001/*
002 * Copyright (C) 2011 The Guava Authors
003 *
004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
005 * in compliance with the License. You may obtain a copy of the License at
006 *
007 * http://www.apache.org/licenses/LICENSE-2.0
008 *
009 * Unless required by applicable law or agreed to in writing, software distributed under the License
010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
011 * or implied. See the License for the specific language governing permissions and limitations under
012 * the License.
013 */
014
015package com.google.common.hash;
016
017import static com.google.common.base.Preconditions.checkArgument;
018import static com.google.common.base.Preconditions.checkNotNull;
019
020import com.google.common.annotations.Beta;
021import com.google.common.annotations.VisibleForTesting;
022import com.google.common.base.Objects;
023import com.google.common.base.Predicate;
024import com.google.common.hash.BloomFilterStrategies.LockFreeBitArray;
025import com.google.common.math.DoubleMath;
026import com.google.common.math.LongMath;
027import com.google.common.primitives.SignedBytes;
028import com.google.common.primitives.UnsignedBytes;
029import com.google.errorprone.annotations.CanIgnoreReturnValue;
030import java.io.DataInputStream;
031import java.io.DataOutputStream;
032import java.io.IOException;
033import java.io.InputStream;
034import java.io.InvalidObjectException;
035import java.io.ObjectInputStream;
036import java.io.OutputStream;
037import java.io.Serializable;
038import java.math.RoundingMode;
039import java.util.stream.Collector;
040import javax.annotation.CheckForNull;
041import org.checkerframework.checker.nullness.qual.Nullable;
042
043/**
044 * A Bloom filter for instances of {@code T}. A Bloom filter offers an approximate containment test
045 * with one-sided error: if it claims that an element is contained in it, this might be in error,
046 * but if it claims that an element is <i>not</i> contained in it, then this is definitely true.
047 *
048 * <p>If you are unfamiliar with Bloom filters, this nice <a
049 * href="http://llimllib.github.io/bloomfilter-tutorial/">tutorial</a> may help you understand how
050 * they work.
051 *
052 * <p>The false positive probability ({@code FPP}) of a Bloom filter is defined as the probability
053 * that {@linkplain #mightContain(Object)} will erroneously return {@code true} for an object that
054 * has not actually been put in the {@code BloomFilter}.
055 *
056 * <p>Bloom filters are serializable. They also support a more compact serial representation via the
057 * {@link #writeTo} and {@link #readFrom} methods. Both serialized forms will continue to be
058 * supported by future versions of this library. However, serial forms generated by newer versions
059 * of the code may not be readable by older versions of the code (e.g., a serialized Bloom filter
060 * generated today may <i>not</i> be readable by a binary that was compiled 6 months ago).
061 *
062 * <p>As of Guava 23.0, this class is thread-safe and lock-free. It internally uses atomics and
063 * compare-and-swap to ensure correctness when multiple threads are used to access it.
064 *
065 * @param <T> the type of instances that the {@code BloomFilter} accepts
066 * @author Dimitris Andreou
067 * @author Kevin Bourrillion
068 * @since 11.0 (thread-safe since 23.0)
069 */
070@Beta
071@ElementTypesAreNonnullByDefault
072public final class BloomFilter<T extends @Nullable Object> implements Predicate<T>, Serializable {
073  /**
074   * A strategy to translate T instances, to {@code numHashFunctions} bit indexes.
075   *
076   * <p>Implementations should be collections of pure functions (i.e. stateless).
077   */
078  interface Strategy extends java.io.Serializable {
079
080    /**
081     * Sets {@code numHashFunctions} bits of the given bit array, by hashing a user element.
082     *
083     * <p>Returns whether any bits changed as a result of this operation.
084     */
085    <T extends @Nullable Object> boolean put(
086        @ParametricNullness T object,
087        Funnel<? super T> funnel,
088        int numHashFunctions,
089        LockFreeBitArray bits);
090
091    /**
092     * Queries {@code numHashFunctions} bits of the given bit array, by hashing a user element;
093     * returns {@code true} if and only if all selected bits are set.
