001/* 002 * Copyright (C) 2008 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 005 * in compliance with the License. You may obtain a copy of the License at 006 * 007 * http://www.apache.org/licenses/LICENSE-2.0 008 * 009 * Unless required by applicable law or agreed to in writing, software distributed under the License 010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express 011 * or implied. See the License for the specific language governing permissions and limitations under 012 * the License. 013 */ 014 015package com.google.common.net; 016 017import static com.google.common.base.Preconditions.checkArgument; 018import static com.google.common.base.Preconditions.checkNotNull; 019 020import com.google.common.annotations.GwtIncompatible; 021import com.google.common.annotations.J2ktIncompatible; 022import com.google.common.base.CharMatcher; 023import com.google.common.base.MoreObjects; 024import com.google.common.hash.Hashing; 025import com.google.common.io.ByteStreams; 026import com.google.common.primitives.Ints; 027import com.google.errorprone.annotations.CanIgnoreReturnValue; 028import java.math.BigInteger; 029import java.net.Inet4Address; 030import java.net.Inet6Address; 031import java.net.InetAddress; 032import java.net.UnknownHostException; 033import java.nio.ByteBuffer; 034import java.util.Arrays; 035import java.util.Locale; 036import javax.annotation.CheckForNull; 037 038/** 039 * Static utility methods pertaining to {@link InetAddress} instances. 040 * 041 * <p><b>Important note:</b> Unlike {@code InetAddress.getByName()}, the methods of this class never 042 * cause DNS services to be accessed. For this reason, you should prefer these methods as much as 043 * possible over their JDK equivalents whenever you are expecting to handle only IP address string 044 * literals -- there is no blocking DNS penalty for a malformed string. 045 * 046 * <p>When dealing with {@link Inet4Address} and {@link Inet6Address} objects as byte arrays (vis. 047 * {@code InetAddress.getAddress()}) they are 4 and 16 bytes in length, respectively, and represent 048 * the address in network byte order. 049 * 050 * <p>Examples of IP addresses and their byte representations: 051 * 052 * <dl> 053 * <dt>The IPv4 loopback address, {@code "127.0.0.1"}. 054 * <dd>{@code 7f 00 00 01} 055 * <dt>The IPv6 loopback address, {@code "::1"}. 056 * <dd>{@code 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01} 057 * <dt>From the IPv6 reserved documentation prefix ({@code 2001:db8::/32}), {@code "2001:db8::1"}. 058 * <dd>{@code 20 01 0d b8 00 00 00 00 00 00 00 00 00 00 00 01} 059 * <dt>An IPv6 "IPv4 compatible" (or "compat") address, {@code "::192.168.0.1"}. 060 * <dd>{@code 00 00 00 00 00 00 00 00 00 00 00 00 c0 a8 00 01} 061 * <dt>An IPv6 "IPv4 mapped" address, {@code "::ffff:192.168.0.1"}. 062 * <dd>{@code 00 00 00 00 00 00 00 00 00 00 ff ff c0 a8 00 01} 063 * </dl> 064 * 065 * <p>A few notes about IPv6 "IPv4 mapped" addresses and their observed use in Java. 066 * 067 * <p>"IPv4 mapped" addresses were originally a representation of IPv4 addresses for use on an IPv6 068 * socket that could receive both IPv4 and IPv6 connections (by disabling the {@code IPV6_V6ONLY} 069 * socket option on an IPv6 socket). Yes, it's confusing. Nevertheless, these "mapped" addresses 070 * were never supposed to be seen on the wire. That assumption was dropped, some say mistakenly, in 071 * later RFCs with the apparent aim of making IPv4-to-IPv6 transition simpler. 072 * 073 * <p>Technically one <i>can</i> create a 128bit IPv6 address with the wire format of a "mapped" 074 * address, as shown above, and transmit it in an IPv6 packet header. However, Java's InetAddress 075 * creation methods appear to adhere doggedly to the original intent of the "mapped" address: all 076 * "mapped" addresses return {@link Inet4Address} objects. 077 * 078 * <p>For added safety, it is common for IPv6 network operators to filter all packets where either 079 * the source or destination address appears to be a "compat" or "mapped" address. Filtering 080 * suggestions usually recommend discarding any packets with source or destination addresses in the 081 * invalid range {@code ::/3}, which includes both of these bizarre address formats. For more 082 * information on "bogons", including lists of IPv6 bogon space, see: 083 * 084 * <ul> 085 * <li><a target="_parent" 086 * href="http://en.wikipedia.org/wiki/Bogon_filtering">http://en.wikipedia. 087 * org/wiki/Bogon_filtering</a> 088 * <li><a target="_parent" 089 * href="http://www.cymru.com/Bogons/ipv6.txt">http://www.cymru.com/Bogons/ ipv6.txt</a> 090 * <li><a target="_parent" href="http://www.cymru.com/Bogons/v6bogon.html">http://www.cymru.com/ 091 * Bogons/v6bogon.html</a> 092 * <li><a target="_parent" href="http://www.space.net/~gert/RIPE/ipv6-filters.html">http://www. 093 * space.net/~gert/RIPE/ipv6-filters.html</a> 094 * </ul> 095 * 096 * @author Erik Kline 097 * @since 5.0 098 */ 099@J2ktIncompatible 100@GwtIncompatible 101@ElementTypesAreNonnullByDefault 102public final class InetAddresses { 103 private static final int IPV4_PART_COUNT = 4; 104 private static final int IPV6_PART_COUNT = 8; 105 private static final char IPV4_DELIMITER = '.'; 106 private static final char IPV6_DELIMITER = ':'; 107 private static final CharMatcher IPV4_DELIMITER_MATCHER = CharMatcher.is(IPV4_DELIMITER); 108 private static final CharMatcher IPV6_DELIMITER_MATCHER = CharMatcher.is(IPV6_DELIMITER); 109 private static final Inet4Address LOOPBACK4 = (Inet4Address) forString("127.0.0.1"); 110 private static final Inet4Address ANY4 = (Inet4Address) forString("0.0.0.0"); 111 112 private InetAddresses() {} 113 114 /** 115 * Returns an {@link Inet4Address}, given a byte array representation of the IPv4 address. 