001/* 002 * Copyright (C) 2007 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.collect; 018 019import static com.google.common.base.Preconditions.checkArgument; 020import static com.google.common.base.Preconditions.checkNotNull; 021import static com.google.common.collect.CollectPreconditions.checkNonnegative; 022 023import com.google.common.annotations.GwtCompatible; 024import com.google.common.annotations.GwtIncompatible; 025import com.google.common.annotations.J2ktIncompatible; 026import com.google.common.base.Predicate; 027import com.google.common.base.Predicates; 028import com.google.common.collect.Collections2.FilteredCollection; 029import com.google.common.math.IntMath; 030import com.google.errorprone.annotations.CanIgnoreReturnValue; 031import com.google.errorprone.annotations.DoNotCall; 032import com.google.errorprone.annotations.concurrent.LazyInit; 033import java.io.Serializable; 034import java.util.AbstractSet; 035import java.util.Arrays; 036import java.util.BitSet; 037import java.util.Collection; 038import java.util.Collections; 039import java.util.Comparator; 040import java.util.EnumSet; 041import java.util.HashSet; 042import java.util.Iterator; 043import java.util.LinkedHashSet; 044import java.util.List; 045import java.util.Map; 046import java.util.NavigableSet; 047import java.util.NoSuchElementException; 048import java.util.Set; 049import java.util.SortedSet; 050import java.util.TreeSet; 051import java.util.concurrent.ConcurrentHashMap; 052import java.util.concurrent.CopyOnWriteArraySet; 053import java.util.stream.Collector; 054import javax.annotation.CheckForNull; 055import org.checkerframework.checker.nullness.qual.NonNull; 056import org.checkerframework.checker.nullness.qual.Nullable; 057 058/** 059 * Static utility methods pertaining to {@link Set} instances. Also see this class's counterparts 060 * {@link Lists}, {@link Maps} and {@link Queues}. 061 * 062 * <p>See the Guava User Guide article on <a href= 063 * "https://github.com/google/guava/wiki/CollectionUtilitiesExplained#sets">{@code Sets}</a>. 064 * 065 * @author Kevin Bourrillion 066 * @author Jared Levy 067 * @author Chris Povirk 068 * @since 2.0 069 */ 070@GwtCompatible(emulated = true) 071@ElementTypesAreNonnullByDefault 072public final class Sets { 073 private Sets() {} 074 075 /** 076 * {@link AbstractSet} substitute without the potentially-quadratic {@code removeAll} 077 * implementation. 078 */ 079 abstract static class ImprovedAbstractSet<E extends @Nullable Object> extends AbstractSet<E> { 080 @Override 081 public boolean removeAll(Collection<?> c) { 082 return removeAllImpl(this, c); 083 } 084 085 @Override 086 public boolean retainAll(Collection<?> c) { 087 return super.retainAll(checkNotNull(c)); // GWT compatibility 088 } 089 } 090 091 /** 092 * Returns an immutable set instance containing the given enum elements. Internally, the returned 093 * set will be backed by an {@link EnumSet}. 094 * 095 * <p>The iteration order of the returned set follows the enum's iteration order, not the order in 096 * which the elements are provided to the method. 097 * 098 * @param anElement one of the elements the set should contain 099 * @param otherElements the rest of the elements the set should contain 100 * @return an immutable set containing those elements, minus duplicates 101 */ 102 // http://code.google.com/p/google-web-toolkit/issues/detail?id=3028 103 @GwtCompatible(serializable = true) 104 public static <E extends Enum<E>> ImmutableSet<E> immutableEnumSet( 105 E anElement, E... otherElements) { 106 return ImmutableEnumSet.asImmutable(EnumSet.of(anElement, otherElements)); 107 } 108 109 /** 110 * Returns an immutable set instance containing the given enum elements. Internally, the returned 111 * set will be backed by an {@link EnumSet}. 112 * 113 * <p>The iteration order of the returned set follows the enum's iteration order, not the order in 114 * which the elements appear in the given collection. 115 * 116 * @param elements the elements, all of the same {@code enum} type, that the set should contain 117 * @return an immutable set containing those elements, minus duplicates 118 */ 119 // http://code.google.com/p/google-web-toolkit/issues/detail?id=3028 120 @GwtCompatible(serializable = true) 121 public static <E extends Enum<E>> ImmutableSet<E> immutableEnumSet(Iterable<E> elements) { 122 if (elements instanceof ImmutableEnumSet) { 123 return (ImmutableEnumSet<E>) elements; 124 } else if (elements instanceof Collection) { 125 Collection<E> collection = (Collection<E>) elements; 126 if (collection.isEmpty()) { 127 return ImmutableSet.of(); 128 } else { 129 return ImmutableEnumSet.asImmutable(EnumSet.copyOf(collection)); 130 } 131 } else { 132 Iterator<E> itr = elements.iterator(); 133 if (itr.hasNext()) { 134 EnumSet<E> enumSet = EnumSet.of(itr.next()); 135 Iterators.addAll(enumSet, itr); 136 return ImmutableEnumSet.asImmutable(enumSet); 137 } else { 138 return ImmutableSet.of(); 139 } 140 } 141 } 142 143 /** 144 * Returns a {@code Collector} that accumulates the input elements into a new {@code ImmutableSet} 145 * with an implementation specialized for enums. Unlike {@link ImmutableSet#toImmutableSet}, the 146 * resulting set will iterate over elements in their enum definition order, not encounter order. 147 */ 148 @SuppressWarnings({"AndroidJdkLibsChecker", "Java7ApiChecker"}) 149 @IgnoreJRERequirement // Users will use this only if they're already using streams. 150 static <E extends Enum<E>> Collector<E, ?, ImmutableSet<E>> toImmutableEnumSet() { 151 return CollectCollectors.toImmutableEnumSet(); 152 } 153 154 /** 155 * Returns a new, <i>mutable</i> {@code EnumSet} instance containing the given elements in their 156 * natural order. This method behaves identically to {@link EnumSet#copyOf(Collection)}, but also 157 * accepts non-{@code Collection} iterables and empty iterables. 158 */ 159 public static <E extends Enum<E>> EnumSet<E> newEnumSet( 160 Iterable<E> iterable, Class<E> elementType) { 161 EnumSet<E> set = EnumSet.noneOf(elementType); 162 Iterables.addAll(set, iterable); 163 return set; 164 } 165 166 // HashSet 167 168 /** 169 * Creates a <i>mutable</i>, initially empty {@code HashSet} instance. 170 * 171 * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSet#of()} instead. If {@code 172 * E} is an {@link Enum} type, use {@link EnumSet#noneOf} instead. Otherwise, strongly consider 173 * using a {@code LinkedHashSet} instead, at the cost of increased memory footprint, to get 174 * deterministic iteration behavior. 175 * 176 * <p><b>Note:</b> this method is now unnecessary and should be treated as deprecated. Instead, 177 * use the {@code HashSet} constructor directly, taking advantage of <a 178 * href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 179 */ 180 public static <E extends @Nullable Object> HashSet<E> newHashSet() { 181 return new HashSet<E>(); 182 } 183 184 /** 185 * Creates a <i>mutable</i> {@code HashSet} instance initially containing the given elements. 186 * 187 * <p><b>Note:</b> if elements are non-null and won't be added or removed after this point, use 188 * {@link ImmutableSet#of()} or {@link ImmutableSet#copyOf(Object[])} instead. If {@code E} is an 189 * {@link Enum} type, use {@link EnumSet#of(Enum, Enum[])} instead. Otherwise, strongly consider 190 * using a {@code LinkedHashSet} instead, at the cost of increased memory footprint, to get 191 * deterministic iteration behavior. 192 * 193 * <p>This method is just a small convenience, either for {@code newHashSet(}{@link Arrays#asList 194 * asList}{@code (...))}, or for creating an empty set then calling {@link Collections#addAll}. 195 * This method is not actually very useful and will likely be deprecated in the future. 196 */ 197 public static <E extends @Nullable Object> HashSet<E> newHashSet(E... elements) { 198 HashSet<E> set = newHashSetWithExpectedSize(elements.length); 199 Collections.addAll(set, elements); 200 return set; 201 } 202 203 /** 204 * Creates a <i>mutable</i> {@code HashSet} instance containing the given elements. A very thin 205 * convenience for creating an empty set then calling {@link Collection#addAll} or {@link 206 * Iterables#addAll}. 207 * 208 * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link 209 * ImmutableSet#copyOf(Iterable)} instead. (Or, change {@code elements} to be a {@link 210 * FluentIterable} and call {@code elements.toSet()}.) 211 * 212 * <p><b>Note:</b> if {@code E} is an {@link Enum} type, use {@link #newEnumSet(Iterable, Class)} 213 * instead. 214 * 215 * <p><b>Note:</b> if {@code elements} is a {@link Collection}, you don't need this method. 216 * Instead, use the {@code HashSet} constructor directly, taking advantage of <a 217 * href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 218 * 219 * <p>Overall, this method is not very useful and will likely be deprecated in the future. 220 */ 221 public static <E extends @Nullable Object> HashSet<E> newHashSet(Iterable<? extends E> elements) { 222 return (elements instanceof Collection) 223 ? new HashSet<E>((Collection<? extends E>) elements) 224 : newHashSet(elements.iterator()); 225 } 226 227 /** 228 * Creates a <i>mutable</i> {@code HashSet} instance containing the given elements. A very thin 229 * convenience for creating an empty set and then calling {@link Iterators#addAll}. 230 * 231 * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link 232 * ImmutableSet#copyOf(Iterator)} instead. 233 * 234 * <p><b>Note:</b> if {@code E} is an {@link Enum} type, you should create an {@link EnumSet} 235 * instead. 236 * 237 * <p>Overall, this method is not very useful and will likely be deprecated in the future. 