed under the Apache License, Version 2.0 (the "License");
005 * you may not use this file except in compliance with the License.
006 * You may obtain a copy of the License at
007 *
008 * http://www.apache.org/licenses/LICENSE-2.0
009 *
010 * Unless required by applicable law or agreed to in writing, software
011 * distributed under the License is distributed on an "AS IS" BASIS,
012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
013 * See the License for the specific language governing permissions and
014 * limitations under the License.
015 */
016
017package com.google.common.collect;
018
019import static com.google.common.base.Preconditions.checkArgument;
020import static com.google.common.base.Preconditions.checkElementIndex;
021import static com.google.common.base.Preconditions.checkNotNull;
022import static com.google.common.base.Preconditions.checkPositionIndex;
023import static com.google.common.base.Preconditions.checkPositionIndexes;
024import static com.google.common.base.Preconditions.checkState;
025import static com.google.common.collect.CollectPreconditions.checkNonnegative;
026import static com.google.common.collect.CollectPreconditions.checkRemove;
027
028import com.google.common.annotations.GwtCompatible;
029import com.google.common.annotations.GwtIncompatible;
030import com.google.common.annotations.J2ktIncompatible;
031import com.google.common.annotations.VisibleForTesting;
032import com.google.common.base.Function;
033import com.google.common.base.Objects;
034import com.google.common.math.IntMath;
035import com.google.common.primitives.Ints;
036import java.io.Serializable;
037import java.math.RoundingMode;
038import java.util.AbstractList;
039import java.util.AbstractSequentialList;
040import java.util.ArrayList;
041import java.util.Arrays;
042import java.util.Collection;
043import java.util.Collections;
044import java.util.Iterator;
045import java.util.LinkedList;
046import java.util.List;
047import java.util.ListIterator;
048import java.util.NoSuchElementException;
049import java.util.RandomAccess;
050import java.util.concurrent.CopyOnWriteArrayList;
051import java.util.function.Predicate;
052import javax.annotation.CheckForNull;
053import org.checkerframework.checker.nullness.qual.Nullable;
054
055/**
056 * Static utility methods pertaining to {@link List} instances. Also see this class's counterparts
057 * {@link Sets}, {@link Maps} and {@link Queues}.
058 *
059 * <p>See the Guava User Guide article on <a href=
060 * "https://github.com/google/guava/wiki/CollectionUtilitiesExplained#lists">{@code Lists}</a>.
061 *
062 * @author Kevin Bourrillion
063 * @author Mike Bostock
064 * @author Louis Wasserman
065 * @since 2.0
066 */
067@GwtCompatible(emulated = true)
068@ElementTypesAreNonnullByDefault
069public final class Lists {
070  private Lists() {}
071
072  // ArrayList
073
074  /**
075   * Creates a <i>mutable</i>, empty {@code ArrayList} instance (for Java 6 and earlier).
076   *
077   * <p><b>Note:</b> if mutability is not required, use {@link ImmutableList#of()} instead.
078   *
079   * <p><b>Note:</b> this method is now unnecessary and should be treated as deprecated. Instead,
080   * use the {@code ArrayList} {@linkplain ArrayList#ArrayList() constructor} directly, taking
081   * advantage of <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
082   */
083  @GwtCompatible(serializable = true)
084  public static <E extends @Nullable Object> ArrayList<E> newArrayList() {
085    return new ArrayList<>();
086  }
087
088  /**
089   * Creates a <i>mutable</i> {@code ArrayList} instance containing the given elements.
090   *
091   * <p><b>Note:</b> essentially the only reason to use this method is when you will need to add or
092   * remove elements later. Otherwise, for non-null elements use {@link ImmutableList#of()} (for
093   * varargs) or {@link ImmutableList#copyOf(Object[])} (for an array) instead. If any elements
094   * might be null, or you need support for {@link List#set(int, Object)}, use {@link
095   * Arrays#asList}.
096   *
097   * <p>Note that even when you do need the ability to add or remove, this method provides only a
098   * tiny bit of syntactic sugar for {@code newArrayList(}{@link Arrays#asList asList}{@code
099   * (...))}, or for creating an empty list then calling {@link Collections#addAll}. This method is
100   * not actually very useful and will likely be deprecated in the future.
101   */
102  @SafeVarargs
103  @GwtCompatible(serializable = true)
104  public static <E extends @Nullable Object> ArrayList<E> newArrayList(E... elements) {
105    checkNotNull(elements); // for GWT
106    // Avoid integer overflow when a large array is passed in
107    int capacity = computeArrayListCapacity(elements.length);
108    ArrayList<E> list = new ArrayList<>(capacity);
109    Collections.addAll(list, elements);
110    return list;
111  }
112
113  /**
114   * Creates a <i>mutable</i> {@code ArrayList} instance containing the given elements; a very thin
115   * shortcut for creating an empty list then calling {@link Iterables#addAll}.
116   *
117   * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link
118   * ImmutableList#copyOf(Iterable)} instead. (Or, change {@code elements} to be a {@link
119   * FluentIterable} and call {@code elements.toList()}.)