116 * 117 * @param bytes byte array representing an IPv4 address (should be of length 4) 118 * @return {@link Inet4Address} corresponding to the supplied byte array 119 * @throws IllegalArgumentException if a valid {@link Inet4Address} can not be created 120 */ 121 private static Inet4Address getInet4Address(byte[] bytes) { 122 checkArgument( 123 bytes.length == 4, 124 "Byte array has invalid length for an IPv4 address: %s != 4.", 125 bytes.length); 126 127 // Given a 4-byte array, this cast should always succeed. 128 return (Inet4Address) bytesToInetAddress(bytes); 129 } 130 131 /** 132 * Returns the {@link InetAddress} having the given string representation. 133 * 134 * <p>This deliberately avoids all nameservice lookups (e.g. no DNS). 135 * 136 * <p>Anything after a {@code %} in an IPv6 address is ignored (assumed to be a Scope ID). 137 * 138 * <p>This method accepts non-ASCII digits, for example {@code "192.168.0.1"} (those are fullwidth 139 * characters). That is consistent with {@link InetAddress}, but not with various RFCs. If you 140 * want to accept ASCII digits only, you can use something like {@code 141 * CharMatcher.ascii().matchesAllOf(ipString)}. 142 * 143 * @param ipString {@code String} containing an IPv4 or IPv6 string literal, e.g. {@code 144 * "192.168.0.1"} or {@code "2001:db8::1"} 145 * @return {@link InetAddress} representing the argument 146 * @throws IllegalArgumentException if the argument is not a valid IP string literal 147 */ 148 @CanIgnoreReturnValue // TODO(b/219820829): consider removing 149 public static InetAddress forString(String ipString) { 150 byte[] addr = ipStringToBytes(ipString); 151 152 // The argument was malformed, i.e. not an IP string literal. 153 if (addr == null) { 154 throw formatIllegalArgumentException("'%s' is not an IP string literal.", ipString); 155 } 156 157 return bytesToInetAddress(addr); 158 } 159 160 /** 161 * Returns {@code true} if the supplied string is a valid IP string literal, {@code false} 162 * otherwise. 163 * 164 * <p>This method accepts non-ASCII digits, for example {@code "192.168.0.1"} (those are fullwidth 165 * characters). That is consistent with {@link InetAddress}, but not with various RFCs. If you 166 * want to accept ASCII digits only, you can use something like {@code 167 * CharMatcher.ascii().matchesAllOf(ipString)}. 168 * 169 * @param ipString {@code String} to evaluated as an IP string literal 170 * @return {@code true} if the argument is a valid IP string literal 171 */ 172 public static boolean isInetAddress(String ipString) { 173 return ipStringToBytes(ipString) != null; 174 } 175 176 /** Returns {@code null} if unable to parse into a {@code byte[]}. */ 177 @CheckForNull 178 private static byte[] ipStringToBytes(String ipStringParam) { 179 String ipString = ipStringParam; 180 // Make a first pass to categorize the characters in this string. 181 boolean hasColon = false; 182 boolean hasDot = false; 183 int percentIndex = -1; 184 for (int i = 0; i < ipString.length(); i++) { 185 char c = ipString.charAt(i); 186 if (c == '.') { 187 hasDot = true; 188 } else if (c == ':') { 189 if (hasDot) { 190 return null; // Colons must not appear after dots. 191 } 192 hasColon = true; 193 } else if (c == '%') { 194 percentIndex = i; 195 break; // everything after a '%' is ignored (it's a Scope ID): http://superuser.com/a/99753 196 } else if (Character.digit(c, 16) == -1) { 197 return null; // Everything else must be a decimal or hex digit. 198 } 199 } 200 201 // Now decide which address family to parse. 202 if (hasColon) { 203 if (hasDot) { 204 ipString = convertDottedQuadToHex(ipString); 205 if (ipString == null) { 206 return null; 207 } 208 } 209 if (percentIndex != -1) { 210 ipString = ipString.substring(0, percentIndex); 211 } 212 return textToNumericFormatV6(ipString); 213 } else if (hasDot) { 214 if (percentIndex != -1) { 215 return null; // Scope IDs are not supported for IPV4 216 } 217 return textToNumericFormatV4(ipString); 218 } 219 return null; 220 } 221 222 @CheckForNull 223 private static byte[] textToNumericFormatV4(String ipString) { 224 if (IPV4_DELIMITER_MATCHER.countIn(ipString) + 1 != IPV4_PART_COUNT) { 225 return null; // Wrong number of parts 226 } 227 228 byte[] bytes = new byte[IPV4_PART_COUNT]; 229 int start = 0; 230 // Iterate through the parts of the ip string. 231 // Invariant: start is always the beginning of an octet. 232 for (int i = 0; i < IPV4_PART_COUNT; i++) { 233 int end = ipString.indexOf(IPV4_DELIMITER, start); 234 if (end == -1) { 235 end = ipString.length(); 236 } 237 try { 238 bytes[i] = parseOctet(ipString, start, end); 239 } catch (NumberFormatException ex) { 240 return null; 241 } 242 start = end + 1; 243 } 244 245 return bytes; 246 } 247 248 @CheckForNull 249 private static byte[] textToNumericFormatV6(String ipString) { 250 // An address can have [2..8] colons. 251 int delimiterCount = IPV6_DELIMITER_MATCHER.countIn(ipString); 252 if (delimiterCount < 2 || delimiterCount > IPV6_PART_COUNT) { 253 return null; 254 } 255 int partsSkipped = IPV6_PART_COUNT - (delimiterCount + 1); // estimate; may be modified later 256 boolean hasSkip = false; 257 // Scan for the appearance of ::, to mark a skip-format IPV6 string and adjust the partsSkipped 258 // estimate. 259 for (int i = 0; i < ipString.length() - 1; i++) { 260 if (ipString.charAt(i) == IPV6_DELIMITER && ipString.charAt(i + 1) == IPV6_DELIMITER) { 261 if (hasSkip) { 262 return null; // Can't have more than one :: 263 } 264 hasSkip = true; 265 partsSkipped++; // :: means we skipped an extra part in between the two delimiters. 