238 */ 239 public static <E extends @Nullable Object> HashSet<E> newHashSet(Iterator<? extends E> elements) { 240 HashSet<E> set = newHashSet(); 241 Iterators.addAll(set, elements); 242 return set; 243 } 244 245 /** 246 * Returns a new hash set using the smallest initial table size that can hold {@code expectedSize} 247 * elements without resizing. Note that this is not what {@link HashSet#HashSet(int)} does, but it 248 * is what most users want and expect it to do. 249 * 250 * <p>This behavior can't be broadly guaranteed, but has been tested with OpenJDK 1.7 and 1.8. 251 * 252 * @param expectedSize the number of elements you expect to add to the returned set 253 * @return a new, empty hash set with enough capacity to hold {@code expectedSize} elements 254 * without resizing 255 * @throws IllegalArgumentException if {@code expectedSize} is negative 256 */ 257 public static <E extends @Nullable Object> HashSet<E> newHashSetWithExpectedSize( 258 int expectedSize) { 259 return new HashSet<E>(Maps.capacity(expectedSize)); 260 } 261 262 /** 263 * Creates a thread-safe set backed by a hash map. The set is backed by a {@link 264 * ConcurrentHashMap} instance, and thus carries the same concurrency guarantees. 265 * 266 * <p>Unlike {@code HashSet}, this class does NOT allow {@code null} to be used as an element. The 267 * set is serializable. 268 * 269 * @return a new, empty thread-safe {@code Set} 270 * @since 15.0 271 */ 272 public static <E> Set<E> newConcurrentHashSet() { 273 return Collections.newSetFromMap(new ConcurrentHashMap<E, Boolean>()); 274 } 275 276 /** 277 * Creates a thread-safe set backed by a hash map and containing the given elements. The set is 278 * backed by a {@link ConcurrentHashMap} instance, and thus carries the same concurrency 279 * guarantees. 280 * 281 * <p>Unlike {@code HashSet}, this class does NOT allow {@code null} to be used as an element. The 282 * set is serializable. 283 * 284 * @param elements the elements that the set should contain 285 * @return a new thread-safe set containing those elements (minus duplicates) 286 * @throws NullPointerException if {@code elements} or any of its contents is null 287 * @since 15.0 288 */ 289 public static <E> Set<E> newConcurrentHashSet(Iterable<? extends E> elements) { 290 Set<E> set = newConcurrentHashSet(); 291 Iterables.addAll(set, elements); 292 return set; 293 } 294 295 // LinkedHashSet 296 297 /** 298 * Creates a <i>mutable</i>, empty {@code LinkedHashSet} instance. 299 * 300 * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSet#of()} instead. 301 * 302 * <p><b>Note:</b> this method is now unnecessary and should be treated as deprecated. Instead, 303 * use the {@code LinkedHashSet} constructor directly, taking advantage of <a 304 * href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 305 * 306 * @return a new, empty {@code LinkedHashSet} 307 */ 308 public static <E extends @Nullable Object> LinkedHashSet<E> newLinkedHashSet() { 309 return new LinkedHashSet<E>(); 310 } 311 312 /** 313 * Creates a <i>mutable</i> {@code LinkedHashSet} instance containing the given elements in order. 314 * 315 * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link 316 * ImmutableSet#copyOf(Iterable)} instead. 317 * 318 * <p><b>Note:</b> if {@code elements} is a {@link Collection}, you don't need this method. 319 * Instead, use the {@code LinkedHashSet} constructor directly, taking advantage of <a 320 * href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 321 * 322 * <p>Overall, this method is not very useful and will likely be deprecated in the future. 323 * 324 * @param elements the elements that the set should contain, in order 325 * @return a new {@code LinkedHashSet} containing those elements (minus duplicates) 326 */ 327 public static <E extends @Nullable Object> LinkedHashSet<E> newLinkedHashSet( 328 Iterable<? extends E> elements) { 329 if (elements instanceof Collection) { 330 return new LinkedHashSet<E>((Collection<? extends E>) elements); 331 } 332 LinkedHashSet<E> set = newLinkedHashSet(); 333 Iterables.addAll(set, elements); 334 return set; 335 } 336 337 /** 338 * Creates a {@code LinkedHashSet} instance, with a high enough "initial capacity" that it 339 * <i>should</i> hold {@code expectedSize} elements without growth. This behavior cannot be 340 * broadly guaranteed, but it is observed to be true for OpenJDK 1.7. It also can't be guaranteed 341 * that the method isn't inadvertently <i>oversizing</i> the returned set. 342 * 343 * @param expectedSize the number of elements you expect to add to the returned set 344 * @return a new, empty {@code LinkedHashSet} with enough capacity to hold {@code expectedSize} 345 * elements without resizing 346 * @throws IllegalArgumentException if {@code expectedSize} is negative 347 * @since 11.0 348 */ 349 public static <E extends @Nullable Object> LinkedHashSet<E> newLinkedHashSetWithExpectedSize( 350 int expectedSize) { 351 return new LinkedHashSet<E>(Maps.capacity(expectedSize)); 352 } 353 354 // TreeSet 355 356 /** 357 * Creates a <i>mutable</i>, empty {@code TreeSet} instance sorted by the natural sort ordering of 358 * its elements. 359 * 360 * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSortedSet#of()} instead. 361 * 362 * <p><b>Note:</b> this method is now unnecessary and should be treated as deprecated. Instead, 363 * use the {@code TreeSet} constructor directly, taking advantage of <a 364 * href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 365 * 366 * @return a new, empty {@code TreeSet} 367 */ 368 public static <E extends Comparable> TreeSet<E> newTreeSet() { 369 return new TreeSet<E>(); 370 } 371 372 /** 373 * Creates a <i>mutable</i> {@code TreeSet} instance containing the given elements sorted by their 374 * natural ordering. 375 * 376 * <p><b>Note:</b> if mutability is not required, use {@link ImmutableSortedSet#copyOf(Iterable)} 377 * instead. 378 * 379 * <p><b>Note:</b> If {@code elements} is a {@code SortedSet} with an explicit comparator, this 380 * method has different behavior than {@link TreeSet#TreeSet(SortedSet)}, which returns a {@code 381 * TreeSet} with that comparator. 382 * 383 * <p><b>Note:</b> this method is now unnecessary and should be treated as deprecated. Instead, 384 * use the {@code TreeSet} constructor directly, taking advantage of <a 385 * href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 386 * 387 * <p>This method is just a small convenience for creating an empty set and then calling {@link 388 * Iterables#addAll}. This method is not very useful and will likely be deprecated in the future. 389 * 390 * @param elements the elements that the set should contain 391 * @return a new {@code TreeSet} containing those elements (minus duplicates) 392 */ 393 public static <E extends Comparable> TreeSet<E> newTreeSet(Iterable<? extends E> elements) { 394 TreeSet<E> set = newTreeSet(); 395 Iterables.addAll(set, elements); 396 return set; 397 } 398 399 /** 400 * Creates a <i>mutable</i>, empty {@code TreeSet} instance with the given comparator. 401 * 402 * <p><b>Note:</b> if mutability is not required, use {@code 403 * ImmutableSortedSet.orderedBy(comparator).build()} instead. 404 * 405 * <p><b>Note:</b> this method is now unnecessary and should be treated as deprecated. Instead, 406 * use the {@code TreeSet} constructor directly, taking advantage of <a 407 * href="http://goo.gl/iz2Wi">"diamond" syntax</a>. One caveat to this is that the {@code TreeSet} 408 * constructor uses a null {@code Comparator} to mean "natural ordering," whereas this factory 409 * rejects null. Clean your code accordingly. 410 * 411 * @param comparator the comparator to use to sort the set 412 * @return a new, empty {@code TreeSet} 413 * @throws NullPointerException if {@code comparator} is null 414 */ 415 public static <E extends @Nullable Object> TreeSet<E> newTreeSet( 416 Comparator<? super E> comparator) { 417 return new TreeSet<E>(checkNotNull(comparator)); 418 } 419 420 /** 421 * Creates an empty {@code Set} that uses identity to determine equality. It compares object 422 * references, instead of calling {@code equals}, to determine whether a provided object matches 423 * an element in the set. For example, {@code contains} returns {@code false} when passed an 424 * object that equals a set member, but isn't the same instance. This behavior is similar to the 425 * way {@code IdentityHashMap} handles key lookups. 426 * 427 * @since 8.0 428 */ 429 public static <E extends @Nullable Object> Set<E> newIdentityHashSet() { 430 return Collections.newSetFromMap(Maps.<E, Boolean>newIdentityHashMap()); 431 } 432 433 /** 434 * Creates an empty {@code CopyOnWriteArraySet} instance. 435 * 436 * <p><b>Note:</b> if you need an immutable empty {@link Set}, use {@link Collections#emptySet} 437 * instead. 438 * 439 * @return a new, empty {@code CopyOnWriteArraySet} 440 * @since 12.0 441 */ 442 @J2ktIncompatible 443 @GwtIncompatible // CopyOnWriteArraySet 444 public static <E extends @Nullable Object> CopyOnWriteArraySet<E> newCopyOnWriteArraySet() { 445 return new CopyOnWriteArraySet<E>(); 446 } 447 448 /** 449 * Creates a {@code CopyOnWriteArraySet} instance containing the given elements. 450 * 451 * @param elements the elements that the set should contain, in order 452 * @return a new {@code CopyOnWriteArraySet} containing those elements 453 * @since 12.0 454 */ 455 @J2ktIncompatible 456 @GwtIncompatible // CopyOnWriteArraySet 457 public static <E extends @Nullable Object> CopyOnWriteArraySet<E> newCopyOnWriteArraySet( 458 Iterable<? extends E> elements) { 459 // We copy elements to an ArrayList first, rather than incurring the 460 // quadratic cost of adding them to the COWAS directly. 