120   *
121   * <p><b>Note:</b> if {@code elements} is a {@link Collection}, you don't need this method. Use
122   * the {@code ArrayList} {@linkplain ArrayList#ArrayList(Collection) constructor} directly, taking
123   * advantage of <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
124   */
125  @GwtCompatible(serializable = true)
126  public static <E extends @Nullable Object> ArrayList<E> newArrayList(
127      Iterable<? extends E> elements) {
128    checkNotNull(elements); // for GWT
129    // Let ArrayList's sizing logic work, if possible
130    return (elements instanceof Collection)
131        ? new ArrayList<>((Collection<? extends E>) elements)
132        : newArrayList(elements.iterator());
133  }
134
135  /**
136   * Creates a <i>mutable</i> {@code ArrayList} instance containing the given elements; a very thin
137   * shortcut for creating an empty list and then calling {@link Iterators#addAll}.
138   *
139   * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link
140   * ImmutableList#copyOf(Iterator)} instead.
141   */
142  @GwtCompatible(serializable = true)
143  public static <E extends @Nullable Object> ArrayList<E> newArrayList(
144      Iterator<? extends E> elements) {
145    ArrayList<E> list = newArrayList();
146    Iterators.addAll(list, elements);
147    return list;
148  }
149
150  @VisibleForTesting
151  static int computeArrayListCapacity(int arraySize) {
152    checkNonnegative(arraySize, "arraySize");
153
154    // TODO(kevinb): Figure out the right behavior, and document it
155    return Ints.saturatedCast(5L + arraySize + (arraySize / 10));
156  }
157
158  /**
159   * Creates an {@code ArrayList} instance backed by an array with the specified initial size;
160   * simply delegates to {@link ArrayList#ArrayList(int)}.
161   *
162   * <p><b>Note:</b> this method is now unnecessary and should be treated as deprecated. Instead,
163   * use {@code new }{@link ArrayList#ArrayList(int) ArrayList}{@code <>(int)} directly, taking
164   * advantage of <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. (Unlike here, there is no risk
165   * of overload ambiguity, since the {@code ArrayList} constructors very wisely did not accept
166   * varargs.)
167   *
168   * @param initialArraySize the exact size of the initial backing array for the returned array list
169   *     ({@code ArrayList} documentation calls this value the "capacity")
170   * @return a new, empty {@code ArrayList} which is guaranteed not to resize itself unless its size
171   *     reaches {@code initialArraySize + 1}
172   * @throws IllegalArgumentException if {@code initialArraySize} is negative
173   */
174  @GwtCompatible(serializable = true)
175  public static <E extends @Nullable Object> ArrayList<E> newArrayListWithCapacity(
176      int initialArraySize) {
177    checkNonnegative(initialArraySize, "initialArraySize"); // for GWT.
178    return new ArrayList<>(initialArraySize);
179  }
180
181  /**
182   * Creates an {@code ArrayList} instance to hold {@code estimatedSize} elements, <i>plus</i> an
183   * unspecified amount of padding; you almost certainly mean to call {@link
184   * #newArrayListWithCapacity} (see that method for further advice on usage).
185   *
186   * <p><b>Note:</b> This method will soon be deprecated. Even in the rare case that you do want
187   * some amount of padding, it's best if you choose your desired amount explicitly.
188   *
189   * @param estimatedSize an estimate of the eventual {@link List#size()} of the new list
190   * @return a new, empty {@code ArrayList}, sized appropriately to hold the estimated number of
191   *     elements
192   * @throws IllegalArgumentException if {@code estimatedSize} is negative
193   */
194  @GwtCompatible(serializable = true)
195  public static <E extends @Nullable Object> ArrayList<E> newArrayListWithExpectedSize(
196      int estimatedSize) {
197    return new ArrayList<>(computeArrayListCapacity(estimatedSize));
198  }
199
200  // LinkedList
201
202  /**
203   * Creates a <i>mutable</i>, empty {@code LinkedList} instance (for Java 6 and earlier).
204   *
205   * <p><b>Note:</b> if you won't be adding any elements to the list, use {@link ImmutableList#of()}
206   * instead.
207   *
208   * <p><b>Performance note:</b> {@link ArrayList} and {@link java.util.ArrayDeque} consistently
209   * outperform {@code LinkedList} except in certain rare and specific situations. Unless you have
210   * spent a lot of time benchmarking your specific needs, use one of those instead.
211   *
212   * <p><b>Note:</b> this method is now unnecessary and should be treated as deprecated. Instead,
213   * use the {@code LinkedList} {@linkplain LinkedList#LinkedList() constructor} directly, taking
214   * advantage of <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
215   */
216  @GwtCompatible(serializable = true)
217  public static <E extends @Nullable Object> LinkedList<E> newLinkedList() {
218    return new LinkedList<>();
219  }
220
221  /**
222   * Creates a <i>mutable</i> {@code LinkedList} instance containing the given elements; a very thin
223   * shortcut for creating an empty list then calling {@link Iterables#addAll}.
224   *
225   * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link
226   * ImmutableList#copyOf(Iterable)} instead. (Or, change {@code elements} to be a {@link
227   * FluentIterable} and call {@code elements.toList()}.)
228   *
229   * <p><b>Performance note:</b> {@link ArrayList} and {@link java.util.ArrayDeque} consistently
230   * outperform {@code LinkedList} except in certain rare and specific situations. Unless you have
231   * spent a lot of time benchmarking your specific needs, use one of those instead.
232   *
233   * <p><b>Note:</b> if {@code elements} is a {@link Collection}, you don't need this method. Use
234   * the {@code LinkedList} {@linkplain LinkedList#LinkedList(Collection) constructor} directly,
235   * taking advantage of <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
236   */
237  @GwtCompatible(serializable = true)
238  public static <E extends @Nullable Object> LinkedList<E> newLinkedList(
239      Iterable<? extends E> elements) {
240    LinkedList<E> list = newLinkedList();
241    Iterables.addAll(list, elements);
242    return list;
243  }
244
245  /**
246   * Creates an empty {@code CopyOnWriteArrayList} instance.