094     */
095    <T extends @Nullable Object> boolean mightContain(
096        @ParametricNullness T object,
097        Funnel<? super T> funnel,
098        int numHashFunctions,
099        LockFreeBitArray bits);
100
101    /**
102     * Identifier used to encode this strategy, when marshalled as part of a BloomFilter. Only
103     * values in the [-128, 127] range are valid for the compact serial form. Non-negative values
104     * are reserved for enums defined in BloomFilterStrategies; negative values are reserved for any
105     * custom, stateful strategy we may define (e.g. any kind of strategy that would depend on user
106     * input).
107     */
108    int ordinal();
109  }
110
111  /** The bit set of the BloomFilter (not necessarily power of 2!) */
112  private final LockFreeBitArray bits;
113
114  /** Number of hashes per element */
115  private final int numHashFunctions;
116
117  /** The funnel to translate Ts to bytes */
118  private final Funnel<? super T> funnel;
119
120  /** The strategy we employ to map an element T to {@code numHashFunctions} bit indexes. */
121  private final Strategy strategy;
122
123  /** Creates a BloomFilter. */
124  private BloomFilter(
125      LockFreeBitArray bits, int numHashFunctions, Funnel<? super T> funnel, Strategy strategy) {
126    checkArgument(numHashFunctions > 0, "numHashFunctions (%s) must be > 0", numHashFunctions);
127    checkArgument(
128        numHashFunctions <= 255, "numHashFunctions (%s) must be <= 255", numHashFunctions);
129    this.bits = checkNotNull(bits);
130    this.numHashFunctions = numHashFunctions;
131    this.funnel = checkNotNull(funnel);
132    this.strategy = checkNotNull(strategy);
133  }
134
135  /**
136   * Creates a new {@code BloomFilter} that's a copy of this instance. The new instance is equal to
137   * this instance but shares no mutable state.
138   *
139   * @since 12.0
140   */
141  public BloomFilter<T> copy() {
142    return new BloomFilter<T>(bits.copy(), numHashFunctions, funnel, strategy);
143  }
144
145  /**
146   * Returns {@code true} if the element <i>might</i> have been put in this Bloom filter, {@code
147   * false} if this is <i>definitely</i> not the case.
148   */
149  public boolean mightContain(@ParametricNullness T object) {
150    return strategy.mightContain(object, funnel, numHashFunctions, bits);
151  }
152
153  /**
154   * @deprecated Provided only to satisfy the {@link Predicate} interface; use {@link #mightContain}
155   *     instead.
156   */
157  @Deprecated
158  @Override
159  public boolean apply(@ParametricNullness T input) {
160    return mightContain(input);
161  }
162
163  /**
164   * Puts an element into this {@code BloomFilter}. Ensures that subsequent invocations of {@link
165   * #mightContain(Object)} with the same element will always return {@code true}.
166   *
167   * @return true if the Bloom filter's bits changed as a result of this operation. If the bits
168   *     changed, this is <i>definitely</i> the first time {@code object} has been added to the
169   *     filter. If the bits haven't changed, this <i>might</i> be the first time {@code object} has
170   *     been added to the filter. Note that {@code put(t)} always returns the <i>opposite</i>
171   *     result to what {@code mightContain(t)} would have returned at the time it is called.
172   * @since 12.0 (present in 11.0 with {@code void} return type})
173   */
174  @CanIgnoreReturnValue
175  public boolean put(@ParametricNullness T object) {
176    return strategy.put(object, funnel, numHashFunctions, bits);
177  }
178
179  /**
180   * Returns the probability that {@linkplain #mightContain(Object)} will erroneously return {@code
181   * true} for an object that has not actually been put in the {@code BloomFilter}.
182   *
183   * <p>Ideally, this number should be close to the {@code fpp} parameter passed in {@linkplain
184   * #create(Funnel, int, double)}, or smaller. If it is significantly higher, it is usually the
185   * case that too many elements (more than expected) have been put in the {@code BloomFilter},
186   * degenerating it.