461 Collection<? extends E> elementsCollection = 462 (elements instanceof Collection) 463 ? (Collection<? extends E>) elements 464 : Lists.newArrayList(elements); 465 return new CopyOnWriteArraySet<E>(elementsCollection); 466 } 467 468 /** 469 * Creates an {@code EnumSet} consisting of all enum values that are not in the specified 470 * collection. If the collection is an {@link EnumSet}, this method has the same behavior as 471 * {@link EnumSet#complementOf}. Otherwise, the specified collection must contain at least one 472 * element, in order to determine the element type. If the collection could be empty, use {@link 473 * #complementOf(Collection, Class)} instead of this method. 474 * 475 * @param collection the collection whose complement should be stored in the enum set 476 * @return a new, modifiable {@code EnumSet} containing all values of the enum that aren't present 477 * in the given collection 478 * @throws IllegalArgumentException if {@code collection} is not an {@code EnumSet} instance and 479 * contains no elements 480 */ 481 @J2ktIncompatible 482 @GwtIncompatible 483 public static <E extends Enum<E>> EnumSet<E> complementOf(Collection<E> collection) { 484 if (collection instanceof EnumSet) { 485 return EnumSet.complementOf((EnumSet<E>) collection); 486 } 487 checkArgument( 488 !collection.isEmpty(), "collection is empty; use the other version of this method"); 489 Class<E> type = collection.iterator().next().getDeclaringClass(); 490 return makeComplementByHand(collection, type); 491 } 492 493 /** 494 * Creates an {@code EnumSet} consisting of all enum values that are not in the specified 495 * collection. This is equivalent to {@link EnumSet#complementOf}, but can act on any input 496 * collection, as long as the elements are of enum type. 497 * 498 * @param collection the collection whose complement should be stored in the {@code EnumSet} 499 * @param type the type of the elements in the set 500 * @return a new, modifiable {@code EnumSet} initially containing all the values of the enum not 501 * present in the given collection 502 */ 503 @GwtIncompatible 504 public static <E extends Enum<E>> EnumSet<E> complementOf( 505 Collection<E> collection, Class<E> type) { 506 checkNotNull(collection); 507 return (collection instanceof EnumSet) 508 ? EnumSet.complementOf((EnumSet<E>) collection) 509 : makeComplementByHand(collection, type); 510 } 511 512 @GwtIncompatible 513 private static <E extends Enum<E>> EnumSet<E> makeComplementByHand( 514 Collection<E> collection, Class<E> type) { 515 EnumSet<E> result = EnumSet.allOf(type); 516 result.removeAll(collection); 517 return result; 518 } 519 520 /** 521 * Returns a set backed by the specified map. The resulting set displays the same ordering, 522 * concurrency, and performance characteristics as the backing map. In essence, this factory 523 * method provides a {@link Set} implementation corresponding to any {@link Map} implementation. 524 * There is no need to use this method on a {@link Map} implementation that already has a 525 * corresponding {@link Set} implementation (such as {@link java.util.HashMap} or {@link 526 * java.util.TreeMap}). 527 * 528 * <p>Each method invocation on the set returned by this method results in exactly one method 529 * invocation on the backing map or its {@code keySet} view, with one exception. The {@code 530 * addAll} method is implemented as a sequence of {@code put} invocations on the backing map. 531 * 532 * <p>The specified map must be empty at the time this method is invoked, and should not be 533 * accessed directly after this method returns. These conditions are ensured if the map is created 534 * empty, passed directly to this method, and no reference to the map is retained, as illustrated 535 * in the following code fragment: 536 * 537 * <pre>{@code 538 * Set<Object> identityHashSet = Sets.newSetFromMap( 539 * new IdentityHashMap<Object, Boolean>()); 540 * }</pre> 541 * 542 * <p>The returned set is serializable if the backing map is. 543 * 544 * @param map the backing map 545 * @return the set backed by the map 546 * @throws IllegalArgumentException if {@code map} is not empty 547 * @deprecated Use {@link Collections#newSetFromMap} instead. 548 */ 549 @Deprecated 550 public static <E extends @Nullable Object> Set<E> newSetFromMap( 551 Map<E, Boolean> map) { 552 return Collections.newSetFromMap(map); 553 } 554 555 /** 556 * An unmodifiable view of a set which may be backed by other sets; this view will change as the 557 * backing sets do. Contains methods to copy the data into a new set which will then remain 558 * stable. There is usually no reason to retain a reference of type {@code SetView}; typically, 559 * you either use it as a plain {@link Set}, or immediately invoke {@link #immutableCopy} or 560 * {@link #copyInto} and forget the {@code SetView} itself. 561 * 562 * @since 2.0 563 */ 564 public abstract static class SetView<E extends @Nullable Object> extends AbstractSet<E> { 565 private SetView() {} // no subclasses but our own 566 567 /** 568 * Returns an immutable copy of the current contents of this set view. Does not support null 569 * elements. 570 * 571 * <p><b>Warning:</b> this may have unexpected results if a backing set of this view uses a 572 * nonstandard notion of equivalence, for example if it is a {@link TreeSet} using a comparator 573 * that is inconsistent with {@link Object#equals(Object)}. 574 */ 575 @SuppressWarnings("nullness") // Unsafe, but we can't fix it now. 576 public ImmutableSet<@NonNull E> immutableCopy() { 577 return ImmutableSet.copyOf((SetView<@NonNull E>) this); 578 } 579 580 /** 581 * Copies the current contents of this set view into an existing set. This method has equivalent 582 * behavior to {@code set.addAll(this)}, assuming that all the sets involved are based on the 583 * same notion of equivalence. 584 * 585 * @return a reference to {@code set}, for convenience 586 */ 587 // Note: S should logically extend Set<? super E> but can't due to either 588 // some javac bug or some weirdness in the spec, not sure which. 589 @CanIgnoreReturnValue 590 public <S extends Set<E>> S copyInto(S set) { 591 set.addAll(this); 592 return set; 593 } 594 595 /** 596 * Guaranteed to throw an exception and leave the collection unmodified. 597 * 598 * @throws UnsupportedOperationException always 599 * @deprecated Unsupported operation. 600 */ 601 @CanIgnoreReturnValue 602 @Deprecated 603 @Override 604 @DoNotCall("Always throws UnsupportedOperationException") 605 public final boolean add(@ParametricNullness E e) { 606 throw new UnsupportedOperationException(); 607 } 608 609 /** 610 * Guaranteed to throw an exception and leave the collection unmodified. 611 * 612 * @throws UnsupportedOperationException always 613 * @deprecated Unsupported operation. 614 */ 615 @CanIgnoreReturnValue 616 @Deprecated 617 @Override 618 @DoNotCall("Always throws UnsupportedOperationException") 619 public final boolean remove(@CheckForNull Object object) { 620 throw new UnsupportedOperationException(); 621 } 622 623 /** 624 * Guaranteed to throw an exception and leave the collection unmodified. 625 * 626 * @throws UnsupportedOperationException always 627 * @deprecated Unsupported operation. 628 */ 629 @CanIgnoreReturnValue 630 @Deprecated 631 @Override 632 @DoNotCall("Always throws UnsupportedOperationException") 633 public final boolean addAll(Collection<? extends E> newElements) { 634 throw new UnsupportedOperationException(); 635 } 636 637 /** 638 * Guaranteed to throw an exception and leave the collection unmodified. 639 * 640 * @throws UnsupportedOperationException always 641 * @deprecated Unsupported operation. 642 */ 643 @CanIgnoreReturnValue 644 @Deprecated 645 @Override 646 @DoNotCall("Always throws UnsupportedOperationException") 647 public final boolean removeAll(Collection<?> oldElements) { 648 throw new UnsupportedOperationException(); 649 } 650 651 /** 652 * Guaranteed to throw an exception and leave the collection unmodified. 653 * 654 * @throws UnsupportedOperationException always 655 * @deprecated Unsupported operation. 656 */ 657 @CanIgnoreReturnValue 658 @Deprecated 659 @Override 660 @DoNotCall("Always throws UnsupportedOperationException") 661 public final boolean retainAll(Collection<?> elementsToKeep) { 662 throw new UnsupportedOperationException(); 663 } 664 665 /** 666 * Guaranteed to throw an exception and leave the collection unmodified. 667 * 668 * @throws UnsupportedOperationException always 669 * @deprecated Unsupported operation. 670 */ 671 @Deprecated 672 @Override 673 @DoNotCall("Always throws UnsupportedOperationException") 674 public final void clear() { 675 throw new UnsupportedOperationException(); 676 } 677 678 /** 679 * Scope the return type to {@link UnmodifiableIterator} to ensure this is an unmodifiable view. 680 * 681 * @since 20.0 (present with return type {@link Iterator} since 2.0) 682 */ 683 @Override 684 public abstract UnmodifiableIterator<E> iterator(); 685 } 686 687 /** 688 * Returns an unmodifiable <b>view</b> of the union of two sets. The returned set contains all 689 * elements that are contained in either backing set. Iterating over the returned set iterates 690 * first over all the elements of {@code set1}, then over each element of {@code set2}, in order, 691 * that is not contained in {@code set1}. 692 * 693 * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different 694 * equivalence relations, for example if {@code set1} is a {@link HashSet} and {@code set2} is a 695 * {@link TreeSet} or the {@link Map#keySet} of an {@code IdentityHashMap}. 