247   *
248   * <p><b>Note:</b> if you need an immutable empty {@link List}, use {@link Collections#emptyList}
249   * instead.
250   *
251   * @return a new, empty {@code CopyOnWriteArrayList}
252   * @since 12.0
253   */
254  @J2ktIncompatible
255  @GwtIncompatible // CopyOnWriteArrayList
256  public static <E extends @Nullable Object> CopyOnWriteArrayList<E> newCopyOnWriteArrayList() {
257    return new CopyOnWriteArrayList<>();
258  }
259
260  /**
261   * Creates a {@code CopyOnWriteArrayList} instance containing the given elements.
262   *
263   * @param elements the elements that the list should contain, in order
264   * @return a new {@code CopyOnWriteArrayList} containing those elements
265   * @since 12.0
266   */
267  @J2ktIncompatible
268  @GwtIncompatible // CopyOnWriteArrayList
269  public static <E extends @Nullable Object> CopyOnWriteArrayList<E> newCopyOnWriteArrayList(
270      Iterable<? extends E> elements) {
271    // We copy elements to an ArrayList first, rather than incurring the
272    // quadratic cost of adding them to the COWAL directly.
273    Collection<? extends E> elementsCollection =
274        (elements instanceof Collection)
275            ? (Collection<? extends E>) elements
276            : newArrayList(elements);
277    return new CopyOnWriteArrayList<>(elementsCollection);
278  }
279
280  /**
281   * Returns an unmodifiable list containing the specified first element and backed by the specified
282   * array of additional elements. Changes to the {@code rest} array will be reflected in the
283   * returned list. Unlike {@link Arrays#asList}, the returned list is unmodifiable.
284   *
285   * <p>This is useful when a varargs method needs to use a signature such as {@code (Foo firstFoo,
286   * Foo... moreFoos)}, in order to avoid overload ambiguity or to enforce a minimum argument count.
287   *
288   * <p>The returned list is serializable and implements {@link RandomAccess}.
289   *
290   * @param first the first element
291   * @param rest an array of additional elements, possibly empty
292   * @return an unmodifiable list containing the specified elements
293   */
294  public static <E extends @Nullable Object> List<E> asList(@ParametricNullness E first, E[] rest) {
295    return new OnePlusArrayList<>(first, rest);
296  }
297
298  /**
299   * Returns an unmodifiable list containing the specified first and second element, and backed by
300   * the specified array of additional elements. Changes to the {@code rest} array will be reflected
301   * in the returned list. Unlike {@link Arrays#asList}, the returned list is unmodifiable.
302   *
303   * <p>This is useful when a varargs method needs to use a signature such as {@code (Foo firstFoo,
304   * Foo secondFoo, Foo... moreFoos)}, in order to avoid overload ambiguity or to enforce a minimum
305   * argument count.
306   *
307   * <p>The returned list is serializable and implements {@link RandomAccess}.
308   *
309   * @param first the first element
310   * @param second the second element
311   * @param rest an array of additional elements, possibly empty
312   * @return an unmodifiable list containing the specified elements
313   */
314  public static <E extends @Nullable Object> List<E> asList(
315      @ParametricNullness E first, @ParametricNullness E second, E[] rest) {
316    return new TwoPlusArrayList<>(first, second, rest);
317  }
318
319  /** @see Lists#asList(Object, Object[]) */
320  private static class OnePlusArrayList<E extends @Nullable Object> extends AbstractList<E>
321      implements Serializable, RandomAccess {
322    @ParametricNullness final E first;
323    final E[] rest;
324
325    OnePlusArrayList(@ParametricNullness E first, E[] rest) {
326      this.first = first;
327      this.rest = checkNotNull(rest);
328    }
329
330    @Override
331    public int size() {
332      return IntMath.saturatedAdd(rest.length, 1);
333    }
334
335    @Override
336    @ParametricNullness
337    public E get(int index) {
338      // check explicitly so the IOOBE will have the right message
339      checkElementIndex(index, size());
340      return (index == 0) ? first : rest[index - 1];
341    }
342
343    @J2ktIncompatible private static final long serialVersionUID = 0;
344  }
345
346  /** @see Lists#asList(Object, Object, Object[]) */
347  private static class TwoPlusArrayList<E extends @Nullable Object> extends AbstractList<E>
348      implements Serializable, RandomAccess {
349    @ParametricNullness final E first;
350    @ParametricNullness final E second;
351    final E[] rest;
352
353    TwoPlusArrayList(@ParametricNullness E first, @ParametricNullness E second, E[] rest) {
354      this.first = first;
355      this.second = second;
356      this.rest = checkNotNull(rest);
357    }
358
359    @Override
360    public int size() {
361      return IntMath.saturatedAdd(rest.length, 2);
362    }
363
364    @Override
365    @ParametricNullness
366    public E get(int index) {
367      switch (index) {
368        case 0:
369          return first;
370        case 1:
371          return second;
372        default:
373          // check explicitly so the IOOBE will have the right message
374          checkElementIndex(index, size());
375          return rest[index - 2];
376      }
377    }
378
379    @J2ktIncompatible private static final long serialVersionUID = 0;
380  }
381
382  /**
383   * Returns every possible list that can be formed by choosing one element from each of the given
384   * lists in order; the "n-ary <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian
385   * product</a>" of the lists. For example:
386   *
387   * <pre>{@code
388   * Lists.cartesianProduct(ImmutableList.of(
389   *     ImmutableList.of(1, 2),
390   *     ImmutableList.of("A", "B", "C")))
391   * }</pre>
392   *
393   * <p>returns a list containing six lists in the following order:
394   *
395   * <ul>
396   *   <li>{@code ImmutableList.of(1, "A")}
397   *   <li>{@code ImmutableList.of(1, "B")}
398   *   <li>{@code ImmutableList.of(1, "C")}
399   *   <li>{@code ImmutableList.of(2, "A")}
400   *   <li>{@code ImmutableList.of(2, "B")}
401   *   <li>{@code ImmutableList.of(2, "C")}
402   * </ul>
403   *
404   * <p>The result is guaranteed to be in the "traditional", lexicographical order for Cartesian
405   * products that you would get from nesting for loops:
406   *
407   * <pre>{@code
408   * for (B b0 : lists.get(0)) {
409   *   for (B b1 : lists.get(1)) {
410   *     ...