266 if (i == 0) { 267 partsSkipped++; // Begins with ::, so we skipped the part preceding the first : 268 } 269 if (i == ipString.length() - 2) { 270 partsSkipped++; // Ends with ::, so we skipped the part after the last : 271 } 272 } 273 } 274 if (ipString.charAt(0) == IPV6_DELIMITER && ipString.charAt(1) != IPV6_DELIMITER) { 275 return null; // ^: requires ^:: 276 } 277 if (ipString.charAt(ipString.length() - 1) == IPV6_DELIMITER 278 && ipString.charAt(ipString.length() - 2) != IPV6_DELIMITER) { 279 return null; // :$ requires ::$ 280 } 281 if (hasSkip && partsSkipped <= 0) { 282 return null; // :: must expand to at least one '0' 283 } 284 if (!hasSkip && delimiterCount + 1 != IPV6_PART_COUNT) { 285 return null; // Incorrect number of parts 286 } 287 288 ByteBuffer rawBytes = ByteBuffer.allocate(2 * IPV6_PART_COUNT); 289 try { 290 // Iterate through the parts of the ip string. 291 // Invariant: start is always the beginning of a hextet, or the second ':' of the skip 292 // sequence "::" 293 int start = 0; 294 if (ipString.charAt(0) == IPV6_DELIMITER) { 295 start = 1; 296 } 297 while (start < ipString.length()) { 298 int end = ipString.indexOf(IPV6_DELIMITER, start); 299 if (end == -1) { 300 end = ipString.length(); 301 } 302 if (ipString.charAt(start) == IPV6_DELIMITER) { 303 // expand zeroes 304 for (int i = 0; i < partsSkipped; i++) { 305 rawBytes.putShort((short) 0); 306 } 307 308 } else { 309 rawBytes.putShort(parseHextet(ipString, start, end)); 310 } 311 start = end + 1; 312 } 313 } catch (NumberFormatException ex) { 314 return null; 315 } 316 return rawBytes.array(); 317 } 318 319 @CheckForNull 320 private static String convertDottedQuadToHex(String ipString) { 321 int lastColon = ipString.lastIndexOf(':'); 322 String initialPart = ipString.substring(0, lastColon + 1); 323 String dottedQuad = ipString.substring(lastColon + 1); 324 byte[] quad = textToNumericFormatV4(dottedQuad); 325 if (quad == null) { 326 return null; 327 } 328 String penultimate = Integer.toHexString(((quad[0] & 0xff) << 8) | (quad[1] & 0xff)); 329 String ultimate = Integer.toHexString(((quad[2] & 0xff) << 8) | (quad[3] & 0xff)); 330 return initialPart + penultimate + ":" + ultimate; 331 } 332 333 private static byte parseOctet(String ipString, int start, int end) { 334 // Note: we already verified that this string contains only hex digits, but the string may still 335 // contain non-decimal characters. 336 int length = end - start; 337 if (length <= 0 || length > 3) { 338 throw new NumberFormatException(); 339 } 340 // Disallow leading zeroes, because no clear standard exists on 341 // whether these should be interpreted as decimal or octal. 342 if (length > 1 && ipString.charAt(start) == '0') { 343 throw new NumberFormatException(); 344 } 345 int octet = 0; 346 for (int i = start; i < end; i++) { 347 octet *= 10; 348 int digit = Character.digit(ipString.charAt(i), 10); 349 if (digit < 0) { 350 throw new NumberFormatException(); 351 } 352 octet += digit; 353 } 354 if (octet > 255) { 355 throw new NumberFormatException(); 356 } 357 return (byte) octet; 358 } 359 360 // Parse a hextet out of the ipString from start (inclusive) to end (exclusive) 361 private static short parseHextet(String ipString, int start, int end) { 362 // Note: we already verified that this string contains only hex digits. 363 int length = end - start; 364 if (length <= 0 || length > 4) { 365 throw new NumberFormatException(); 366 } 367 int hextet = 0; 368 for (int i = start; i < end; i++) { 369 hextet = hextet << 4; 370 hextet |= Character.digit(ipString.charAt(i), 16); 371 } 372 return (short) hextet; 373 } 374 375 /** 376 * Convert a byte array into an InetAddress. 377 * 378 * <p>{@link InetAddress#getByAddress} is documented as throwing a checked exception "if IP 379 * address is of illegal length." We replace it with an unchecked exception, for use by callers 380 * who already know that addr is an array of length 4 or 16. 381 * 382 * @param addr the raw 4-byte or 16-byte IP address in big-endian order 383 * @return an InetAddress object created from the raw IP address 384 */ 385 private static InetAddress bytesToInetAddress(byte[] addr) { 386 try { 387 return InetAddress.getByAddress(addr); 388 } catch (UnknownHostException e) { 389 throw new AssertionError(e); 390 } 391 } 392 393 /** 394 * Returns the string representation of an {@link InetAddress}. 395 * 396 * <p>For IPv4 addresses, this is identical to {@link InetAddress#getHostAddress()}, but for IPv6 397 * addresses, the output follows <a href="http://tools.ietf.org/html/rfc5952">RFC 5952</a> section 398 * 4. The main difference is that this method uses "::" for zero compression, while Java's version 399 * uses the uncompressed form. 400 * 401 * <p>This method uses hexadecimal for all IPv6 addresses, including IPv4-mapped IPv6 addresses 402 * such as "::c000:201". The output does not include a Scope ID. 403 * 404 * @param ip {@link InetAddress} to be converted to an address string 405 * @return {@code String} containing the text-formatted IP address 406 * @since 10.0 407 */ 408 public static String toAddrString(InetAddress ip) { 409 checkNotNull(ip); 410 if (ip instanceof Inet4Address) { 411 // For IPv4, Java's formatting is good enough. 412 return ip.getHostAddress(); 413 } 414 checkArgument(ip instanceof Inet6Address); 415 byte[] bytes = ip.getAddress(); 416 int[] hextets = new int[IPV6_PART_COUNT]; 417 for (int i = 0; i < hextets.length; i++) { 418 hextets[i] = Ints.fromBytes((byte) 0, (byte) 0, bytes[2 * i], bytes[2 * i + 1]); 419 } 420 compressLongestRunOfZeroes(hextets); 421 return hextetsToIPv6String(hextets); 422 } 423 424 /** 425 * Identify and mark the longest run of zeroes in an IPv6 address. 