696 */ 697 public static <E extends @Nullable Object> SetView<E> union( 698 final Set<? extends E> set1, final Set<? extends E> set2) { 699 checkNotNull(set1, "set1"); 700 checkNotNull(set2, "set2"); 701 702 return new SetView<E>() { 703 @Override 704 public int size() { 705 int size = set1.size(); 706 for (E e : set2) { 707 if (!set1.contains(e)) { 708 size++; 709 } 710 } 711 return size; 712 } 713 714 @Override 715 public boolean isEmpty() { 716 return set1.isEmpty() && set2.isEmpty(); 717 } 718 719 @Override 720 public UnmodifiableIterator<E> iterator() { 721 return new AbstractIterator<E>() { 722 final Iterator<? extends E> itr1 = set1.iterator(); 723 final Iterator<? extends E> itr2 = set2.iterator(); 724 725 @Override 726 @CheckForNull 727 protected E computeNext() { 728 if (itr1.hasNext()) { 729 return itr1.next(); 730 } 731 while (itr2.hasNext()) { 732 E e = itr2.next(); 733 if (!set1.contains(e)) { 734 return e; 735 } 736 } 737 return endOfData(); 738 } 739 }; 740 } 741 742 @Override 743 public boolean contains(@CheckForNull Object object) { 744 return set1.contains(object) || set2.contains(object); 745 } 746 747 @Override 748 public <S extends Set<E>> S copyInto(S set) { 749 set.addAll(set1); 750 set.addAll(set2); 751 return set; 752 } 753 754 @Override 755 @SuppressWarnings({"nullness", "unchecked"}) // see supertype 756 public ImmutableSet<@NonNull E> immutableCopy() { 757 ImmutableSet.Builder<@NonNull E> builder = 758 new ImmutableSet.Builder<@NonNull E>() 759 .addAll((Iterable<@NonNull E>) set1) 760 .addAll((Iterable<@NonNull E>) set2); 761 return (ImmutableSet<@NonNull E>) builder.build(); 762 } 763 }; 764 } 765 766 /** 767 * Returns an unmodifiable <b>view</b> of the intersection of two sets. The returned set contains 768 * all elements that are contained by both backing sets. The iteration order of the returned set 769 * matches that of {@code set1}. 770 * 771 * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different 772 * equivalence relations, for example if {@code set1} is a {@link HashSet} and {@code set2} is a 773 * {@link TreeSet} or the {@link Map#keySet} of an {@code IdentityHashMap}. 774 * 775 * <p><b>Note:</b> The returned view performs slightly better when {@code set1} is the smaller of 776 * the two sets. If you have reason to believe one of your sets will generally be smaller than the 777 * other, pass it first. Unfortunately, since this method sets the generic type of the returned 778 * set based on the type of the first set passed, this could in rare cases force you to make a 779 * cast, for example: 780 * 781 * <pre>{@code 782 * Set<Object> aFewBadObjects = ... 783 * Set<String> manyBadStrings = ... 784 * 785 * // impossible for a non-String to be in the intersection 786 * SuppressWarnings("unchecked") 787 * Set<String> badStrings = (Set) Sets.intersection( 788 * aFewBadObjects, manyBadStrings); 789 * }</pre> 790 * 791 * <p>This is unfortunate, but should come up only very rarely. 792 */ 793 public static <E extends @Nullable Object> SetView<E> intersection( 794 final Set<E> set1, final Set<?> set2) { 795 checkNotNull(set1, "set1"); 796 checkNotNull(set2, "set2"); 797 798 return new SetView<E>() { 799 @Override 800 public UnmodifiableIterator<E> iterator() { 801 return new AbstractIterator<E>() { 802 final Iterator<E> itr = set1.iterator(); 803 804 @Override 805 @CheckForNull 806 protected E computeNext() { 807 while (itr.hasNext()) { 808 E e = itr.next(); 809 if (set2.contains(e)) { 810 return e; 811 } 812 } 813 return endOfData(); 814 } 815 }; 816 } 817 818 @Override 819 public int size() { 820 int size = 0; 821 for (E e : set1) { 822 if (set2.contains(e)) { 823 size++; 824 } 825 } 826 return size; 827 } 828 829 @Override 830 public boolean isEmpty() { 831 return Collections.disjoint(set2, set1); 832 } 833 834 @Override 835 public boolean contains(@CheckForNull Object object) { 836 return set1.contains(object) && set2.contains(object); 837 } 838 839 @Override 840 public boolean containsAll(Collection<?> collection) { 841 return set1.containsAll(collection) && set2.containsAll(collection); 842 } 843 }; 844 } 845 846 /** 847 * Returns an unmodifiable <b>view</b> of the difference of two sets. The returned set contains 848 * all elements that are contained by {@code set1} and not contained by {@code set2}. {@code set2} 849 * may also contain elements not present in {@code set1}; these are simply ignored. The iteration 850 * order of the returned set matches that of {@code set1}. 851 * 852 * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different 853 * equivalence relations, for example if {@code set1} is a {@link HashSet} and {@code set2} is a 854 * {@link TreeSet} or the {@link Map#keySet} of an {@code IdentityHashMap}. 855 */ 856 public static <E extends @Nullable Object> SetView<E> difference( 857 final Set<E> set1, final Set<?> set2) { 858 checkNotNull(set1, "set1"); 859 checkNotNull(set2, "set2"); 860 861 return new SetView<E>() { 862 @Override 863 public UnmodifiableIterator<E> iterator() { 864 return new AbstractIterator<E>() { 865 final Iterator<E> itr = set1.iterator(); 866 867 @Override 868 @CheckForNull 869 protected E computeNext() { 870 while (itr.hasNext()) { 871 E e = itr.next(); 872 if (!set2.contains(e)) { 873 return e; 874 } 875 } 876 return endOfData(); 877 } 878 }; 879 } 880 881 @Override 882 public int size() { 883 int size = 0; 884 for (E e : set1) { 885 if (!set2.contains(e)) { 886 size++; 887 } 888 } 889 return size; 890 } 891 892 @Override 893 public boolean isEmpty() { 894 return set2.containsAll(set1); 895 } 896 897 @Override 898 public boolean contains(@CheckForNull Object element) { 899 return set1.contains(element) && !set2.contains(element); 900 } 901 }; 902 } 903 904 /** 905 * Returns an unmodifiable <b>view</b> of the symmetric difference of two sets. The returned set 906 * contains all elements that are contained in either {@code set1} or {@code set2} but not in 907 * both. The iteration order of the returned set is undefined. 908 * 909 * <p>Results are undefined if {@code set1} and {@code set2} are sets based on different 910 * equivalence relations, for example if {@code set1} is a {@link HashSet} and {@code set2} is a 911 * {@link TreeSet} or the {@link Map#keySet} of an {@code IdentityHashMap}. 912 * 913 * @since 3.0 914 */ 915 public static <E extends @Nullable Object> SetView<E> symmetricDifference( 916 final Set<? extends E> set1, final Set<? extends E> set2) { 917 checkNotNull(set1, "set1"); 918 checkNotNull(set2, "set2"); 919 920 return new SetView<E>() { 921 @Override 922 public UnmodifiableIterator<E> iterator() { 923 final Iterator<? extends E> itr1 = set1.iterator(); 924 final Iterator<? extends E> itr2 = set2.iterator(); 925 return new AbstractIterator<E>() { 926 @Override 927 @CheckForNull 928 public E computeNext() { 929 while (itr1.hasNext()) { 930 E elem1 = itr1.next(); 931 if (!set2.contains(elem1)) { 932 return elem1; 933 } 934 } 935 while (itr2.hasNext()) { 936 E elem2 = itr2.next(); 937 if (!set1.contains(elem2)) { 938 return elem2; 939 } 940 } 941 return endOfData(); 942 } 943 }; 944 } 945 946 @Override 947 public int size() { 948 int size = 0; 949 for (E e : set1) { 950 if (!set2.contains(e)) { 951 size++; 952 } 953 } 954 for (E e : set2) { 955 if (!set1.contains(e)) { 956 size++; 957 } 958 } 959 return size; 960 } 961 962 @Override 963 public boolean isEmpty() { 964 return set1.equals(set2); 965 } 966 967 @Override 968 public boolean contains(@CheckForNull Object element) { 969 return set1.contains(element) ^ set2.contains(element); 970 } 971 }; 972 } 973 974 /** 975 * Returns the elements of {@code unfiltered} that satisfy a predicate. The returned set is a live 976 * view of {@code unfiltered}; changes to one affect the other. 977 * 978 * <p>The resulting set's iterator does not support {@code remove()}, but all other set methods 979 * are supported. When given an element that doesn't satisfy the predicate, the set's {@code 980 * add()} and {@code addAll()} methods throw an {@link IllegalArgumentException}. When methods 981 * such as {@code removeAll()} and {@code clear()} are called on the filtered set, only elements 982 * that satisfy the filter will be removed from the underlying set. 983 * 984 * <p>The returned set isn't threadsafe or serializable, even if {@code unfiltered} is. 985 * 986 * <p>Many of the filtered set's methods, such as {@code size()}, iterate across every element in 987 * the underlying set and determine which elements satisfy the filter. When a live view is 988 * <i>not</i> needed, it may be faster to copy {@code Iterables.filter(unfiltered, predicate)} and 989 * use the copy. 990 * 991 * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as documented at 992 * {@link Predicate#apply}. Do not provide a predicate such as {@code 993 * Predicates.instanceOf(ArrayList.class)}, which is inconsistent with equals. (See {@link 994 * Iterables#filter(Iterable, Class)} for related functionality.) 995 * 996 * <p><b>Java 8 users:</b> many use cases for this method are better addressed by {@link 997 * java.util.stream.Stream#filter}. This method is not being deprecated, but we gently encourage 998 * you to migrate to streams. 999 */ 1000 // TODO(kevinb): how to omit that last sentence when building GWT javadoc? 1001 public static <E extends @Nullable Object> Set<E> filter( 1002 Set<E> unfiltered, Predicate<? super E> predicate) { 1003 if (unfiltered instanceof SortedSet) { 1004 return filter((SortedSet<E>) unfiltered, predicate); 1005 } 1006 if (unfiltered instanceof FilteredSet) { 1007 // Support clear(), removeAll(), and retainAll() when filtering a filtered 1008 // collection. 1009 FilteredSet<E> filtered = (FilteredSet<E>) unfiltered; 1010 Predicate<E> combinedPredicate = Predicates.<E>and(filtered.predicate, predicate); 1011 return new FilteredSet<E>((Set<E>) filtered.unfiltered, combinedPredicate); 1012 } 1013 1014 return new FilteredSet<E>(checkNotNull(unfiltered), checkNotNull(predicate)); 1015 } 1016 1017 /** 1018 * Returns the elements of a {@code SortedSet}, {@code unfiltered}, that satisfy a predicate. The 1019 * returned set is a live view of {@code unfiltered}; changes to one affect the other. 