411   *     ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...);
412   *     // operate on tuple
413   *   }
414   * }
415   * }</pre>
416   *
417   * <p>Note that if any input list is empty, the Cartesian product will also be empty. If no lists
418   * at all are provided (an empty list), the resulting Cartesian product has one element, an empty
419   * list (counter-intuitive, but mathematically consistent).
420   *
421   * <p><i>Performance notes:</i> while the cartesian product of lists of size {@code m, n, p} is a
422   * list of size {@code m x n x p}, its actual memory consumption is much smaller. When the
423   * cartesian product is constructed, the input lists are merely copied. Only as the resulting list
424   * is iterated are the individual lists created, and these are not retained after iteration.
425   *
426   * @param lists the lists to choose elements from, in the order that the elements chosen from
427   *     those lists should appear in the resulting lists
428   * @param <B> any common base class shared by all axes (often just {@link Object})
429   * @return the Cartesian product, as an immutable list containing immutable lists
430   * @throws IllegalArgumentException if the size of the cartesian product would be greater than
431   *     {@link Integer#MAX_VALUE}
432   * @throws NullPointerException if {@code lists}, any one of the {@code lists}, or any element of
433   *     a provided list is null
434   * @since 19.0
435   */
436  public static <B> List<List<B>> cartesianProduct(List<? extends List<? extends B>> lists) {
437    return CartesianList.create(lists);
438  }
439
440  /**
441   * Returns every possible list that can be formed by choosing one element from each of the given
442   * lists in order; the "n-ary <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian
443   * product</a>" of the lists. For example:
444   *
445   * <pre>{@code
446   * Lists.cartesianProduct(ImmutableList.of(
447   *     ImmutableList.of(1, 2),
448   *     ImmutableList.of("A", "B", "C")))
449   * }</pre>
450   *
451   * <p>returns a list containing six lists in the following order:
452   *
453   * <ul>
454   *   <li>{@code ImmutableList.of(1, "A")}
455   *   <li>{@code ImmutableList.of(1, "B")}
456   *   <li>{@code ImmutableList.of(1, "C")}
457   *   <li>{@code ImmutableList.of(2, "A")}
458   *   <li>{@code ImmutableList.of(2, "B")}
459   *   <li>{@code ImmutableList.of(2, "C")}
460   * </ul>
461   *
462   * <p>The result is guaranteed to be in the "traditional", lexicographical order for Cartesian
463   * products that you would get from nesting for loops:
464   *
465   * <pre>{@code
466   * for (B b0 : lists.get(0)) {
467   *   for (B b1 : lists.get(1)) {
468   *     ...
469   *     ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...);
470   *     // operate on tuple
471   *   }
472   * }
473   * }</pre>
474   *
475   * <p>Note that if any input list is empty, the Cartesian product will also be empty. If no lists
476   * at all are provided (an empty list), the resulting Cartesian product has one element, an empty
477   * list (counter-intuitive, but mathematically consistent).
478   *
479   * <p><i>Performance notes:</i> while the cartesian product of lists of size {@code m, n, p} is a
480   * list of size {@code m x n x p}, its actual memory consumption is much smaller. When the
481   * cartesian product is constructed, the input lists are merely copied. Only as the resulting list
482   * is iterated are the individual lists created, and these are not retained after iteration.
483   *
484   * @param lists the lists to choose elements from, in the order that the elements chosen from
485   *     those lists should appear in the resulting lists
486   * @param <B> any common base class shared by all axes (often just {@link Object})
487   * @return the Cartesian product, as an immutable list containing immutable lists
488   * @throws IllegalArgumentException if the size of the cartesian product would be greater than
489   *     {@link Integer#MAX_VALUE}
490   * @throws NullPointerException if {@code lists}, any one of the {@code lists}, or any element of
491   *     a provided list is null
492   * @since 19.0
493   */
494  @SafeVarargs
495  public static <B> List<List<B>> cartesianProduct(List<? extends B>... lists) {
496    return cartesianProduct(Arrays.asList(lists));
497  }
498
499  /**
500   * Returns a list that applies {@code function} to each element of {@code fromList}. The returned
501   * list is a transformed view of {@code fromList}; changes to {@code fromList} will be reflected
502   * in the returned list and vice versa.
503   *
504   * <p>Since functions are not reversible, the transform is one-way and new items cannot be stored
505   * in the returned list. The {@code add}, {@code addAll} and {@code set} methods are unsupported
506   * in the returned list.