426 * 427 * <p>Only runs of two or more hextets are considered. In case of a tie, the leftmost run wins. If 428 * a qualifying run is found, its hextets are replaced by the sentinel value -1. 429 * 430 * @param hextets {@code int[]} mutable array of eight 16-bit hextets 431 */ 432 private static void compressLongestRunOfZeroes(int[] hextets) { 433 int bestRunStart = -1; 434 int bestRunLength = -1; 435 int runStart = -1; 436 for (int i = 0; i < hextets.length + 1; i++) { 437 if (i < hextets.length && hextets[i] == 0) { 438 if (runStart < 0) { 439 runStart = i; 440 } 441 } else if (runStart >= 0) { 442 int runLength = i - runStart; 443 if (runLength > bestRunLength) { 444 bestRunStart = runStart; 445 bestRunLength = runLength; 446 } 447 runStart = -1; 448 } 449 } 450 if (bestRunLength >= 2) { 451 Arrays.fill(hextets, bestRunStart, bestRunStart + bestRunLength, -1); 452 } 453 } 454 455 /** 456 * Convert a list of hextets into a human-readable IPv6 address. 457 * 458 * <p>In order for "::" compression to work, the input should contain negative sentinel values in 459 * place of the elided zeroes. 460 * 461 * @param hextets {@code int[]} array of eight 16-bit hextets, or -1s 462 */ 463 private static String hextetsToIPv6String(int[] hextets) { 464 // While scanning the array, handle these state transitions: 465 // start->num => "num" start->gap => "::" 466 // num->num => ":num" num->gap => "::" 467 // gap->num => "num" gap->gap => "" 468 StringBuilder buf = new StringBuilder(39); 469 boolean lastWasNumber = false; 470 for (int i = 0; i < hextets.length; i++) { 471 boolean thisIsNumber = hextets[i] >= 0; 472 if (thisIsNumber) { 473 if (lastWasNumber) { 474 buf.append(':'); 475 } 476 buf.append(Integer.toHexString(hextets[i])); 477 } else { 478 if (i == 0 || lastWasNumber) { 479 buf.append("::"); 480 } 481 } 482 lastWasNumber = thisIsNumber; 483 } 484 return buf.toString(); 485 } 486 487 /** 488 * Returns the string representation of an {@link InetAddress} suitable for inclusion in a URI. 489 * 490 * <p>For IPv4 addresses, this is identical to {@link InetAddress#getHostAddress()}, but for IPv6 491 * addresses it compresses zeroes and surrounds the text with square brackets; for example {@code 492 * "[2001:db8::1]"}. 493 * 494 * <p>Per section 3.2.2 of <a target="_parent" 495 * href="http://tools.ietf.org/html/rfc3986#section-3.2.2">RFC 3986</a>, a URI containing an IPv6 496 * string literal is of the form {@code "http://[2001:db8::1]:8888/index.html"}. 497 * 498 * <p>Use of either {@link InetAddresses#toAddrString}, {@link InetAddress#getHostAddress()}, or 499 * this method is recommended over {@link InetAddress#toString()} when an IP address string 500 * literal is desired. This is because {@link InetAddress#toString()} prints the hostname and the 501 * IP address string joined by a "/". 502 * 503 * @param ip {@link InetAddress} to be converted to URI string literal 504 * @return {@code String} containing URI-safe string literal 505 */ 506 public static String toUriString(InetAddress ip) { 507 if (ip instanceof Inet6Address) { 508 return "[" + toAddrString(ip) + "]"; 509 } 510 return toAddrString(ip); 511 } 512 513 /** 514 * Returns an InetAddress representing the literal IPv4 or IPv6 host portion of a URL, encoded in 515 * the format specified by RFC 3986 section 3.2.2. 516 * 517 * <p>This method is similar to {@link InetAddresses#forString(String)}, however, it requires that 518 * IPv6 addresses are surrounded by square brackets. 519 * 520 * <p>This method is the inverse of {@link InetAddresses#toUriString(java.net.InetAddress)}. 521 * 522 * <p>This method accepts non-ASCII digits, for example {@code "192.168.0.1"} (those are fullwidth 523 * characters). That is consistent with {@link InetAddress}, but not with various RFCs. If you 524 * want to accept ASCII digits only, you can use something like {@code 525 * CharMatcher.ascii().matchesAllOf(ipString)}. 526 * 527 * @param hostAddr an RFC 3986 section 3.2.2 encoded IPv4 or IPv6 address 528 * @return an InetAddress representing the address in {@code hostAddr} 529 * @throws IllegalArgumentException if {@code hostAddr} is not a valid IPv4 address, or IPv6 530 * address surrounded by square brackets 531 */ 532 public static InetAddress forUriString(String hostAddr) { 533 InetAddress addr = forUriStringNoThrow(hostAddr); 534 if (addr == null) { 535 throw formatIllegalArgumentException("Not a valid URI IP literal: '%s'", hostAddr); 536 } 537 538 return addr; 539 } 540 541 @CheckForNull 542 private static InetAddress forUriStringNoThrow(String hostAddr) { 543 checkNotNull(hostAddr); 544 545 // Decide if this should be an IPv6 or IPv4 address. 546 String ipString; 547 int expectBytes; 548 if (hostAddr.startsWith("[") && hostAddr.endsWith("]")) { 549 ipString = hostAddr.substring(1, hostAddr.length() - 1); 550 expectBytes = 16; 551 } else { 552 ipString = hostAddr; 553 expectBytes = 4; 554 } 555 556 // Parse the address, and make sure the length/version is correct. 557 byte[] addr = ipStringToBytes(ipString); 558 if (addr == null || addr.length != expectBytes) { 559 return null; 560 } 561 562 return bytesToInetAddress(addr); 563 } 564 565 /** 566 * Returns {@code true} if the supplied string is a valid URI IP string literal, {@code false} 567 * otherwise. 568 * 569 * <p>This method accepts non-ASCII digits, for example {@code "192.168.0.1"} (those are fullwidth 570 * characters). That is consistent with {@link InetAddress}, but not with various RFCs. If you 571 * want to accept ASCII digits only, you can use something like {@code 572 * CharMatcher.ascii().matchesAllOf(ipString)}. 