1020 * 1021 * <p>The resulting set's iterator does not support {@code remove()}, but all other set methods 1022 * are supported. When given an element that doesn't satisfy the predicate, the set's {@code 1023 * add()} and {@code addAll()} methods throw an {@link IllegalArgumentException}. When methods 1024 * such as {@code removeAll()} and {@code clear()} are called on the filtered set, only elements 1025 * that satisfy the filter will be removed from the underlying set. 1026 * 1027 * <p>The returned set isn't threadsafe or serializable, even if {@code unfiltered} is. 1028 * 1029 * <p>Many of the filtered set's methods, such as {@code size()}, iterate across every element in 1030 * the underlying set and determine which elements satisfy the filter. When a live view is 1031 * <i>not</i> needed, it may be faster to copy {@code Iterables.filter(unfiltered, predicate)} and 1032 * use the copy. 1033 * 1034 * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as documented at 1035 * {@link Predicate#apply}. Do not provide a predicate such as {@code 1036 * Predicates.instanceOf(ArrayList.class)}, which is inconsistent with equals. (See {@link 1037 * Iterables#filter(Iterable, Class)} for related functionality.) 1038 * 1039 * @since 11.0 1040 */ 1041 public static <E extends @Nullable Object> SortedSet<E> filter( 1042 SortedSet<E> unfiltered, Predicate<? super E> predicate) { 1043 if (unfiltered instanceof FilteredSet) { 1044 // Support clear(), removeAll(), and retainAll() when filtering a filtered 1045 // collection. 1046 FilteredSet<E> filtered = (FilteredSet<E>) unfiltered; 1047 Predicate<E> combinedPredicate = Predicates.<E>and(filtered.predicate, predicate); 1048 return new FilteredSortedSet<E>((SortedSet<E>) filtered.unfiltered, combinedPredicate); 1049 } 1050 1051 return new FilteredSortedSet<E>(checkNotNull(unfiltered), checkNotNull(predicate)); 1052 } 1053 1054 /** 1055 * Returns the elements of a {@code NavigableSet}, {@code unfiltered}, that satisfy a predicate. 1056 * The returned set is a live view of {@code unfiltered}; changes to one affect the other. 1057 * 1058 * <p>The resulting set's iterator does not support {@code remove()}, but all other set methods 1059 * are supported. When given an element that doesn't satisfy the predicate, the set's {@code 1060 * add()} and {@code addAll()} methods throw an {@link IllegalArgumentException}. When methods 1061 * such as {@code removeAll()} and {@code clear()} are called on the filtered set, only elements 1062 * that satisfy the filter will be removed from the underlying set. 1063 * 1064 * <p>The returned set isn't threadsafe or serializable, even if {@code unfiltered} is. 1065 * 1066 * <p>Many of the filtered set's methods, such as {@code size()}, iterate across every element in 1067 * the underlying set and determine which elements satisfy the filter. When a live view is 1068 * <i>not</i> needed, it may be faster to copy {@code Iterables.filter(unfiltered, predicate)} and 1069 * use the copy. 1070 * 1071 * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as documented at 1072 * {@link Predicate#apply}. Do not provide a predicate such as {@code 1073 * Predicates.instanceOf(ArrayList.class)}, which is inconsistent with equals. (See {@link 1074 * Iterables#filter(Iterable, Class)} for related functionality.) 1075 * 1076 * @since 14.0 1077 */ 1078 @GwtIncompatible // NavigableSet 1079 @SuppressWarnings("unchecked") 1080 public static <E extends @Nullable Object> NavigableSet<E> filter( 1081 NavigableSet<E> unfiltered, Predicate<? super E> predicate) { 1082 if (unfiltered instanceof FilteredSet) { 1083 // Support clear(), removeAll(), and retainAll() when filtering a filtered 1084 // collection. 1085 FilteredSet<E> filtered = (FilteredSet<E>) unfiltered; 1086 Predicate<E> combinedPredicate = Predicates.<E>and(filtered.predicate, predicate); 1087 return new FilteredNavigableSet<E>((NavigableSet<E>) filtered.unfiltered, combinedPredicate); 1088 } 1089 1090 return new FilteredNavigableSet<E>(checkNotNull(unfiltered), checkNotNull(predicate)); 1091 } 1092 1093 private static class FilteredSet<E extends @Nullable Object> extends FilteredCollection<E> 1094 implements Set<E> { 1095 FilteredSet(Set<E> unfiltered, Predicate<? super E> predicate) { 1096 super(unfiltered, predicate); 1097 } 1098 1099 @Override 1100 public boolean equals(@CheckForNull Object object) { 1101 return equalsImpl(this, object); 1102 } 1103 1104 @Override 1105 public int hashCode() { 1106 return hashCodeImpl(this); 1107 } 1108 } 1109 1110 private static class FilteredSortedSet<E extends @Nullable Object> extends FilteredSet<E> 1111 implements SortedSet<E> { 1112 1113 FilteredSortedSet(SortedSet<E> unfiltered, Predicate<? super E> predicate) { 1114 super(unfiltered, predicate); 1115 } 1116 1117 @Override 1118 @CheckForNull 1119 public Comparator<? super E> comparator() { 1120 return ((SortedSet<E>) unfiltered).comparator(); 1121 } 1122 1123 @Override 1124 public SortedSet<E> subSet(@ParametricNullness E fromElement, @ParametricNullness E toElement) { 1125 return new FilteredSortedSet<E>( 1126 ((SortedSet<E>) unfiltered).subSet(fromElement, toElement), predicate); 1127 } 1128 1129 @Override 1130 public SortedSet<E> headSet(@ParametricNullness E toElement) { 1131 return new FilteredSortedSet<E>(((SortedSet<E>) unfiltered).headSet(toElement), predicate); 1132 } 1133 1134 @Override 1135 public SortedSet<E> tailSet(@ParametricNullness E fromElement) { 1136 return new FilteredSortedSet<E>(((SortedSet<E>) unfiltered).tailSet(fromElement), predicate); 1137 } 1138 1139 @Override 1140 @ParametricNullness 1141 public E first() { 1142 return Iterators.find(unfiltered.iterator(), predicate); 1143 } 1144 1145 @Override 1146 @ParametricNullness 1147 public E last() { 1148 SortedSet<E> sortedUnfiltered = (SortedSet<E>) unfiltered; 1149 while (true) { 1150 E element = sortedUnfiltered.last(); 1151 if (predicate.apply(element)) { 1152 return element; 1153 } 1154 sortedUnfiltered = sortedUnfiltered.headSet(element); 1155 } 1156 } 1157 } 1158 1159 @GwtIncompatible // NavigableSet 1160 private static class FilteredNavigableSet<E extends @Nullable Object> extends FilteredSortedSet<E> 1161 implements NavigableSet<E> { 1162 FilteredNavigableSet(NavigableSet<E> unfiltered, Predicate<? super E> predicate) { 1163 super(unfiltered, predicate); 1164 } 1165 1166 NavigableSet<E> unfiltered() { 1167 return (NavigableSet<E>) unfiltered; 1168 } 1169 1170 @Override 1171 @CheckForNull 1172 public E lower(@ParametricNullness E e) { 1173 return Iterators.find(unfiltered().headSet(e, false).descendingIterator(), predicate, null); 1174 } 1175 1176 @Override 1177 @CheckForNull 1178 public E floor(@ParametricNullness E e) { 1179 return Iterators.find(unfiltered().headSet(e, true).descendingIterator(), predicate, null); 1180 } 1181 1182 @Override 1183 @CheckForNull 1184 public E ceiling(@ParametricNullness E e) { 1185 return Iterables.find(unfiltered().tailSet(e, true), predicate, null); 1186 } 1187 1188 @Override 1189 @CheckForNull 1190 public E higher(@ParametricNullness E e) { 1191 return Iterables.find(unfiltered().tailSet(e, false), predicate, null); 1192 } 1193 1194 @Override 1195 @CheckForNull 1196 public E pollFirst() { 1197 return Iterables.removeFirstMatching(unfiltered(), predicate); 1198 } 1199 1200 @Override 1201 @CheckForNull 1202 public E pollLast() { 1203 return Iterables.removeFirstMatching(unfiltered().descendingSet(), predicate); 1204 } 1205 1206 @Override 1207 public NavigableSet<E> descendingSet() { 1208 return Sets.filter(unfiltered().descendingSet(), predicate); 1209 } 1210 1211 @Override 1212 public Iterator<E> descendingIterator() { 1213 return Iterators.filter(unfiltered().descendingIterator(), predicate); 1214 } 1215 1216 @Override 1217 @ParametricNullness 1218 public E last() { 1219 return Iterators.find(unfiltered().descendingIterator(), predicate); 1220 } 1221 1222 @Override 1223 public NavigableSet<E> subSet( 1224 @ParametricNullness E fromElement, 1225 boolean fromInclusive, 1226 @ParametricNullness E toElement, 1227 boolean toInclusive) { 1228 return filter( 1229 unfiltered().subSet(fromElement, fromInclusive, toElement, toInclusive), predicate); 1230 } 1231 1232 @Override 1233 public NavigableSet<E> headSet(@ParametricNullness E toElement, boolean inclusive) { 1234 return filter(unfiltered().headSet(toElement, inclusive), predicate); 1235 } 1236 1237 @Override 1238 public NavigableSet<E> tailSet(@ParametricNullness E fromElement, boolean inclusive) { 1239 return filter(unfiltered().tailSet(fromElement, inclusive), predicate); 1240 } 1241 } 1242 1243 /** 1244 * Returns every possible list that can be formed by choosing one element from each of the given 1245 * sets in order; the "n-ary <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian 1246 * product</a>" of the sets. For example: 1247 * 1248 * <pre>{@code 1249 * Sets.cartesianProduct(ImmutableList.of( 1250 * ImmutableSet.of(1, 2), 1251 * ImmutableSet.of("A", "B", "C"))) 1252 * }</pre> 1253 * 1254 * <p>returns a set containing six lists: 1255 * 1256 * <ul> 1257 * <li>{@code ImmutableList.of(1, "A")} 1258 * <li>{@code ImmutableList.of(1, "B")} 1259 * <li>{@code ImmutableList.of(1, "C")} 1260 * <li>{@code ImmutableList.of(2, "A")} 1261 * <li>{@code ImmutableList.of(2, "B")} 1262 * <li>{@code ImmutableList.of(2, "C")} 1263 * </ul> 1264 * 1265 * <p>The result is guaranteed to be in the "traditional", lexicographical order for Cartesian 1266 * products that you would get from nesting for loops: 1267 * 1268 * <pre>{@code 1269 * for (B b0 : sets.get(0)) { 1270 * for (B b1 : sets.get(1)) { 1271 * ... 