187   *
188   * @since 14.0 (since 11.0 as expectedFalsePositiveProbability())
189   */
190  public double expectedFpp() {
191    return Math.pow((double) bits.bitCount() / bitSize(), numHashFunctions);
192  }
193
194  /**
195   * Returns an estimate for the total number of distinct elements that have been added to this
196   * Bloom filter. This approximation is reasonably accurate if it does not exceed the value of
197   * {@code expectedInsertions} that was used when constructing the filter.
198   *
199   * @since 22.0
200   */
201  public long approximateElementCount() {
202    long bitSize = bits.bitSize();
203    long bitCount = bits.bitCount();
204
205    /**
206     * Each insertion is expected to reduce the # of clear bits by a factor of
207     * `numHashFunctions/bitSize`. So, after n insertions, expected bitCount is `bitSize * (1 - (1 -
208     * numHashFunctions/bitSize)^n)`. Solving that for n, and approximating `ln x` as `x - 1` when x
209     * is close to 1 (why?), gives the following formula.
210     */
211    double fractionOfBitsSet = (double) bitCount / bitSize;
212    return DoubleMath.roundToLong(
213        -Math.log1p(-fractionOfBitsSet) * bitSize / numHashFunctions, RoundingMode.HALF_UP);
214  }
215
216  /** Returns the number of bits in the underlying bit array. */
217  @VisibleForTesting
218  long bitSize() {
219    return bits.bitSize();
220  }
221
222  /**
223   * Determines whether a given Bloom filter is compatible with this Bloom filter. For two Bloom
224   * filters to be compatible, they must:
225   *
226   * <ul>
227   *   <li>not be the same instance
228   *   <li>have the same number of hash functions
229   *   <li>have the same bit size
230   *   <li>have the same strategy
231   *   <li>have equal funnels
232   * </ul>
233   *
234   * @param that The Bloom filter to check for compatibility.
235   * @since 15.0
236   */
237  public boolean isCompatible(BloomFilter<T> that) {
238    checkNotNull(that);
239    return this != that
240        && this.numHashFunctions == that.numHashFunctions
241        && this.bitSize() == that.bitSize()
242        && this.strategy.equals(that.strategy)
243        && this.funnel.equals(that.funnel);
244  }
245
246  /**
247   * Combines this Bloom filter with another Bloom filter by performing a bitwise OR of the
248   * underlying data. The mutations happen to <b>this</b> instance. Callers must ensure the Bloom
249   * filters are appropriately sized to avoid saturating them.
250   *
251   * @param that The Bloom filter to combine this Bloom filter with. It is not mutated.
252   * @throws IllegalArgumentException if {@code isCompatible(that) == false}
253   * @since 15.0
254   */
255  public void putAll(BloomFilter<T> that) {
256    checkNotNull(that);
257    checkArgument(this != that, "Cannot combine a BloomFilter with itself.");
258    checkArgument(
259        this.numHashFunctions == that.numHashFunctions,
260        "BloomFilters must have the same number of hash functions (%s != %s)",
261        this.numHashFunctions,
262        that.numHashFunctions);
263    checkArgument(
264        this.bitSize() == that.bitSize(),
265        "BloomFilters must have the same size underlying bit arrays (%s != %s)",
266        this.bitSize(),
267        that.bitSize());
268    checkArgument(
269        this.strategy.equals(that.strategy),
270        "BloomFilters must have equal strategies (%s != %s)",
271        this.strategy,
272        that.strategy);
273    checkArgument(
274        this.funnel.equals(that.funnel),
275        "BloomFilters must have equal funnels (%s != %s)",
276        this.funnel,
277        that.funnel);
278    this.bits.putAll(that.bits);
279  }
280
281  @Override
282  public boolean equals(@CheckForNull Object object) {
283    if (object == this) {
284      return true;
285    }
286    if (object instanceof BloomFilter) {
287      BloomFilter<?> that = (BloomFilter<?>) object;
288      return this.numHashFunctions == that.numHashFunctions
289          && this.funnel.equals(that.funnel)
290          && this.bits.equals(that.bits)
291          && this.strategy.equals(that.strategy);
292    }
293    return false;
294  }
295
296  @Override
297  public int hashCode() {
298    return Objects.hashCode(numHashFunctions, funnel, strategy, bits);
299  }
300
301  /**
302   * Returns a {@code Collector} expecting the specified number of insertions, and yielding a {@link
303   * BloomFilter} with false positive probability 3%.