573 * 574 * @param ipString {@code String} to evaluated as an IP URI host string literal 575 * @return {@code true} if the argument is a valid IP URI host 576 */ 577 public static boolean isUriInetAddress(String ipString) { 578 return forUriStringNoThrow(ipString) != null; 579 } 580 581 /** 582 * Evaluates whether the argument is an IPv6 "compat" address. 583 * 584 * <p>An "IPv4 compatible", or "compat", address is one with 96 leading bits of zero, with the 585 * remaining 32 bits interpreted as an IPv4 address. These are conventionally represented in 586 * string literals as {@code "::192.168.0.1"}, though {@code "::c0a8:1"} is also considered an 587 * IPv4 compatible address (and equivalent to {@code "::192.168.0.1"}). 588 * 589 * <p>For more on IPv4 compatible addresses see section 2.5.5.1 of <a target="_parent" 590 * href="http://tools.ietf.org/html/rfc4291#section-2.5.5.1">RFC 4291</a>. 591 * 592 * <p>NOTE: This method is different from {@link Inet6Address#isIPv4CompatibleAddress} in that it 593 * more correctly classifies {@code "::"} and {@code "::1"} as proper IPv6 addresses (which they 594 * are), NOT IPv4 compatible addresses (which they are generally NOT considered to be). 595 * 596 * @param ip {@link Inet6Address} to be examined for embedded IPv4 compatible address format 597 * @return {@code true} if the argument is a valid "compat" address 598 */ 599 public static boolean isCompatIPv4Address(Inet6Address ip) { 600 if (!ip.isIPv4CompatibleAddress()) { 601 return false; 602 } 603 604 byte[] bytes = ip.getAddress(); 605 if ((bytes[12] == 0) 606 && (bytes[13] == 0) 607 && (bytes[14] == 0) 608 && ((bytes[15] == 0) || (bytes[15] == 1))) { 609 return false; 610 } 611 612 return true; 613 } 614 615 /** 616 * Returns the IPv4 address embedded in an IPv4 compatible address. 617 * 618 * @param ip {@link Inet6Address} to be examined for an embedded IPv4 address 619 * @return {@link Inet4Address} of the embedded IPv4 address 620 * @throws IllegalArgumentException if the argument is not a valid IPv4 compatible address 621 */ 622 public static Inet4Address getCompatIPv4Address(Inet6Address ip) { 623 checkArgument( 624 isCompatIPv4Address(ip), "Address '%s' is not IPv4-compatible.", toAddrString(ip)); 625 626 return getInet4Address(Arrays.copyOfRange(ip.getAddress(), 12, 16)); 627 } 628 629 /** 630 * Evaluates whether the argument is a 6to4 address. 631 * 632 * <p>6to4 addresses begin with the {@code "2002::/16"} prefix. The next 32 bits are the IPv4 633 * address of the host to which IPv6-in-IPv4 tunneled packets should be routed. 634 * 635 * <p>For more on 6to4 addresses see section 2 of <a target="_parent" 636 * href="http://tools.ietf.org/html/rfc3056#section-2">RFC 3056</a>. 637 * 638 * @param ip {@link Inet6Address} to be examined for 6to4 address format 639 * @return {@code true} if the argument is a 6to4 address 640 */ 641 public static boolean is6to4Address(Inet6Address ip) { 642 byte[] bytes = ip.getAddress(); 643 return (bytes[0] == (byte) 0x20) && (bytes[1] == (byte) 0x02); 644 } 645 646 /** 647 * Returns the IPv4 address embedded in a 6to4 address. 648 * 649 * @param ip {@link Inet6Address} to be examined for embedded IPv4 in 6to4 address 650 * @return {@link Inet4Address} of embedded IPv4 in 6to4 address 651 * @throws IllegalArgumentException if the argument is not a valid IPv6 6to4 address 652 */ 653 public static Inet4Address get6to4IPv4Address(Inet6Address ip) { 654 checkArgument(is6to4Address(ip), "Address '%s' is not a 6to4 address.", toAddrString(ip)); 655 656 return getInet4Address(Arrays.copyOfRange(ip.getAddress(), 2, 6)); 657 } 658 659 /** 660 * A simple immutable data class to encapsulate the information to be found in a Teredo address. 661 * 662 * <p>All of the fields in this class are encoded in various portions of the IPv6 address as part 663 * of the protocol. More protocols details can be found at: <a target="_parent" 664 * href="http://en.wikipedia.org/wiki/Teredo_tunneling">http://en.wikipedia. 665 * org/wiki/Teredo_tunneling</a>. 666 * 667 * <p>The RFC can be found here: <a target="_parent" href="http://tools.ietf.org/html/rfc4380">RFC 668 * 4380</a>. 669 * 670 * @since 5.0 671 */ 672 public static final class TeredoInfo { 673 private final Inet4Address server; 674 private final Inet4Address client; 675 private final int port; 676 private final int flags; 677 678 /** 679 * Constructs a TeredoInfo instance. 680 * 681 * <p>Both server and client can be {@code null}, in which case the value {@code "0.0.0.0"} will 682 * be assumed. 683 * 684 * @throws IllegalArgumentException if either of the {@code port} or the {@code flags} arguments 685 * are out of range of an unsigned short 686 */ 687 // TODO: why is this public? 688 public TeredoInfo( 689 @CheckForNull Inet4Address server, @CheckForNull Inet4Address client, int port, int flags) { 690 checkArgument( 691 (port >= 0) && (port <= 0xffff), "port '%s' is out of range (0 <= port <= 0xffff)", port); 692 checkArgument( 693 (flags >= 0) && (flags <= 0xffff), 694 "flags '%s' is out of range (0 <= flags <= 0xffff)", 695 flags); 696 697 this.server = MoreObjects.firstNonNull(server, ANY4); 698 this.client = MoreObjects.firstNonNull(client, ANY4); 699 this.port = port; 700 this.flags = flags; 701 } 702 703 public Inet4Address getServer() { 704 return server; 705 } 706 707 public Inet4Address getClient() { 708 return client; 709 } 710 711 public int getPort() { 712 return port; 713 } 714 715 public int getFlags() { 716 return flags; 717 } 718 } 719 720 /** 721 * Evaluates whether the argument is a Teredo address. 