507   *
508   * <p>The function is applied lazily, invoked when needed. This is necessary for the returned list
509   * to be a view, but it means that the function will be applied many times for bulk operations
510   * like {@link List#contains} and {@link List#hashCode}. For this to perform well, {@code
511   * function} should be fast. To avoid lazy evaluation when the returned list doesn't need to be a
512   * view, copy the returned list into a new list of your choosing.
513   *
514   * <p>If {@code fromList} implements {@link RandomAccess}, so will the returned list. The returned
515   * list is threadsafe if the supplied list and function are.
516   *
517   * <p>If only a {@code Collection} or {@code Iterable} input is available, use {@link
518   * Collections2#transform} or {@link Iterables#transform}.
519   *
520   * <p><b>Note:</b> serializing the returned list is implemented by serializing {@code fromList},
521   * its contents, and {@code function} -- <i>not</i> by serializing the transformed values. This
522   * can lead to surprising behavior, so serializing the returned list is <b>not recommended</b>.
523   * Instead, copy the list using {@link ImmutableList#copyOf(Collection)} (for example), then
524   * serialize the copy. Other methods similar to this do not implement serialization at all for
525   * this reason.
526   *
527   * <p><b>Java 8 users:</b> many use cases for this method are better addressed by {@link
528   * java.util.stream.Stream#map}. This method is not being deprecated, but we gently encourage you
529   * to migrate to streams.
530   */
531  public static <F extends @Nullable Object, T extends @Nullable Object> List<T> transform(
532      List<F> fromList, Function<? super F, ? extends T> function) {
533    return (fromList instanceof RandomAccess)
534        ? new TransformingRandomAccessList<>(fromList, function)
535        : new TransformingSequentialList<>(fromList, function);
536  }
537
538  /**
539   * Implementation of a sequential transforming list.
540   *
541   * @see Lists#transform
542   */
543  private static class TransformingSequentialList<
544          F extends @Nullable Object, T extends @Nullable Object>
545      extends AbstractSequentialList<T> implements Serializable {
546    final List<F> fromList;
547    final Function<? super F, ? extends T> function;
548
549    TransformingSequentialList(List<F> fromList, Function<? super F, ? extends T> function) {
550      this.fromList = checkNotNull(fromList);
551      this.function = checkNotNull(function);
552    }
553
554    /**
555     * The default implementation inherited is based on iteration and removal of each element which
556     * can be overkill. That's why we forward this call directly to the backing list.
557     */
558    @Override
559    protected void removeRange(int fromIndex, int toIndex) {
560      fromList.subList(fromIndex, toIndex).clear();
561    }
562
563    @Override
564    public int size() {
565      return fromList.size();
566    }
567
568    @Override
569    public ListIterator<T> listIterator(final int index) {
570      return new TransformedListIterator<F, T>(fromList.listIterator(index)) {
571        @Override
572        @ParametricNullness
573        T transform(@ParametricNullness F from) {
574          return function.apply(from);
575        }
576      };
577    }
578
579    @Override
580    public boolean removeIf(Predicate<? super T> filter) {
581      checkNotNull(filter);
582      return fromList.removeIf(element -> filter.test(function.apply(element)));
583    }
584
585    private static final long serialVersionUID = 0;
586  }
587
588  /**
589   * Implementation of a transforming random access list. We try to make as many of these methods
590   * pass-through to the source list as possible so that the performance characteristics of the
591   * source list and transformed list are similar.
592   *
593   * @see Lists#transform
594   */
595  private static class TransformingRandomAccessList<
596          F extends @Nullable Object, T extends @Nullable Object>
597      extends AbstractList<T> implements RandomAccess, Serializable {
598    final List<F> fromList;
599    final Function<? super F, ? extends T> function;
600
601    TransformingRandomAccessList(List<F> fromList, Function<? super F, ? extends T> function) {
602      this.fromList = checkNotNull(fromList);
603      this.function = checkNotNull(function);
604    }
605
606    /**
607     * The default implementation inherited is based on iteration and removal of each element which
608     * can be overkill. That's why we forward this call directly to the backing list.
609     */
610    @Override
611    protected void removeRange(int fromIndex, int toIndex) {
612      fromList.subList(fromIndex, toIndex).clear();
613    }
614
615    @Override
616    @ParametricNullness
617    public T get(int index) {
618      return function.apply(fromList.get(index));
619    }
620
621    @Override
622    public Iterator<T> iterator() {
623      return listIterator();
624    }
625
626    @Override
627    public ListIterator<T> listIterator(int index) {
628      return new TransformedListIterator<F, T>(fromList.listIterator(index)) {
629        @Override
630        T transform(F from) {
631          return function.apply(from);
632        }
633      };
634    }
635
636    // TODO: cpovirk - Why override `isEmpty` here but not in TransformingSequentialList?
637
638    @Override
639    public boolean isEmpty() {
640      return fromList.isEmpty();
641    }
642
643    @Override
644    public boolean removeIf(Predicate<? super T> filter) {
645      checkNotNull(filter);
646      return fromList.removeIf(element -> filter.test(function.apply(element)));
647    }
648
649    @Override
650    @ParametricNullness
651    public T remove(int index) {
652      return function.apply(fromList.remove(index));
653    }
654
655    @Override
656    public int size() {
657      return fromList.size();
658    }
659
660    private static final long serialVersionUID = 0;
661  }
662
663  /**
664   * Returns consecutive {@linkplain List#subList(int, int) sublists} of a list, each of the same
665   * size (the final list may be smaller). For example, partitioning a list containing {@code [a, b,
666   * c, d, e]} with a partition size of 3 yields {@code [[a, b, c], [d, e]]} -- an outer list
667   * containing two inner lists of three and two elements, all in the original order.