304   *
305   * <p>Note that if the {@code Collector} receives significantly more elements than specified, the
306   * resulting {@code BloomFilter} will suffer a sharp deterioration of its false positive
307   * probability.
308   *
309   * <p>The constructed {@code BloomFilter} will be serializable if the provided {@code Funnel<T>}
310   * is.
311   *
312   * <p>It is recommended that the funnel be implemented as a Java enum. This has the benefit of
313   * ensuring proper serialization and deserialization, which is important since {@link #equals}
314   * also relies on object identity of funnels.
315   *
316   * @param funnel the funnel of T's that the constructed {@code BloomFilter} will use
317   * @param expectedInsertions the number of expected insertions to the constructed {@code
318   *     BloomFilter}; must be positive
319   * @return a {@code Collector} generating a {@code BloomFilter} of the received elements
320   * @since 23.0
321   */
322  public static <T extends @Nullable Object> Collector<T, ?, BloomFilter<T>> toBloomFilter(
323      Funnel<? super T> funnel, long expectedInsertions) {
324    return toBloomFilter(funnel, expectedInsertions, 0.03);
325  }
326
327  /**
328   * Returns a {@code Collector} expecting the specified number of insertions, and yielding a {@link
329   * BloomFilter} with the specified expected false positive probability.
330   *
331   * <p>Note that if the {@code Collector} receives significantly more elements than specified, the
332   * resulting {@code BloomFilter} will suffer a sharp deterioration of its false positive
333   * probability.
334   *
335   * <p>The constructed {@code BloomFilter} will be serializable if the provided {@code Funnel<T>}
336   * is.
337   *
338   * <p>It is recommended that the funnel be implemented as a Java enum. This has the benefit of
339   * ensuring proper serialization and deserialization, which is important since {@link #equals}
340   * also relies on object identity of funnels.
341   *
342   * @param funnel the funnel of T's that the constructed {@code BloomFilter} will use
343   * @param expectedInsertions the number of expected insertions to the constructed {@code
344   *     BloomFilter}; must be positive
345   * @param fpp the desired false positive probability (must be positive and less than 1.0)
346   * @return a {@code Collector} generating a {@code BloomFilter} of the received elements
347   * @since 23.0
348   */
349  public static <T extends @Nullable Object> Collector<T, ?, BloomFilter<T>> toBloomFilter(
350      Funnel<? super T> funnel, long expectedInsertions, double fpp) {
351    checkNotNull(funnel);
352    checkArgument(
353        expectedInsertions >= 0, "Expected insertions (%s) must be >= 0", expectedInsertions);
354    checkArgument(fpp > 0.0, "False positive probability (%s) must be > 0.0", fpp);
355    checkArgument(fpp < 1.0, "False positive probability (%s) must be < 1.0", fpp);
356    return Collector.of(
357        () -> BloomFilter.create(funnel, expectedInsertions, fpp),
358        BloomFilter::put,
359        (bf1, bf2) -> {
360          bf1.putAll(bf2);
361          return bf1;
362        },
363        Collector.Characteristics.UNORDERED,
364        Collector.Characteristics.CONCURRENT);
365  }
366
367  /**
368   * Creates a {@link BloomFilter} with the expected number of insertions and expected false
369   * positive probability.
370   *
371   * <p>Note that overflowing a {@code BloomFilter} with significantly more elements than specified,
372   * will result in its saturation, and a sharp deterioration of its false positive probability.