722 * 723 * <p>Teredo addresses begin with the {@code "2001::/32"} prefix. 724 * 725 * @param ip {@link Inet6Address} to be examined for Teredo address format 726 * @return {@code true} if the argument is a Teredo address 727 */ 728 public static boolean isTeredoAddress(Inet6Address ip) { 729 byte[] bytes = ip.getAddress(); 730 return (bytes[0] == (byte) 0x20) 731 && (bytes[1] == (byte) 0x01) 732 && (bytes[2] == 0) 733 && (bytes[3] == 0); 734 } 735 736 /** 737 * Returns the Teredo information embedded in a Teredo address. 738 * 739 * @param ip {@link Inet6Address} to be examined for embedded Teredo information 740 * @return extracted {@code TeredoInfo} 741 * @throws IllegalArgumentException if the argument is not a valid IPv6 Teredo address 742 */ 743 public static TeredoInfo getTeredoInfo(Inet6Address ip) { 744 checkArgument(isTeredoAddress(ip), "Address '%s' is not a Teredo address.", toAddrString(ip)); 745 746 byte[] bytes = ip.getAddress(); 747 Inet4Address server = getInet4Address(Arrays.copyOfRange(bytes, 4, 8)); 748 749 int flags = ByteStreams.newDataInput(bytes, 8).readShort() & 0xffff; 750 751 // Teredo obfuscates the mapped client port, per section 4 of the RFC. 752 int port = ~ByteStreams.newDataInput(bytes, 10).readShort() & 0xffff; 753 754 byte[] clientBytes = Arrays.copyOfRange(bytes, 12, 16); 755 for (int i = 0; i < clientBytes.length; i++) { 756 // Teredo obfuscates the mapped client IP, per section 4 of the RFC. 757 clientBytes[i] = (byte) ~clientBytes[i]; 758 } 759 Inet4Address client = getInet4Address(clientBytes); 760 761 return new TeredoInfo(server, client, port, flags); 762 } 763 764 /** 765 * Evaluates whether the argument is an ISATAP address. 766 * 767 * <p>From RFC 5214: "ISATAP interface identifiers are constructed in Modified EUI-64 format [...] 768 * by concatenating the 24-bit IANA OUI (00-00-5E), the 8-bit hexadecimal value 0xFE, and a 32-bit 769 * IPv4 address in network byte order [...]" 770 * 771 * <p>For more on ISATAP addresses see section 6.1 of <a target="_parent" 772 * href="http://tools.ietf.org/html/rfc5214#section-6.1">RFC 5214</a>. 773 * 774 * @param ip {@link Inet6Address} to be examined for ISATAP address format 775 * @return {@code true} if the argument is an ISATAP address 776 */ 777 public static boolean isIsatapAddress(Inet6Address ip) { 778 779 // If it's a Teredo address with the right port (41217, or 0xa101) 780 // which would be encoded as 0x5efe then it can't be an ISATAP address. 781 if (isTeredoAddress(ip)) { 782 return false; 783 } 784 785 byte[] bytes = ip.getAddress(); 786 787 if ((bytes[8] | (byte) 0x03) != (byte) 0x03) { 788 789 // Verify that high byte of the 64 bit identifier is zero, modulo 790 // the U/L and G bits, with which we are not concerned. 791 return false; 792 } 793 794 return (bytes[9] == (byte) 0x00) && (bytes[10] == (byte) 0x5e) && (bytes[11] == (byte) 0xfe); 795 } 796 797 /** 798 * Returns the IPv4 address embedded in an ISATAP address. 799 * 800 * @param ip {@link Inet6Address} to be examined for embedded IPv4 in ISATAP address 801 * @return {@link Inet4Address} of embedded IPv4 in an ISATAP address 802 * @throws IllegalArgumentException if the argument is not a valid IPv6 ISATAP address 803 */ 804 public static Inet4Address getIsatapIPv4Address(Inet6Address ip) { 805 checkArgument(isIsatapAddress(ip), "Address '%s' is not an ISATAP address.", toAddrString(ip)); 806 807 return getInet4Address(Arrays.copyOfRange(ip.getAddress(), 12, 16)); 808 } 809 810 /** 811 * Examines the Inet6Address to determine if it is an IPv6 address of one of the specified address 812 * types that contain an embedded IPv4 address. 813 * 814 * <p>NOTE: ISATAP addresses are explicitly excluded from this method due to their trivial 815 * spoofability. With other transition addresses spoofing involves (at least) infection of one's 816 * BGP routing table. 817 * 818 * @param ip {@link Inet6Address} to be examined for embedded IPv4 client address 819 * @return {@code true} if there is an embedded IPv4 client address 820 * @since 7.0 821 */ 822 public static boolean hasEmbeddedIPv4ClientAddress(Inet6Address ip) { 823 return isCompatIPv4Address(ip) || is6to4Address(ip) || isTeredoAddress(ip); 824 } 825 826 /** 827 * Examines the Inet6Address to extract the embedded IPv4 client address if the InetAddress is an 828 * IPv6 address of one of the specified address types that contain an embedded IPv4 address. 829 * 830 * <p>NOTE: ISATAP addresses are explicitly excluded from this method due to their trivial 831 * spoofability. With other transition addresses spoofing involves (at least) infection of one's 832 * BGP routing table. 833 * 834 * @param ip {@link Inet6Address} to be examined for embedded IPv4 client address 835 * @return {@link Inet4Address} of embedded IPv4 client address 836 * @throws IllegalArgumentException if the argument does not have a valid embedded IPv4 address 837 */ 838 public static Inet4Address getEmbeddedIPv4ClientAddress(Inet6Address ip) { 839 if (isCompatIPv4Address(ip)) { 840 return getCompatIPv4Address(ip); 841 } 842 843 if (is6to4Address(ip)) { 844 return get6to4IPv4Address(ip); 845 } 846 847 if (isTeredoAddress(ip)) { 848 return getTeredoInfo(ip).getClient(); 849 } 850 851 throw formatIllegalArgumentException("'%s' has no embedded IPv4 address.", toAddrString(ip)); 852 } 853 854 /** 855 * Evaluates whether the argument is an "IPv4 mapped" IPv6 address. 856 * 857 * <p>An "IPv4 mapped" address is anything in the range ::ffff:0:0/96 (sometimes written as 858 * ::ffff:0.0.0.0/96), with the last 32 bits interpreted as an IPv4 address. 