668   *
669   * <p>The outer list is unmodifiable, but reflects the latest state of the source list. The inner
670   * lists are sublist views of the original list, produced on demand using {@link List#subList(int,
671   * int)}, and are subject to all the usual caveats about modification as explained in that API.
672   *
673   * @param list the list to return consecutive sublists of
674   * @param size the desired size of each sublist (the last may be smaller)
675   * @return a list of consecutive sublists
676   * @throws IllegalArgumentException if {@code partitionSize} is nonpositive
677   */
678  public static <T extends @Nullable Object> List<List<T>> partition(List<T> list, int size) {
679    checkNotNull(list);
680    checkArgument(size > 0);
681    return (list instanceof RandomAccess)
682        ? new RandomAccessPartition<>(list, size)
683        : new Partition<>(list, size);
684  }
685
686  private static class Partition<T extends @Nullable Object> extends AbstractList<List<T>> {
687    final List<T> list;
688    final int size;
689
690    Partition(List<T> list, int size) {
691      this.list = list;
692      this.size = size;
693    }
694
695    @Override
696    public List<T> get(int index) {
697      checkElementIndex(index, size());
698      int start = index * size;
699      int end = Math.min(start + size, list.size());
700      return list.subList(start, end);
701    }
702
703    @Override
704    public int size() {
705      return IntMath.divide(list.size(), size, RoundingMode.CEILING);
706    }
707
708    @Override
709    public boolean isEmpty() {
710      return list.isEmpty();
711    }
712  }
713
714  private static class RandomAccessPartition<T extends @Nullable Object> extends Partition<T>
715      implements RandomAccess {
716    RandomAccessPartition(List<T> list, int size) {
717      super(list, size);
718    }
719  }
720
721  /**
722   * Returns a view of the specified string as an immutable list of {@code Character} values.
723   *
724   * @since 7.0
725   */
726  public static ImmutableList<Character> charactersOf(String string) {
727    return new StringAsImmutableList(checkNotNull(string));
728  }
729
730  /**
731   * Returns a view of the specified {@code CharSequence} as a {@code List<Character>}, viewing
732   * {@code sequence} as a sequence of Unicode code units. The view does not support any
733   * modification operations, but reflects any changes to the underlying character sequence.
734   *
735   * @param sequence the character sequence to view as a {@code List} of characters
736   * @return an {@code List<Character>} view of the character sequence
737   * @since 7.0
738   */
739  public static List<Character> charactersOf(CharSequence sequence) {
740    return new CharSequenceAsList(checkNotNull(sequence));
741  }
742
743  @SuppressWarnings("serial") // serialized using ImmutableList serialization
744  private static final class StringAsImmutableList extends ImmutableList<Character> {
745
746    private final String string;
747
748    StringAsImmutableList(String string) {
749      this.string = string;
750    }
751
752    @Override
753    public int indexOf(@CheckForNull Object object) {
754      return (object instanceof Character) ? string.indexOf((Character) object) : -1;
755    }
756
757    @Override
758    public int lastIndexOf(@CheckForNull Object object) {
759      return (object instanceof Character) ? string.lastIndexOf((Character) object) : -1;
760    }
761
762    @Override
763    public ImmutableList<Character> subList(int fromIndex, int toIndex) {
764      checkPositionIndexes(fromIndex, toIndex, size()); // for GWT
765      return charactersOf(string.substring(fromIndex, toIndex));
766    }
767
768    @Override
769    boolean isPartialView() {
770      return false;
771    }
772
773    @Override
774    public Character get(int index) {
775      checkElementIndex(index, size()); // for GWT
776      return string.charAt(index);
777    }
778
779    @Override
780    public int size() {
781      return string.length();
782    }
783
784    // redeclare to help optimizers with b/310253115
785    @SuppressWarnings("RedundantOverride")
786    @Override
787    @J2ktIncompatible // serialization
788    @GwtIncompatible // serialization
789    Object writeReplace() {
790      return super.writeReplace();
791    }
792  }
793
794  private static final class CharSequenceAsList extends AbstractList<Character> {
795    private final CharSequence sequence;
796
797    CharSequenceAsList(CharSequence sequence) {
798      this.sequence = sequence;
799    }
800
801    @Override
802    public Character get(int index) {
803      checkElementIndex(index, size()); // for GWT
804      return sequence.charAt(index);
805    }
806
807    @Override
808    public int size() {
809      return sequence.length();
810    }
811  }
812
813  /**
814   * Returns a reversed view of the specified list. For example, {@code
815   * Lists.reverse(Arrays.asList(1, 2, 3))} returns a list containing {@code 3, 2, 1}. The returned
816   * list is backed by this list, so changes in the returned list are reflected in this list, and
817   * vice-versa. The returned list supports all of the optional list operations supported by this
818   * list.
819   *
820   * <p>The returned list is random-access if the specified list is random access.
821   *
822   * @since 7.0
823   */
824  public static <T extends @Nullable Object> List<T> reverse(List<T> list) {
825    if (list instanceof ImmutableList) {
826      // Avoid nullness warnings.