1272 * ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...); 1273 * // operate on tuple 1274 * } 1275 * } 1276 * }</pre> 1277 * 1278 * <p>Note that if any input set is empty, the Cartesian product will also be empty. If no sets at 1279 * all are provided (an empty list), the resulting Cartesian product has one element, an empty 1280 * list (counter-intuitive, but mathematically consistent). 1281 * 1282 * <p><i>Performance notes:</i> while the cartesian product of sets of size {@code m, n, p} is a 1283 * set of size {@code m x n x p}, its actual memory consumption is much smaller. When the 1284 * cartesian set is constructed, the input sets are merely copied. Only as the resulting set is 1285 * iterated are the individual lists created, and these are not retained after iteration. 1286 * 1287 * @param sets the sets to choose elements from, in the order that the elements chosen from those 1288 * sets should appear in the resulting lists 1289 * @param <B> any common base class shared by all axes (often just {@link Object}) 1290 * @return the Cartesian product, as an immutable set containing immutable lists 1291 * @throws NullPointerException if {@code sets}, any one of the {@code sets}, or any element of a 1292 * provided set is null 1293 * @throws IllegalArgumentException if the cartesian product size exceeds the {@code int} range 1294 * @since 2.0 1295 */ 1296 public static <B> Set<List<B>> cartesianProduct(List<? extends Set<? extends B>> sets) { 1297 return CartesianSet.create(sets); 1298 } 1299 1300 /** 1301 * Returns every possible list that can be formed by choosing one element from each of the given 1302 * sets in order; the "n-ary <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian 1303 * product</a>" of the sets. For example: 1304 * 1305 * <pre>{@code 1306 * Sets.cartesianProduct( 1307 * ImmutableSet.of(1, 2), 1308 * ImmutableSet.of("A", "B", "C")) 1309 * }</pre> 1310 * 1311 * <p>returns a set containing six lists: 1312 * 1313 * <ul> 1314 * <li>{@code ImmutableList.of(1, "A")} 1315 * <li>{@code ImmutableList.of(1, "B")} 1316 * <li>{@code ImmutableList.of(1, "C")} 1317 * <li>{@code ImmutableList.of(2, "A")} 1318 * <li>{@code ImmutableList.of(2, "B")} 1319 * <li>{@code ImmutableList.of(2, "C")} 1320 * </ul> 1321 * 1322 * <p>The result is guaranteed to be in the "traditional", lexicographical order for Cartesian 1323 * products that you would get from nesting for loops: 1324 * 1325 * <pre>{@code 1326 * for (B b0 : sets.get(0)) { 1327 * for (B b1 : sets.get(1)) { 1328 * ... 1329 * ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...); 1330 * // operate on tuple 1331 * } 1332 * } 1333 * }</pre> 1334 * 1335 * <p>Note that if any input set is empty, the Cartesian product will also be empty. If no sets at 1336 * all are provided (an empty list), the resulting Cartesian product has one element, an empty 1337 * list (counter-intuitive, but mathematically consistent). 1338 * 1339 * <p><i>Performance notes:</i> while the cartesian product of sets of size {@code m, n, p} is a 1340 * set of size {@code m x n x p}, its actual memory consumption is much smaller. When the 1341 * cartesian set is constructed, the input sets are merely copied. Only as the resulting set is 1342 * iterated are the individual lists created, and these are not retained after iteration. 1343 * 1344 * @param sets the sets to choose elements from, in the order that the elements chosen from those 1345 * sets should appear in the resulting lists 1346 * @param <B> any common base class shared by all axes (often just {@link Object}) 1347 * @return the Cartesian product, as an immutable set containing immutable lists 1348 * @throws NullPointerException if {@code sets}, any one of the {@code sets}, or any element of a 1349 * provided set is null 1350 * @throws IllegalArgumentException if the cartesian product size exceeds the {@code int} range 1351 * @since 2.0 1352 */ 1353 @SafeVarargs 1354 public static <B> Set<List<B>> cartesianProduct(Set<? extends B>... sets) { 1355 return cartesianProduct(Arrays.asList(sets)); 1356 } 1357 1358 private static final class CartesianSet<E> extends ForwardingCollection<List<E>> 1359 implements Set<List<E>> { 1360 private final transient ImmutableList<ImmutableSet<E>> axes; 1361 private final transient CartesianList<E> delegate; 1362 1363 static <E> Set<List<E>> create(List<? extends Set<? extends E>> sets) { 1364 ImmutableList.Builder<ImmutableSet<E>> axesBuilder = new ImmutableList.Builder<>(sets.size()); 1365 for (Set<? extends E> set : sets) { 1366 ImmutableSet<E> copy = ImmutableSet.copyOf(set); 1367 if (copy.isEmpty()) { 1368 return ImmutableSet.of(); 1369 } 1370 axesBuilder.add(copy); 1371 } 1372 final ImmutableList<ImmutableSet<E>> axes = axesBuilder.build(); 1373 ImmutableList<List<E>> listAxes = 1374 new ImmutableList<List<E>>() { 1375 @Override 1376 public int size() { 1377 return axes.size(); 1378 } 1379 1380 @Override 1381 public List<E> get(int index) { 1382 return axes.get(index).asList(); 1383 } 1384 1385 @Override 1386 boolean isPartialView() { 1387 return true; 1388 } 1389 1390 // redeclare to help optimizers with b/310253115 1391 @SuppressWarnings("RedundantOverride") 1392 @Override 1393 @J2ktIncompatible // serialization 1394 @GwtIncompatible // serialization 1395 Object writeReplace() { 1396 return super.writeReplace(); 1397 } 1398 }; 1399 return new CartesianSet<E>(axes, new CartesianList<E>(listAxes)); 1400 } 1401 1402 private CartesianSet(ImmutableList<ImmutableSet<E>> axes, CartesianList<E> delegate) { 1403 this.axes = axes; 1404 this.delegate = delegate; 1405 } 1406 1407 @Override 1408 protected Collection<List<E>> delegate() { 1409 return delegate; 1410 } 1411 1412 @Override 1413 public boolean contains(@CheckForNull Object object) { 1414 if (!(object instanceof List)) { 1415 return false; 1416 } 1417 List<?> list = (List<?>) object; 1418 if (list.size() != axes.size()) { 1419 return false; 1420 } 1421 int i = 0; 1422 for (Object o : list) { 1423 if (!axes.get(i).contains(o)) { 1424 return false; 1425 } 1426 i++; 1427 } 1428 return true; 1429 } 1430 1431 @Override 1432 public boolean equals(@CheckForNull Object object) { 1433 // Warning: this is broken if size() == 0, so it is critical that we 1434 // substitute an empty ImmutableSet to the user in place of this 1435 if (object instanceof CartesianSet) { 1436 CartesianSet<?> that = (CartesianSet<?>) object; 1437 return this.axes.equals(that.axes); 1438 } 1439 if (object instanceof Set) { 1440 Set<?> that = (Set<?>) object; 1441 return this.size() == that.size() && this.containsAll(that); 1442 } 1443 return false; 1444 } 1445 1446 @Override 1447 public int hashCode() { 1448 // Warning: this is broken if size() == 0, so it is critical that we 1449 // substitute an empty ImmutableSet to the user in place of this 1450 1451 // It's a weird formula, but tests prove it works. 1452 int adjust = size() - 1; 1453 for (int i = 0; i < axes.size(); i++) { 1454 adjust *= 31; 1455 adjust = ~~adjust; 1456 // in GWT, we have to deal with integer overflow carefully 1457 } 1458 int hash = 1; 1459 for (Set<E> axis : axes) { 1460 hash = 31 * hash + (size() / axis.size() * axis.hashCode()); 1461 1462 hash = ~~hash; 1463 } 1464 hash += adjust; 1465 return ~~hash; 1466 } 1467 } 1468 1469 /** 1470 * Returns the set of all possible subsets of {@code set}. For example, {@code 1471 * powerSet(ImmutableSet.of(1, 2))} returns the set {@code {{}, {1}, {2}, {1, 2}}}. 1472 * 1473 * <p>Elements appear in these subsets in the same iteration order as they appeared in the input 1474 * set. The order in which these subsets appear in the outer set is undefined. Note that the power 1475 * set of the empty set is not the empty set, but a one-element set containing the empty set. 1476 * 1477 * <p>The returned set and its constituent sets use {@code equals} to decide whether two elements 1478 * are identical, even if the input set uses a different concept of equivalence. 1479 * 1480 * <p><i>Performance notes:</i> while the power set of a set with size {@code n} is of size {@code 1481 * 2^n}, its memory usage is only {@code O(n)}. When the power set is constructed, the input set 1482 * is merely copied. Only as the power set is iterated are the individual subsets created, and 1483 * these subsets themselves occupy only a small constant amount of memory. 1484 * 1485 * @param set the set of elements to construct a power set from 1486 * @return the power set, as an immutable set of immutable sets 1487 * @throws IllegalArgumentException if {@code set} has more than 30 unique elements (causing the 1488 * power set size to exceed the {@code int} range) 1489 * @throws NullPointerException if {@code set} is or contains {@code null} 1490 * @see <a href="http://en.wikipedia.org/wiki/Power_set">Power set article at Wikipedia</a> 1491 * @since 4.0 1492 */ 1493 @GwtCompatible(serializable = false) 1494 public static <E> Set<Set<E>> powerSet(Set<E> set) { 1495 return new PowerSet<E>(set); 1496 } 1497 1498 private static final class SubSet<E> extends AbstractSet<E> { 1499 private final ImmutableMap<E, Integer> inputSet; 1500 private final int mask; 1501 1502 SubSet(ImmutableMap<E, Integer> inputSet, int mask) { 1503 this.inputSet = inputSet; 1504 this.mask = mask; 1505 } 1506 1507 @Override 1508 public Iterator<E> iterator() { 1509 return new UnmodifiableIterator<E>() { 1510 final ImmutableList<E> elements = inputSet.keySet().asList(); 1511 int remainingSetBits = mask; 1512 1513 @Override 1514 public boolean hasNext() { 1515 return remainingSetBits != 0; 1516 } 1517 1518 @Override 1519 public E next() { 1520 int index = Integer.numberOfTrailingZeros(remainingSetBits); 1521 if (index == 32) { 1522 throw new NoSuchElementException(); 1523 } 1524 remainingSetBits &= ~(1 << index); 1525 return elements.get(index); 1526 } 1527 }; 1528 } 1529 1530 @Override 1531 public int size() { 1532 return Integer.bitCount(mask); 1533 } 1534 1535 @Override 1536 public boolean contains(@CheckForNull Object o) { 1537 Integer index = inputSet.get(o); 1538 return index != null && (mask & (1 << index)) != 0; 1539 } 1540 } 1541 1542 private static final class PowerSet<E> extends AbstractSet<Set<E>> { 1543 final ImmutableMap<E, Integer> inputSet; 1544 1545 PowerSet(Set<E> input) { 1546 checkArgument( 1547 input.size() <= 30, "Too many elements to create power set: %s > 30", input.size()); 1548 this.inputSet = Maps.indexMap(input); 1549 } 1550 1551 @Override 1552 public int size() { 1553 return 1 << inputSet.size(); 1554 } 1555 1556 @Override 1557 public boolean isEmpty() { 1558 return false; 1559 } 1560 1561 @Override 1562 public Iterator<Set<E>> iterator() { 1563 return new AbstractIndexedListIterator<Set<E>>(size()) { 1564 @Override 1565 protected Set<E> get(final int setBits) { 1566 return new SubSet<E>(inputSet, setBits); 1567 } 1568 }; 1569 } 1570 1571 @Override 1572 public boolean contains(@CheckForNull Object obj) { 1573 if (obj instanceof Set) { 1574 Set<?