373   *
374   * <p>The constructed {@code BloomFilter} will be serializable if the provided {@code Funnel<T>}
375   * is.
376   *
377   * <p>It is recommended that the funnel be implemented as a Java enum. This has the benefit of
378   * ensuring proper serialization and deserialization, which is important since {@link #equals}
379   * also relies on object identity of funnels.
380   *
381   * @param funnel the funnel of T's that the constructed {@code BloomFilter} will use
382   * @param expectedInsertions the number of expected insertions to the constructed {@code
383   *     BloomFilter}; must be positive
384   * @param fpp the desired false positive probability (must be positive and less than 1.0)
385   * @return a {@code BloomFilter}
386   */
387  public static <T extends @Nullable Object> BloomFilter<T> create(
388      Funnel<? super T> funnel, int expectedInsertions, double fpp) {
389    return create(funnel, (long) expectedInsertions, fpp);
390  }
391
392  /**
393   * Creates a {@link BloomFilter} with the expected number of insertions and expected false
394   * positive probability.
395   *
396   * <p>Note that overflowing a {@code BloomFilter} with significantly more elements than specified,
397   * will result in its saturation, and a sharp deterioration of its false positive probability.
398   *
399   * <p>The constructed {@code BloomFilter} will be serializable if the provided {@code Funnel<T>}
400   * is.
401   *
402   * <p>It is recommended that the funnel be implemented as a Java enum. This has the benefit of
403   * ensuring proper serialization and deserialization, which is important since {@link #equals}
404   * also relies on object identity of funnels.
405   *
406   * @param funnel the funnel of T's that the constructed {@code BloomFilter} will use
407   * @param expectedInsertions the number of expected insertions to the constructed {@code
408   *     BloomFilter}; must be positive
409   * @param fpp the desired false positive probability (must be positive and less than 1.0)
410   * @return a {@code BloomFilter}
411   * @since 19.0
412   */
413  public static <T extends @Nullable Object> BloomFilter<T> create(
414      Funnel<? super T> funnel, long expectedInsertions, double fpp) {
415    return create(funnel, expectedInsertions, fpp, BloomFilterStrategies.MURMUR128_MITZ_64);
416  }
417
418  @VisibleForTesting
419  static <T extends @Nullable Object> BloomFilter<T> create(
420      Funnel<? super T> funnel, long expectedInsertions, double fpp, Strategy strategy) {
421    checkNotNull(funnel);
422    checkArgument(
423        expectedInsertions >= 0, "Expected insertions (%s) must be >= 0", expectedInsertions);
424    checkArgument(fpp > 0.0, "False positive probability (%s) must be > 0.0", fpp);
425    checkArgument(fpp < 1.0, "False positive probability (%s) must be < 1.0", fpp);
426    checkNotNull(strategy);
427
428    if (expectedInsertions == 0) {
429      expectedInsertions = 1;
430    }
431    /*
432     * TODO(user): Put a warning in the javadoc about tiny fpp values, since the resulting size
433     * is proportional to -log(p), but there is not much of a point after all, e.g.
434     * optimalM(1000, 0.0000000000000001) = 76680 which is less than 10kb. Who cares!
435     */
436    long numBits = optimalNumOfBits(expectedInsertions, fpp);
437    int numHashFunctions = optimalNumOfHashFunctions(expectedInsertions, numBits);
438    try {
439      return new BloomFilter<T>(new LockFreeBitArray(numBits), numHashFunctions, funnel, strategy);
440    } catch (IllegalArgumentException e) {
441      throw new IllegalArgumentException("Could not create BloomFilter of " + numBits + " bits", e);
442    }
443  }
444
445  /**
446   * Creates a {@link BloomFilter} with the expected number of insertions and a default expected
447   * false positive probability of 3%.
448   *
449   * <p>Note that overflowing a {@code BloomFilter} with significantly more elements than specified,
450   * will result in its saturation, and a sharp deterioration of its false positive probability.