827      List<?> reversed = ((ImmutableList<?>) list).reverse();
828      @SuppressWarnings("unchecked")
829      List<T> result = (List<T>) reversed;
830      return result;
831    } else if (list instanceof ReverseList) {
832      return ((ReverseList<T>) list).getForwardList();
833    } else if (list instanceof RandomAccess) {
834      return new RandomAccessReverseList<>(list);
835    } else {
836      return new ReverseList<>(list);
837    }
838  }
839
840  private static class ReverseList<T extends @Nullable Object> extends AbstractList<T> {
841    private final List<T> forwardList;
842
843    ReverseList(List<T> forwardList) {
844      this.forwardList = checkNotNull(forwardList);
845    }
846
847    List<T> getForwardList() {
848      return forwardList;
849    }
850
851    private int reverseIndex(int index) {
852      int size = size();
853      checkElementIndex(index, size);
854      return (size - 1) - index;
855    }
856
857    private int reversePosition(int index) {
858      int size = size();
859      checkPositionIndex(index, size);
860      return size - index;
861    }
862
863    @Override
864    public void add(int index, @ParametricNullness T element) {
865      forwardList.add(reversePosition(index), element);
866    }
867
868    @Override
869    public void clear() {
870      forwardList.clear();
871    }
872
873    @Override
874    @ParametricNullness
875    public T remove(int index) {
876      return forwardList.remove(reverseIndex(index));
877    }
878
879    @Override
880    protected void removeRange(int fromIndex, int toIndex) {
881      subList(fromIndex, toIndex).clear();
882    }
883
884    @Override
885    @ParametricNullness
886    public T set(int index, @ParametricNullness T element) {
887      return forwardList.set(reverseIndex(index), element);
888    }
889
890    @Override
891    @ParametricNullness
892    public T get(int index) {
893      return forwardList.get(reverseIndex(index));
894    }
895
896    @Override
897    public int size() {
898      return forwardList.size();
899    }
900
901    @Override
902    public List<T> subList(int fromIndex, int toIndex) {
903      checkPositionIndexes(fromIndex, toIndex, size());
904      return reverse(forwardList.subList(reversePosition(toIndex), reversePosition(fromIndex)));
905    }
906
907    @Override
908    public Iterator<T> iterator() {
909      return listIterator();
910    }
911
912    @Override
913    public ListIterator<T> listIterator(int index) {
914      int start = reversePosition(index);
915      final ListIterator<T> forwardIterator = forwardList.listIterator(start);
916      return new ListIterator<T>() {
917
918        boolean canRemoveOrSet;
919
920        @Override
921        public void add(@ParametricNullness T e) {
922          forwardIterator.add(e);
923          forwardIterator.previous();
924          canRemoveOrSet = false;
925        }
926
927        @Override
928        public boolean hasNext() {
929          return forwardIterator.hasPrevious();
930        }
931
932        @Override
933        public boolean hasPrevious() {
934          return forwardIterator.hasNext();
935        }
936
937        @Override
938        @ParametricNullness
939        public T next() {
940          if (!hasNext()) {
941            throw new NoSuchElementException();
942          }
943          canRemoveOrSet = true;
944          return forwardIterator.previous();
945        }
946
947        @Override
948        public int nextIndex() {
949          return reversePosition(forwardIterator.nextIndex());
950        }
951
952        @Override
953        @ParametricNullness
954        public T previous() {
955          if (!hasPrevious()) {
956            throw new NoSuchElementException();
957          }
958          canRemoveOrSet = true;
959          return forwardIterator.next();
960        }
961
962        @Override
963        public int previousIndex() {
964          return nextIndex() - 1;
965        }
966
967        @Override
968        public void remove() {
969          checkRemove(canRemoveOrSet);
970          forwardIterator.remove();
971          canRemoveOrSet = false;
972        }
973
974        @Override
975        public void set(@ParametricNullness T e) {
976          checkState(canRemoveOrSet);
977          forwardIterator.set(e);
978        }
979      };
980    }
981  }
982
983  private static class RandomAccessReverseList<T extends @Nullable Object> extends ReverseList<T>
984      implements RandomAccess {
985    RandomAccessReverseList(List<T> forwardList) {
986      super(forwardList);
987    }
988  }
989
990  /** An implementation of {@link List#hashCode()}. */
991  static int hashCodeImpl(List<?> list) {
992    // TODO(lowasser): worth optimizing for RandomAccess?