859 * 860 * <p>For more on IPv4 mapped addresses see section 2.5.5.2 of <a target="_parent" 861 * href="http://tools.ietf.org/html/rfc4291#section-2.5.5.2">RFC 4291</a>. 862 * 863 * <p>Note: This method takes a {@code String} argument because {@link InetAddress} automatically 864 * collapses mapped addresses to IPv4. (It is actually possible to avoid this using one of the 865 * obscure {@link Inet6Address} methods, but it would be unwise to depend on such a 866 * poorly-documented feature.) 867 * 868 * <p>This method accepts non-ASCII digits. That is consistent with {@link InetAddress}, but not 869 * with various RFCs. If you want to accept ASCII digits only, you can use something like {@code 870 * CharMatcher.ascii().matchesAllOf(ipString)}. 871 * 872 * @param ipString {@code String} to be examined for embedded IPv4-mapped IPv6 address format 873 * @return {@code true} if the argument is a valid "mapped" address 874 * @since 10.0 875 */ 876 public static boolean isMappedIPv4Address(String ipString) { 877 byte[] bytes = ipStringToBytes(ipString); 878 if (bytes != null && bytes.length == 16) { 879 for (int i = 0; i < 10; i++) { 880 if (bytes[i] != 0) { 881 return false; 882 } 883 } 884 for (int i = 10; i < 12; i++) { 885 if (bytes[i] != (byte) 0xff) { 886 return false; 887 } 888 } 889 return true; 890 } 891 return false; 892 } 893 894 /** 895 * Coerces an IPv6 address into an IPv4 address. 896 * 897 * <p>HACK: As long as applications continue to use IPv4 addresses for indexing into tables, 898 * accounting, et cetera, it may be necessary to <b>coerce</b> IPv6 addresses into IPv4 addresses. 899 * This method does so by hashing 64 bits of the IPv6 address into {@code 224.0.0.0/3} (64 bits 900 * into 29 bits): 901 * 902 * <ul> 903 * <li>If the IPv6 address contains an embedded IPv4 address, the function hashes that. 904 * <li>Otherwise, it hashes the upper 64 bits of the IPv6 address. 905 * </ul> 906 * 907 * <p>A "coerced" IPv4 address is equivalent to itself. 908 * 909 * <p>NOTE: This method is failsafe for security purposes: ALL IPv6 addresses (except localhost 910 * (::1)) are hashed to avoid the security risk associated with extracting an embedded IPv4 911 * address that might permit elevated privileges. 912 * 913 * @param ip {@link InetAddress} to "coerce" 914 * @return {@link Inet4Address} represented "coerced" address 915 * @since 7.0 916 */ 917 public static Inet4Address getCoercedIPv4Address(InetAddress ip) { 918 if (ip instanceof Inet4Address) { 919 return (Inet4Address) ip; 920 } 921 922 // Special cases: 923 byte[] bytes = ip.getAddress(); 924 boolean leadingBytesOfZero = true; 925 for (int i = 0; i < 15; ++i) { 926 if (bytes[i] != 0) { 927 leadingBytesOfZero = false; 928 break; 929 } 930 } 931 if (leadingBytesOfZero && (bytes[15] == 1)) { 932 return LOOPBACK4; // ::1 933 } else if (leadingBytesOfZero && (bytes[15] == 0)) { 934 return ANY4; // ::0 935 } 936 937 Inet6Address ip6 = (Inet6Address) ip; 938 long addressAsLong = 0; 939 if (hasEmbeddedIPv4ClientAddress(ip6)) { 940 addressAsLong = getEmbeddedIPv4ClientAddress(ip6).hashCode(); 941 } else { 942 // Just extract the high 64 bits (assuming the rest is user-modifiable). 943 addressAsLong = ByteBuffer.wrap(ip6.getAddress(), 0, 8).getLong(); 944 } 945 946 // Many strategies for hashing are possible. This might suffice for now. 947 int coercedHash = Hashing.murmur3_32_fixed().hashLong(addressAsLong).asInt(); 948 949 // Squash into 224/4 Multicast and 240/4 Reserved space (i.e. 224/3). 950 coercedHash |= 0xe0000000; 951 952 // Fixup to avoid some "illegal" values. Currently the only potential 953 // illegal value is 255.255.255.255. 954 if (coercedHash == 0xffffffff) { 955 coercedHash = 0xfffffffe; 956 } 957 958 return getInet4Address(Ints.toByteArray(coercedHash)); 959 } 960 961 /** 962 * Returns an integer representing an IPv4 address regardless of whether the supplied argument is 963 * an IPv4 address or not. 964 * 965 * <p>IPv6 addresses are <b>coerced</b> to IPv4 addresses before being converted to integers. 966 * 967 * <p>As long as there are applications that assume that all IP addresses are IPv4 addresses and 968 * can therefore be converted safely to integers (for whatever purpose) this function can be used 969 * to handle IPv6 addresses as well until the application is suitably fixed. 970 * 971 * <p>NOTE: an IPv6 address coerced to an IPv4 address can only be used for such purposes as 972 * rudimentary identification or indexing into a collection of real {@link InetAddress}es. They 973 * cannot be used as real addresses for the purposes of network communication. 974 * 975 * @param ip {@link InetAddress} to convert 976 * @return {@code int}, "coerced" if ip is not an IPv4 address 977 * @since 7.0 978 */ 979 public static int coerceToInteger(InetAddress ip) { 980 return ByteStreams.newDataInput(getCoercedIPv4Address(ip).getAddress()).readInt(); 981 } 982 983 /** 984 * Returns a BigInteger representing the address. 985 * 986 * <p>Unlike {@code coerceToInteger}, IPv6 addresses are not coerced to IPv4 addresses. 987 * 988 * @param address {@link InetAddress} to convert 989 * @return {@code BigInteger} representation of the address 990 * @since 28.2 991 */ 992 public static BigInteger toBigInteger(InetAddress address) { 993 return new BigInteger(1, address.getAddress()); 994 } 995 996 /** 997 * Returns an Inet4Address having the integer value specified by the argument. 998 * 999 * @param address {@code int}, the 32bit integer address to be converted 1000 * @return {@link Inet4Address} equivalent of the argument 1001 */ 1002 public static Inet4Address fromInteger(int address) { 1003 return getInet4Address(Ints.toByteArray(address)); 1004 } 1005 1006 /** 1007 * Returns the {@code Inet4Address} corresponding to a given {@code BigInteger}. 