> set = (Set<?>) obj; 1575 return inputSet.keySet().containsAll(set); 1576 } 1577 return false; 1578 } 1579 1580 @Override 1581 public boolean equals(@CheckForNull Object obj) { 1582 if (obj instanceof PowerSet) { 1583 PowerSet<?> that = (PowerSet<?>) obj; 1584 return inputSet.keySet().equals(that.inputSet.keySet()); 1585 } 1586 return super.equals(obj); 1587 } 1588 1589 @Override 1590 public int hashCode() { 1591 /* 1592 * The sum of the sums of the hash codes in each subset is just the sum of 1593 * each input element's hash code times the number of sets that element 1594 * appears in. Each element appears in exactly half of the 2^n sets, so: 1595 */ 1596 return inputSet.keySet().hashCode() << (inputSet.size() - 1); 1597 } 1598 1599 @Override 1600 public String toString() { 1601 return "powerSet(" + inputSet + ")"; 1602 } 1603 } 1604 1605 /** 1606 * Returns the set of all subsets of {@code set} of size {@code size}. For example, {@code 1607 * combinations(ImmutableSet.of(1, 2, 3), 2)} returns the set {@code {{1, 2}, {1, 3}, {2, 3}}}. 1608 * 1609 * <p>Elements appear in these subsets in the same iteration order as they appeared in the input 1610 * set. The order in which these subsets appear in the outer set is undefined. 1611 * 1612 * <p>The returned set and its constituent sets use {@code equals} to decide whether two elements 1613 * are identical, even if the input set uses a different concept of equivalence. 1614 * 1615 * <p><i>Performance notes:</i> the memory usage of the returned set is only {@code O(n)}. When 1616 * the result set is constructed, the input set is merely copied. Only as the result set is 1617 * iterated are the individual subsets created. Each of these subsets occupies an additional O(n) 1618 * memory but only for as long as the user retains a reference to it. That is, the set returned by 1619 * {@code combinations} does not retain the individual subsets. 1620 * 1621 * @param set the set of elements to take combinations of 1622 * @param size the number of elements per combination 1623 * @return the set of all combinations of {@code size} elements from {@code set} 1624 * @throws IllegalArgumentException if {@code size} is not between 0 and {@code set.size()} 1625 * inclusive 1626 * @throws NullPointerException if {@code set} is or contains {@code null} 1627 * @since 23.0 1628 */ 1629 public static <E> Set<Set<E>> combinations(Set<E> set, final int size) { 1630 final ImmutableMap<E, Integer> index = Maps.indexMap(set); 1631 checkNonnegative(size, "size"); 1632 checkArgument(size <= index.size(), "size (%s) must be <= set.size() (%s)", size, index.size()); 1633 if (size == 0) { 1634 return ImmutableSet.<Set<E>>of(ImmutableSet.<E>of()); 1635 } else if (size == index.size()) { 1636 return ImmutableSet.<Set<E>>of(index.keySet()); 1637 } 1638 return new AbstractSet<Set<E>>() { 1639 @Override 1640 public boolean contains(@CheckForNull Object o) { 1641 if (o instanceof Set) { 1642 Set<?> s = (Set<?>) o; 1643 return s.size() == size && index.keySet().containsAll(s); 1644 } 1645 return false; 1646 } 1647 1648 @Override 1649 public Iterator<Set<E>> iterator() { 1650 return new AbstractIterator<Set<E>>() { 1651 final BitSet bits = new BitSet(index.size()); 1652 1653 @Override 1654 @CheckForNull 1655 protected Set<E> computeNext() { 1656 if (bits.isEmpty()) { 1657 bits.set(0, size); 1658 } else { 1659 int firstSetBit = bits.nextSetBit(0); 1660 int bitToFlip = bits.nextClearBit(firstSetBit); 1661 1662 if (bitToFlip == index.size()) { 1663 return endOfData(); 1664 } 1665 1666 /* 1667 * The current set in sorted order looks like 1668 * {firstSetBit, firstSetBit + 1, ..., bitToFlip - 1, ...} 1669 * where it does *not* contain bitToFlip. 1670 * 1671 * The next combination is 1672 * 1673 * {0, 1, ..., bitToFlip - firstSetBit - 2, bitToFlip, ...} 1674 * 1675 * This is lexicographically next if you look at the combinations in descending order 1676 * e.g. {2, 1, 0}, {3, 1, 0}, {3, 2, 0}, {3, 2, 1}, {4, 1, 0}... 1677 */ 1678 1679 bits.set(0, bitToFlip - firstSetBit - 1); 1680 bits.clear(bitToFlip - firstSetBit - 1, bitToFlip); 1681 bits.set(bitToFlip); 1682 } 1683 final BitSet copy = (BitSet) bits.clone(); 1684 return new AbstractSet<E>() { 1685 @Override 1686 public boolean contains(@CheckForNull Object o) { 1687 Integer i = index.get(o); 1688 return i != null && copy.get(i); 1689 } 1690 1691 @Override 1692 public Iterator<E> iterator() { 1693 return new AbstractIterator<E>() { 1694 int i = -1; 1695 1696 @Override 1697 @CheckForNull 1698 protected E computeNext() { 1699 i = copy.nextSetBit(i + 1); 1700 if (i == -1) { 1701 return endOfData(); 1702 } 1703 return index.keySet().asList().get(i); 1704 } 1705 }; 1706 } 1707 1708 @Override 1709 public int size() { 1710 return size; 1711 } 1712 }; 1713 } 1714 }; 1715 } 1716 1717 @Override 1718 public int size() { 1719 return IntMath.binomial(index.size(), size); 1720 } 1721 1722 @Override 1723 public String toString() { 1724 return "Sets.combinations(" + index.keySet() + ", " + size + ")"; 1725 } 1726 }; 1727 } 1728 1729 /** An implementation for {@link Set#hashCode()}. */ 1730 static int hashCodeImpl(Set<?> s) { 1731 int hashCode = 0; 1732 for (Object o : s) { 1733 hashCode += o != null ? o.hashCode() : 0; 1734 1735 hashCode = ~~hashCode; 1736 // Needed to deal with unusual integer overflow in GWT. 1737 } 1738 return hashCode; 1739 } 1740 1741 /** An implementation for {@link Set#equals(Object)}. */ 1742 static boolean equalsImpl(Set<?> s, @CheckForNull Object object) { 1743 if (s == object) { 1744 return true; 1745 } 1746 if (object instanceof Set) { 1747 Set<?> o = (Set<?>) object; 1748 1749 try { 1750 return s.size() == o.size() && s.containsAll(o); 1751 } catch (NullPointerException | ClassCastException ignored) { 1752 return false; 1753 } 1754 } 1755 return false; 1756 } 1757 1758 /** 1759 * Returns an unmodifiable view of the specified navigable set. This method allows modules to 1760 * provide users with "read-only" access to internal navigable sets. Query operations on the 1761 * returned set "read through" to the specified set, and attempts to modify the returned set, 1762 * whether direct or via its collection views, result in an {@code UnsupportedOperationException}. 1763 * 1764 * <p>The returned navigable set will be serializable if the specified navigable set is 1765 * serializable. 1766 * 1767 * <p><b>Java 8 users and later:</b> Prefer {@link Collections#unmodifiableNavigableSet}. 1768 * 1769 * @param set the navigable set for which an unmodifiable view is to be returned 1770 * @return an unmodifiable view of the specified navigable set 1771 * @since 12.0 1772 */ 1773 public static <E extends @Nullable Object> NavigableSet<E> unmodifiableNavigableSet( 1774 NavigableSet<E> set) { 1775 if (set instanceof ImmutableCollection || set instanceof UnmodifiableNavigableSet) { 1776 return set; 1777 } 1778 return new UnmodifiableNavigableSet<E>(set); 1779 } 1780 1781 static final class UnmodifiableNavigableSet<E extends @Nullable Object> 1782 extends ForwardingSortedSet<E> implements NavigableSet<E>, Serializable { 1783 private final NavigableSet<E> delegate; 1784 private final SortedSet<E> unmodifiableDelegate; 1785 1786 UnmodifiableNavigableSet(NavigableSet<E> delegate) { 1787 this.delegate = checkNotNull(delegate); 1788 this.unmodifiableDelegate = Collections.unmodifiableSortedSet(delegate); 1789 } 1790 1791 @Override 1792 protected SortedSet<E> delegate() { 1793 return unmodifiableDelegate; 1794 } 1795 1796 @Override 1797 @CheckForNull 1798 public E lower(@ParametricNullness E e) { 1799 return delegate.lower(e); 1800 } 1801 1802 @Override 1803 @CheckForNull 1804 public E floor(@ParametricNullness E e) { 1805 return delegate.floor(e); 1806 } 1807 1808 @Override 1809 @CheckForNull 1810 public E ceiling(@ParametricNullness E e) { 1811 return delegate.ceiling(e); 1812 } 1813 1814 @Override 1815 @CheckForNull 1816 public E higher(@ParametricNullness E e) { 1817 return delegate.higher(e); 1818 } 1819 1820 @Override 1821 @CheckForNull 1822 public E pollFirst() { 1823 throw new UnsupportedOperationException(); 1824 } 1825 1826 @Override 1827 @CheckForNull 1828 public E pollLast() { 1829 throw new UnsupportedOperationException(); 1830 } 1831 1832 @LazyInit @CheckForNull private transient UnmodifiableNavigableSet<E> descendingSet; 1833 1834 @Override 1835 public NavigableSet<E> descendingSet() { 1836 UnmodifiableNavigableSet<E> result = descendingSet; 1837 if (result == null) { 1838 result = descendingSet = new UnmodifiableNavigableSet<E>(delegate.descendingSet()); 1839 result.descendingSet = this; 1840 } 1841 return result; 1842 } 1843 1844 @Override 1845 public Iterator<E> descendingIterator() { 1846 return Iterators.unmodifiableIterator(delegate.descendingIterator()); 1847 } 1848 1849 @Override 1850 public NavigableSet<E> subSet( 1851 @ParametricNullness E fromElement, 1852 boolean fromInclusive, 1853 @ParametricNullness E toElement, 1854 boolean toInclusive) { 1855 return unmodifiableNavigableSet( 1856 delegate.subSet(fromElement, fromInclusive, toElement, toInclusive)); 1857 } 1858 1859 @Override 1860 public NavigableSet<E> headSet(@ParametricNullness E toElement, boolean inclusive) { 1861 return unmodifiableNavigableSet(delegate.headSet(toElement, inclusive)); 1862 } 1863 1864 @Override 1865 public NavigableSet<E> tailSet(@ParametricNullness E fromElement, boolean inclusive) { 1866 return unmodifiableNavigableSet(delegate.tailSet(fromElement, inclusive)); 1867 } 1868 1869 private static final long serialVersionUID = 0; 1870 } 1871 1872 /** 1873 * Returns a synchronized (thread-safe) navigable set backed by the specified navigable set. In 1874 * order to guarantee serial access, it is critical that <b>all</b> access to the backing 1875 * navigable set is accomplished through the returned navigable set (or its views). 