993    int hashCode = 1;
994    for (Object o : list) {
995      hashCode = 31 * hashCode + (o == null ? 0 : o.hashCode());
996
997      hashCode = ~~hashCode;
998      // needed to deal with GWT integer overflow
999    }
1000    return hashCode;
1001  }
1002
1003  /** An implementation of {@link List#equals(Object)}. */
1004  static boolean equalsImpl(List<?> thisList, @CheckForNull Object other) {
1005    if (other == checkNotNull(thisList)) {
1006      return true;
1007    }
1008    if (!(other instanceof List)) {
1009      return false;
1010    }
1011    List<?> otherList = (List<?>) other;
1012    int size = thisList.size();
1013    if (size != otherList.size()) {
1014      return false;
1015    }
1016    if (thisList instanceof RandomAccess && otherList instanceof RandomAccess) {
1017      // avoid allocation and use the faster loop
1018      for (int i = 0; i < size; i++) {
1019        if (!Objects.equal(thisList.get(i), otherList.get(i))) {
1020          return false;
1021        }
1022      }
1023      return true;
1024    } else {
1025      return Iterators.elementsEqual(thisList.iterator(), otherList.iterator());
1026    }
1027  }
1028
1029  /** An implementation of {@link List#addAll(int, Collection)}. */
1030  static <E extends @Nullable Object> boolean addAllImpl(
1031      List<E> list, int index, Iterable<? extends E> elements) {
1032    boolean changed = false;
1033    ListIterator<E> listIterator = list.listIterator(index);
1034    for (E e : elements) {
1035      listIterator.add(e);
1036      changed = true;
1037    }
1038    return changed;
1039  }
1040
1041  /** An implementation of {@link List#indexOf(Object)}. */
1042  static int indexOfImpl(List<?> list, @CheckForNull Object element) {
1043    if (list instanceof RandomAccess) {
1044      return indexOfRandomAccess(list, element);
1045    } else {
1046      ListIterator<?> listIterator = list.listIterator();
1047      while (listIterator.hasNext()) {
1048        if (Objects.equal(element, listIterator.next())) {
1049          return listIterator.previousIndex();
1050        }
1051      }
1052      return -1;
1053    }
1054  }
1055
1056  private static int indexOfRandomAccess(List<?> list, @CheckForNull Object element) {
1057    int size = list.size();
1058    if (element == null) {
1059      for (int i = 0; i < size; i++) {
1060        if (list.get(i) == null) {
1061          return i;
1062        }
1063      }
1064    } else {
1065      for (int i = 0; i < size; i++) {
1066        if (element.equals(list.get(i))) {
1067          return i;
1068        }
1069      }
1070    }
1071    return -1;
1072  }
1073
1074  /** An implementation of {@link List#lastIndexOf(Object)}. */
1075  static int lastIndexOfImpl(List<?> list, @CheckForNull Object element) {
1076    if (list instanceof RandomAccess) {
1077      return lastIndexOfRandomAccess(list, element);
1078    } else {
1079      ListIterator<?> listIterator = list.listIterator(list.size());
1080      while (listIterator.hasPrevious()) {
1081        if (Objects.equal(element, listIterator.previous())) {
1082          return listIterator.nextIndex();
1083        }
1084      }
1085      return -1;
1086    }
1087  }
1088
1089  private static int lastIndexOfRandomAccess(List<?> list, @CheckForNull Object element) {
1090    if (element == null) {
1091      for (int i = list.size() - 1; i >= 0; i--) {
1092        if (list.get(i) == null) {
1093          return i;
1094        }
1095      }
1096    } else {
1097      for (int i = list.size() - 1; i >= 0; i--) {
1098        if (element.equals(list.get(i))) {
1099          return i;
1100        }
1101      }
1102    }
1103    return -1;
1104  }
1105
1106  /** Returns an implementation of {@link List#listIterator(int)}. */
1107  static <E extends @Nullable Object> ListIterator<E> listIteratorImpl(List<E> list, int index) {
1108    return new AbstractListWrapper<>(list).listIterator(index);
1109  }
1110
1111  /** An implementation of {@link List#subList(int, int)}. */
1112  static <E extends @Nullable Object> List<E> subListImpl(
1113      final List<E> list, int fromIndex, int toIndex) {
1114    List<E> wrapper;
1115    if (list instanceof RandomAccess) {
1116      wrapper =
1117          new RandomAccessListWrapper<E>(list) {
1118            @Override
1119            public ListIterator<E> listIterator(int index) {
1120              return backingList.listIterator(index);
1121            }
1122
1123            @J2ktIncompatible private static final long serialVersionUID = 0;
1124          };
1125    } else {
1126      wrapper =
1127          new AbstractListWrapper<E>(list) {
1128            @Override
1129            public ListIterator<E> listIterator(int index) {
1130              return backingList.listIterator(index);
1131            }
1132
1133            @J2ktIncompatible private static final long serialVersionUID = 0;
1134          };
1135    }
1136    return wrapper.subList(fromIndex, toIndex);
1137  }
1138
1139  private static class AbstractListWrapper<E extends @Nullable Object> extends AbstractList<E> {
1140    final List<E> backingList;
1141
1142    AbstractListWrapper(List<E> backingList) {
1143      this.backingList = checkNotNull(backingList);
1144    }
1145
1146    @Override
1147    public void add(int index, @ParametricNullness E element) {
1148      backingList.add(index, element);
1149    }
1150
1151    @Override
1152    public boolean addAll(int index, Collection<? extends E> c) {
1153      return backingList.addAll(index, c);
1154    }
1155
1156    @Override
1157    @ParametricNullness
1158    public E get(int index) {
1159      return backingList.get(index);
1160    }
1161
1162    @Override
1163    @ParametricNullness
1164    public E remove(int index) {
1165      return backingList.remove(index);
1166    }
1167
1168    @Override
1169    @ParametricNullness
1170    public E set(int index, @ParametricNullness E element) {
1171      return backingList.set(index, element);
1172    }
1173
1174    @Override
1175    public boolean contains(@CheckForNull Object o) {
1176      return backingList.contains(o);
1177    }
1178
1179    @Override
1180    public int size() {
1181      return backingList.size();
1182    }
1183  }
1184
1185  private static class RandomAccessListWrapper<E extends @Nullable Object>
1186      extends AbstractListWrapper<E> implements RandomAccess {
1187    RandomAccessListWrapper(List<E> backingList) {
1188      super(backingList);
1189    }
1190  }
1191
1192  /** Used to avoid http://bugs.sun.com/view_bug.do?bug_id=6558557 */
1193  static <T extends @Nullable Object> List<T> cast(Iterable<T> iterable) {
1194    return (List<T>) iterable;
1195  }
1196}