1008 * 1009 * @param address BigInteger representing the IPv4 address 1010 * @return Inet4Address representation of the given BigInteger 1011 * @throws IllegalArgumentException if the BigInteger is not between 0 and 2^32-1 1012 * @since 28.2 1013 */ 1014 public static Inet4Address fromIPv4BigInteger(BigInteger address) { 1015 return (Inet4Address) fromBigInteger(address, false); 1016 } 1017 /** 1018 * Returns the {@code Inet6Address} corresponding to a given {@code BigInteger}. 1019 * 1020 * @param address BigInteger representing the IPv6 address 1021 * @return Inet6Address representation of the given BigInteger 1022 * @throws IllegalArgumentException if the BigInteger is not between 0 and 2^128-1 1023 * @since 28.2 1024 */ 1025 public static Inet6Address fromIPv6BigInteger(BigInteger address) { 1026 return (Inet6Address) fromBigInteger(address, true); 1027 } 1028 1029 /** 1030 * Converts a BigInteger to either an IPv4 or IPv6 address. If the IP is IPv4, it must be 1031 * constrained to 32 bits, otherwise it is constrained to 128 bits. 1032 * 1033 * @param address the address represented as a big integer 1034 * @param isIpv6 whether the created address should be IPv4 or IPv6 1035 * @return the BigInteger converted to an address 1036 * @throws IllegalArgumentException if the BigInteger is not between 0 and maximum value for IPv4 1037 * or IPv6 respectively 1038 */ 1039 private static InetAddress fromBigInteger(BigInteger address, boolean isIpv6) { 1040 checkArgument(address.signum() >= 0, "BigInteger must be greater than or equal to 0"); 1041 1042 int numBytes = isIpv6 ? 16 : 4; 1043 1044 byte[] addressBytes = address.toByteArray(); 1045 byte[] targetCopyArray = new byte[numBytes]; 1046 1047 int srcPos = Math.max(0, addressBytes.length - numBytes); 1048 int copyLength = addressBytes.length - srcPos; 1049 int destPos = numBytes - copyLength; 1050 1051 // Check the extra bytes in the BigInteger are all zero. 1052 for (int i = 0; i < srcPos; i++) { 1053 if (addressBytes[i] != 0x00) { 1054 throw formatIllegalArgumentException( 1055 "BigInteger cannot be converted to InetAddress because it has more than %d" 1056 + " bytes: %s", 1057 numBytes, address); 1058 } 1059 } 1060 1061 // Copy the bytes into the least significant positions. 1062 System.arraycopy(addressBytes, srcPos, targetCopyArray, destPos, copyLength); 1063 1064 try { 1065 return InetAddress.getByAddress(targetCopyArray); 1066 } catch (UnknownHostException impossible) { 1067 throw new AssertionError(impossible); 1068 } 1069 } 1070 1071 /** 1072 * Returns an address from a <b>little-endian ordered</b> byte array (the opposite of what {@link 1073 * InetAddress#getByAddress} expects). 1074 * 1075 * <p>IPv4 address byte array must be 4 bytes long and IPv6 byte array must be 16 bytes long. 1076 * 1077 * @param addr the raw IP address in little-endian byte order 1078 * @return an InetAddress object created from the raw IP address 1079 * @throws UnknownHostException if IP address is of illegal length 1080 */ 1081 public static InetAddress fromLittleEndianByteArray(byte[] addr) throws UnknownHostException { 1082 byte[] reversed = new byte[addr.length]; 1083 for (int i = 0; i < addr.length; i++) { 1084 reversed[i] = addr[addr.length - i - 1]; 1085 } 1086 return InetAddress.getByAddress(reversed); 1087 } 1088 1089 /** 1090 * Returns a new InetAddress that is one less than the passed in address. This method works for 1091 * both IPv4 and IPv6 addresses. 1092 * 1093 * @param address the InetAddress to decrement 1094 * @return a new InetAddress that is one less than the passed in address 1095 * @throws IllegalArgumentException if InetAddress is at the beginning of its range 1096 * @since 18.0 1097 */ 1098 public static InetAddress decrement(InetAddress address) { 1099 byte[] addr = address.getAddress(); 1100 int i = addr.length - 1; 1101 while (i >= 0 && addr[i] == (byte) 0x00) { 1102 addr[i] = (byte) 0xff; 1103 i--; 1104 } 1105 1106 checkArgument(i >= 0, "Decrementing %s would wrap.", address); 1107 1108 addr[i]--; 1109 return bytesToInetAddress(addr); 1110 } 1111 1112 /** 1113 * Returns a new InetAddress that is one more than the passed in address. This method works for 1114 * both IPv4 and IPv6 addresses. 1115 * 1116 * @param address the InetAddress to increment 1117 * @return a new InetAddress that is one more than the passed in address 1118 * @throws IllegalArgumentException if InetAddress is at the end of its range 1119 * @since 10.0 1120 */ 1121 public static InetAddress increment(InetAddress address) { 1122 byte[] addr = address.getAddress(); 1123 int i = addr.length - 1; 1124 while (i >= 0 && addr[i] == (byte) 0xff) { 1125 addr[i] = 0; 1126 i--; 1127 } 1128 1129 checkArgument(i >= 0, "Incrementing %s would wrap.", address); 1130 1131 addr[i]++; 1132 return bytesToInetAddress(addr); 1133 } 1134 1135 /** 1136 * Returns true if the InetAddress is either 255.255.255.255 for IPv4 or 1137 * ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff for IPv6. 1138 * 1139 * @return true if the InetAddress is either 255.255.255.255 for IPv4 or 1140 * ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff for IPv6 1141 * @since 10.0 1142 */ 1143 public static boolean isMaximum(InetAddress address) { 1144 byte[] addr = address.getAddress(); 1145 for (byte b : addr) { 1146 if (b != (byte) 0xff) { 1147 return false; 1148 } 1149 } 1150 return true; 1151 } 1152 1153 private static IllegalArgumentException formatIllegalArgumentException( 1154 String format, Object... args) { 1155 return new IllegalArgumentException(String.format(Locale.ROOT, format, args)); 1156 } 1157}