451   *
452   * <p>The constructed {@code BloomFilter} will be serializable if the provided {@code Funnel<T>}
453   * is.
454   *
455   * <p>It is recommended that the funnel be implemented as a Java enum. This has the benefit of
456   * ensuring proper serialization and deserialization, which is important since {@link #equals}
457   * also relies on object identity of funnels.
458   *
459   * @param funnel the funnel of T's that the constructed {@code BloomFilter} will use
460   * @param expectedInsertions the number of expected insertions to the constructed {@code
461   *     BloomFilter}; must be positive
462   * @return a {@code BloomFilter}
463   */
464  public static <T extends @Nullable Object> BloomFilter<T> create(
465      Funnel<? super T> funnel, int expectedInsertions) {
466    return create(funnel, (long) expectedInsertions);
467  }
468
469  /**
470   * Creates a {@link BloomFilter} with the expected number of insertions and a default expected
471   * false positive probability of 3%.
472   *
473   * <p>Note that overflowing a {@code BloomFilter} with significantly more elements than specified,
474   * will result in its saturation, and a sharp deterioration of its false positive probability.
475   *
476   * <p>The constructed {@code BloomFilter} will be serializable if the provided {@code Funnel<T>}
477   * is.
478   *
479   * <p>It is recommended that the funnel be implemented as a Java enum. This has the benefit of
480   * ensuring proper serialization and deserialization, which is important since {@link #equals}
481   * also relies on object identity of funnels.
482   *
483   * @param funnel the funnel of T's that the constructed {@code BloomFilter} will use
484   * @param expectedInsertions the number of expected insertions to the constructed {@code
485   *     BloomFilter}; must be positive
486   * @return a {@code BloomFilter}
487   * @since 19.0
488   */
489  public static <T extends @Nullable Object> BloomFilter<T> create(
490      Funnel<? super T> funnel, long expectedInsertions) {
491    return create(funnel, expectedInsertions, 0.03); // FYI, for 3%, we always get 5 hash functions
492  }
493
494  // Cheat sheet:
495  //
496  // m: total bits
497  // n: expected insertions
498  // b: m/n, bits per insertion
499  // p: expected false positive probability
500  //
501  // 1) Optimal k = b * ln2
502  // 2) p = (1 - e ^ (-kn/m))^k
503  // 3) For optimal k: p = 2 ^ (-k) ~= 0.6185^b
504  // 4) For optimal k: m = -nlnp / ((ln2) ^ 2)
505
506  /**
507   * Computes the optimal k (number of hashes per element inserted in Bloom filter), given the
508   * expected insertions and total number of bits in the Bloom filter.
509   *
510   * <p>See http://en.wikipedia.org/wiki/File:Bloom_filter_fp_probability.svg for the formula.
511   *
512   * @param n expected insertions (must be positive)
513   * @param m total number of bits in Bloom filter (must be positive)
514   */
515  @VisibleForTesting
516  static int optimalNumOfHashFunctions(long n, long m) {
517    // (m / n) * log(2), but avoid truncation due to division!
518    return Math.max(1, (int) Math.round((double) m / n * Math.log(2)));
519  }
520
521  /**
522   * Computes m (total bits of Bloom filter) which is expected to achieve, for the specified
523   * expected insertions, the required false positive probability.
524   *
525   * <p>See http://en.wikipedia.org/wiki/Bloom_filter#Probability_of_false_positives for the
526   * formula.