1876 * 1877 * <p>It is imperative that the user manually synchronize on the returned sorted set when 1878 * iterating over it or any of its {@code descendingSet}, {@code subSet}, {@code headSet}, or 1879 * {@code tailSet} views. 1880 * 1881 * <pre>{@code 1882 * NavigableSet<E> set = synchronizedNavigableSet(new TreeSet<E>()); 1883 * ... 1884 * synchronized (set) { 1885 * // Must be in the synchronized block 1886 * Iterator<E> it = set.iterator(); 1887 * while (it.hasNext()) { 1888 * foo(it.next()); 1889 * } 1890 * } 1891 * }</pre> 1892 * 1893 * <p>or: 1894 * 1895 * <pre>{@code 1896 * NavigableSet<E> set = synchronizedNavigableSet(new TreeSet<E>()); 1897 * NavigableSet<E> set2 = set.descendingSet().headSet(foo); 1898 * ... 1899 * synchronized (set) { // Note: set, not set2!!! 1900 * // Must be in the synchronized block 1901 * Iterator<E> it = set2.descendingIterator(); 1902 * while (it.hasNext()) 1903 * foo(it.next()); 1904 * } 1905 * } 1906 * }</pre> 1907 * 1908 * <p>Failure to follow this advice may result in non-deterministic behavior. 1909 * 1910 * <p>The returned navigable set will be serializable if the specified navigable set is 1911 * serializable. 1912 * 1913 * <p><b>Java 8 users and later:</b> Prefer {@link Collections#synchronizedNavigableSet}. 1914 * 1915 * @param navigableSet the navigable set to be "wrapped" in a synchronized navigable set. 1916 * @return a synchronized view of the specified navigable set. 1917 * @since 13.0 1918 */ 1919 @GwtIncompatible // NavigableSet 1920 public static <E extends @Nullable Object> NavigableSet<E> synchronizedNavigableSet( 1921 NavigableSet<E> navigableSet) { 1922 return Synchronized.navigableSet(navigableSet); 1923 } 1924 1925 /** Remove each element in an iterable from a set. */ 1926 static boolean removeAllImpl(Set<?> set, Iterator<?> iterator) { 1927 boolean changed = false; 1928 while (iterator.hasNext()) { 1929 changed |= set.remove(iterator.next()); 1930 } 1931 return changed; 1932 } 1933 1934 static boolean removeAllImpl(Set<?> set, Collection<?> collection) { 1935 checkNotNull(collection); // for GWT 1936 if (collection instanceof Multiset) { 1937 collection = ((Multiset<?>) collection).elementSet(); 1938 } 1939 /* 1940 * AbstractSet.removeAll(List) has quadratic behavior if the list size 1941 * is just more than the set's size. We augment the test by 1942 * assuming that sets have fast contains() performance, and other 1943 * collections don't. See 1944 * http://code.google.com/p/guava-libraries/issues/detail?id=1013 1945 */ 1946 if (collection instanceof Set && collection.size() > set.size()) { 1947 return Iterators.removeAll(set.iterator(), collection); 1948 } else { 1949 return removeAllImpl(set, collection.iterator()); 1950 } 1951 } 1952 1953 @GwtIncompatible // NavigableSet 1954 static class DescendingSet<E extends @Nullable Object> extends ForwardingNavigableSet<E> { 1955 private final NavigableSet<E> forward; 1956 1957 DescendingSet(NavigableSet<E> forward) { 1958 this.forward = forward; 1959 } 1960 1961 @Override 1962 protected NavigableSet<E> delegate() { 1963 return forward; 1964 } 1965 1966 @Override 1967 @CheckForNull 1968 public E lower(@ParametricNullness E e) { 1969 return forward.higher(e); 1970 } 1971 1972 @Override 1973 @CheckForNull 1974 public E floor(@ParametricNullness E e) { 1975 return forward.ceiling(e); 1976 } 1977 1978 @Override 1979 @CheckForNull 1980 public E ceiling(@ParametricNullness E e) { 1981 return forward.floor(e); 1982 } 1983 1984 @Override 1985 @CheckForNull 1986 public E higher(@ParametricNullness E e) { 1987 return forward.lower(e); 1988 } 1989 1990 @Override 1991 @CheckForNull 1992 public E pollFirst() { 1993 return forward.pollLast(); 1994 } 1995 1996 @Override 1997 @CheckForNull 1998 public E pollLast() { 1999 return forward.pollFirst(); 2000 } 2001 2002 @Override 2003 public NavigableSet<E> descendingSet() { 2004 return forward; 2005 } 2006 2007 @Override 2008 public Iterator<E> descendingIterator() { 2009 return forward.iterator(); 2010 } 2011 2012 @Override 2013 public NavigableSet<E> subSet( 2014 @ParametricNullness E fromElement, 2015 boolean fromInclusive, 2016 @ParametricNullness E toElement, 2017 boolean toInclusive) { 2018 return forward.subSet(toElement, toInclusive, fromElement, fromInclusive).descendingSet(); 2019 } 2020 2021 @Override 2022 public SortedSet<E> subSet(@ParametricNullness E fromElement, @ParametricNullness E toElement) { 2023 return standardSubSet(fromElement, toElement); 2024 } 2025 2026 @Override 2027 public NavigableSet<E> headSet(@ParametricNullness E toElement, boolean inclusive) { 2028 return forward.tailSet(toElement, inclusive).descendingSet(); 2029 } 2030 2031 @Override 2032 public SortedSet<E> headSet(@ParametricNullness E toElement) { 2033 return standardHeadSet(toElement); 2034 } 2035 2036 @Override 2037 public NavigableSet<E> tailSet(@ParametricNullness E fromElement, boolean inclusive) { 2038 return forward.headSet(fromElement, inclusive).descendingSet(); 2039 } 2040 2041 @Override 2042 public SortedSet<E> tailSet(@ParametricNullness E fromElement) { 2043 return standardTailSet(fromElement); 2044 } 2045 2046 @SuppressWarnings("unchecked") 2047 @Override 2048 public Comparator<? super E> comparator() { 2049 Comparator<? super E> forwardComparator = forward.comparator(); 2050 if (forwardComparator == null) { 2051 return (Comparator) Ordering.natural().reverse(); 2052 } else { 2053 return reverse(forwardComparator); 2054 } 2055 } 2056 2057 // If we inline this, we get a javac error. 2058 private static <T extends @Nullable Object> Ordering<T> reverse(Comparator<T> forward) { 2059 return Ordering.from(forward).reverse(); 2060 } 2061 2062 @Override 2063 @ParametricNullness 2064 public E first() { 2065 return forward.last(); 2066 } 2067 2068 @Override 2069 @ParametricNullness 2070 public E last() { 2071 return forward.first(); 2072 } 2073 2074 @Override 2075 public Iterator<E> iterator() { 2076 return forward.descendingIterator(); 2077 } 2078 2079 @Override 2080 public @Nullable Object[] toArray() { 2081 return standardToArray(); 2082 } 2083 2084 @Override 2085 @SuppressWarnings("nullness") // b/192354773 in our checker affects toArray declarations 2086 public <T extends @Nullable Object> T[] toArray(T[] array) { 2087 return standardToArray(array); 2088 } 2089 2090 @Override 2091 public String toString() { 2092 return standardToString(); 2093 } 2094 } 2095 2096 /** 2097 * Returns a view of the portion of {@code set} whose elements are contained by {@code range}. 2098 * 2099 * <p>This method delegates to the appropriate methods of {@link NavigableSet} (namely {@link 2100 * NavigableSet#subSet(Object, boolean, Object, boolean) subSet()}, {@link 2101 * NavigableSet#tailSet(Object, boolean) tailSet()}, and {@link NavigableSet#headSet(Object, 2102 * boolean) headSet()}) to actually construct the view. Consult these methods for a full 2103 * description of the returned view's behavior. 2104 * 2105 * <p><b>Warning:</b> {@code Range}s always represent a range of values using the values' natural 2106 * ordering. {@code NavigableSet} on the other hand can specify a custom ordering via a {@link 2107 * Comparator}, which can violate the natural ordering. Using this method (or in general using 2108 * {@code Range}) with unnaturally-ordered sets can lead to unexpected and undefined behavior. 2109 * 2110 * @since 20.0 2111 */ 2112 @GwtIncompatible // NavigableSet 2113 public static <K extends Comparable<? super K>> NavigableSet<K> subSet( 2114 NavigableSet<K> set, Range<K> range) { 2115 if (set.comparator() != null 2116 && set.comparator() != Ordering.natural() 2117 && range.hasLowerBound() 2118 && range.hasUpperBound()) { 2119 checkArgument( 2120 set.comparator().compare(range.lowerEndpoint(), range.upperEndpoint()) <= 0, 2121 "set is using a custom comparator which is inconsistent with the natural ordering."); 2122 } 2123 if (range.hasLowerBound() && range.hasUpperBound()) { 2124 return set.subSet( 2125 range.lowerEndpoint(), 2126 range.lowerBoundType() == BoundType.CLOSED, 2127 range.upperEndpoint(), 2128 range.upperBoundType() == BoundType.CLOSED); 2129 } else if (range.hasLowerBound()) { 2130 return set.tailSet(range.lowerEndpoint(), range.lowerBoundType() == BoundType.CLOSED); 2131 } else if (range.hasUpperBound()) { 2132 return set.headSet(range.upperEndpoint(), range.upperBoundType() == BoundType.CLOSED); 2133 } 2134 return checkNotNull(set); 2135 } 2136}