527   *
528   * @param n expected insertions (must be positive)
529   * @param p false positive rate (must be 0 < p < 1)
530   */
531  @VisibleForTesting
532  static long optimalNumOfBits(long n, double p) {
533    if (p == 0) {
534      p = Double.MIN_VALUE;
535    }
536    return (long) (-n * Math.log(p) / (Math.log(2) * Math.log(2)));
537  }
538
539  private Object writeReplace() {
540    return new SerialForm<T>(this);
541  }
542
543  private void readObject(ObjectInputStream stream) throws InvalidObjectException {
544    throw new InvalidObjectException("Use SerializedForm");
545  }
546
547  private static class SerialForm<T extends @Nullable Object> implements Serializable {
548    final long[] data;
549    final int numHashFunctions;
550    final Funnel<? super T> funnel;
551    final Strategy strategy;
552
553    SerialForm(BloomFilter<T> bf) {
554      this.data = LockFreeBitArray.toPlainArray(bf.bits.data);
555      this.numHashFunctions = bf.numHashFunctions;
556      this.funnel = bf.funnel;
557      this.strategy = bf.strategy;
558    }
559
560    Object readResolve() {
561      return new BloomFilter<T>(new LockFreeBitArray(data), numHashFunctions, funnel, strategy);
562    }
563
564    private static final long serialVersionUID = 1;
565  }
566
567  /**
568   * Writes this {@code BloomFilter} to an output stream, with a custom format (not Java
569   * serialization). This has been measured to save at least 400 bytes compared to regular
570   * serialization.
571   *
572   * <p>Use {@linkplain #readFrom(InputStream, Funnel)} to reconstruct the written BloomFilter.
573   */
574  public void writeTo(OutputStream out) throws IOException {
575    // Serial form:
576    // 1 signed byte for the strategy
577    // 1 unsigned byte for the number of hash functions
578    // 1 big endian int, the number of longs in our bitset
579    // N big endian longs of our bitset
580    DataOutputStream dout = new DataOutputStream(out);
581    dout.writeByte(SignedBytes.checkedCast(strategy.ordinal()));
582    dout.writeByte(UnsignedBytes.checkedCast(numHashFunctions)); // note: checked at the c'tor
583    dout.writeInt(bits.data.length());
584    for (int i = 0; i < bits.data.length(); i++) {
585      dout.writeLong(bits.data.get(i));
586    }
587  }
588
589  /**
590   * Reads a byte stream, which was written by {@linkplain #writeTo(OutputStream)}, into a {@code
591   * BloomFilter}.
592   *
593   * <p>The {@code Funnel} to be used is not encoded in the stream, so it must be provided here.
594   * <b>Warning:</b> the funnel provided <b>must</b> behave identically to the one used to populate
595   * the original Bloom filter!
596   *
597   * @throws IOException if the InputStream throws an {@code IOException}, or if its data does not
598   *     appear to be a BloomFilter serialized using the {@linkplain #writeTo(OutputStream)} method.
599   */
600  public static <T extends @Nullable Object> BloomFilter<T> readFrom(
601      InputStream in, Funnel<? super T> funnel) throws IOException {
602    checkNotNull(in, "InputStream");
603    checkNotNull(funnel, "Funnel");
604    int strategyOrdinal = -1;
605    int numHashFunctions = -1;
606    int dataLength = -1;
607    try {
608      DataInputStream din = new DataInputStream(in);
609      // currently this assumes there is no negative ordinal; will have to be updated if we
610      // add non-stateless strategies (for which we've reserved negative ordinals; see
611      // Strategy.ordinal()).
612      strategyOrdinal = din.readByte();
613      numHashFunctions = UnsignedBytes.toInt(din.readByte());
614      dataLength = din.readInt();
615
616      Strategy strategy = BloomFilterStrategies.values()[strategyOrdinal];
617
618      LockFreeBitArray dataArray = new LockFreeBitArray(LongMath.checkedMultiply(dataLength, 64L));
619      for (int i = 0; i < dataLength; i++) {
620        dataArray.putData(i, din.readLong());
621      }
622
623      return new BloomFilter<T>(dataArray, numHashFunctions, funnel, strategy);
624    } catch (RuntimeException e) {
625      String message =
626          "Unable to deserialize BloomFilter from InputStream."
627              + " strategyOrdinal: "
628              + strategyOrdinal
629              + " numHashFunctions: "
630              + numHashFunctions
631              + " dataLength: "
632              + dataLength;
633      throw new IOException(message, e);
634    }
635  }
636}