001/* 002 * Copyright (C) 2012 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 005 * in compliance with the License. You may obtain a copy of the License at 006 * 007 * http://www.apache.org/licenses/LICENSE-2.0 008 * 009 * Unless required by applicable law or agreed to in writing, software distributed under the License 010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express 011 * or implied. See the License for the specific language governing permissions and limitations under 012 * the License. 013 */ 014 015package com.google.common.math; 016 017import static com.google.common.base.Preconditions.checkState; 018import static com.google.common.primitives.Doubles.isFinite; 019import static java.lang.Double.NaN; 020import static java.lang.Double.isNaN; 021 022import com.google.common.annotations.GwtIncompatible; 023import com.google.common.annotations.J2ktIncompatible; 024import com.google.common.primitives.Doubles; 025 026/** 027 * A mutable object which accumulates paired double values (e.g. points on a plane) and tracks some 028 * basic statistics over all the values added so far. This class is not thread safe. 029 * 030 * @author Pete Gillin 031 * @since 20.0 032 */ 033@J2ktIncompatible 034@GwtIncompatible 035@ElementTypesAreNonnullByDefault 036public final class PairedStatsAccumulator { 037 038 // These fields must satisfy the requirements of PairedStats' constructor as well as those of the 039 // stat methods of this class. 040 private final StatsAccumulator xStats = new StatsAccumulator(); 041 private final StatsAccumulator yStats = new StatsAccumulator(); 042 private double sumOfProductsOfDeltas = 0.0; 043 044 /** Adds the given pair of values to the dataset. */ 045 public void add(double x, double y) { 046 // We extend the recursive expression for the one-variable case at Art of Computer Programming 047 // vol. 2, Knuth, 4.2.2, (16) to the two-variable case. We have two value series x_i and y_i. 048 // We define the arithmetic means X_n = 1/n \sum_{i=1}^n x_i, and Y_n = 1/n \sum_{i=1}^n y_i. 049 // We also define the sum of the products of the differences from the means 050 // C_n = \sum_{i=1}^n x_i y_i - n X_n Y_n 051 // for all n >= 1. Then for all n > 1: 052 // C_{n-1} = \sum_{i=1}^{n-1} x_i y_i - (n-1) X_{n-1} Y_{n-1} 053 // C_n - C_{n-1} = x_n y_n - n X_n Y_n + (n-1) X_{n-1} Y_{n-1} 054 // = x_n y_n - X_n [ y_n + (n-1) Y_{n-1} ] + [ n X_n - x_n ] Y_{n-1} 055 // = x_n y_n - X_n y_n - x_n Y_{n-1} + X_n Y_{n-1} 056 // = (x_n - X_n) (y_n - Y_{n-1}) 057 xStats.add(x); 058 if (isFinite(x) && isFinite(y)) { 059 if (xStats.count() > 1) { 060 sumOfProductsOfDeltas += (x - xStats.mean()) * (y - yStats.mean()); 061 } 062 } else { 063 sumOfProductsOfDeltas = NaN; 064 } 065 yStats.add(y); 066 } 067 068 /** 069 * Adds the given statistics to the dataset, as if the individual values used to compute the 070 * statistics had been added directly. 071 */ 072 public void addAll(PairedStats values) { 073 if (values.count() == 0) { 074 return; 075 } 076 077 xStats.addAll(values.xStats()); 078 if (yStats.count() == 0) { 079 sumOfProductsOfDeltas = values.sumOfProductsOfDeltas(); 080 } else { 081 // This is a generalized version of the calculation in add(double, double) above. Note that 082 // non-finite inputs will have sumOfProductsOfDeltas = NaN, so non-finite values will result 083 // in NaN naturally. 084 sumOfProductsOfDeltas += 085 values.sumOfProductsOfDeltas() 086 + (values.xStats().mean() - xStats.mean()) 087 * (values.yStats().mean() - yStats.mean()) 088 * values.count(); 089 } 090 yStats.addAll(values.yStats()); 091 } 092 093 /** Returns an immutable snapshot of the current statistics. */ 094 public PairedStats snapshot() { 095 return new PairedStats(xStats.snapshot(), yStats.snapshot(), sumOfProductsOfDeltas); 096 } 097 098 /** Returns the number of pairs in the dataset. */ 099 public long count() { 100 return xStats.count(); 101 } 102 103 /** Returns an immutable snapshot of the statistics on the {@code x} values alone. */ 104 public Stats xStats() { 105 return xStats.snapshot(); 106 } 107 108 /** Returns an immutable snapshot of the statistics on the {@code y} values alone. */ 109 public Stats yStats() { 110 return yStats.snapshot(); 111 } 112 113 /** 114 * Returns the population covariance of the values. The count must be non-zero. 115 * 116 * <p>This is guaranteed to return zero if the dataset contains a single pair of finite values. It 117 * is not guaranteed to return zero when the dataset consists of the same pair of values multiple 118 * times, due to numerical errors. 119 * 120 * <h3>Non-finite values</h3> 121 * 122 * <p>If the dataset contains any non-finite values ({@link Double#POSITIVE_INFINITY}, {@link 123 * Double#NEGATIVE_INFINITY}, or {@link Double#NaN}) then the result is {@link Double#NaN}. 124 * 125 * @throws IllegalStateException if the dataset is empty 126 */ 127 public double populationCovariance() { 128 checkState(count() != 0); 129 return sumOfProductsOfDeltas / count(); 130 } 131 132 /** 133 * Returns the sample covariance of the values. The count must be greater than one. 134 * 135 * <p>This is not guaranteed to return zero when the dataset consists of the same pair of values 136 * multiple times, due to numerical errors. 137 * 138 * <h3>Non-finite values</h3> 139 * 140 * <p>If the dataset contains any non-finite values ({@link Double#POSITIVE_INFINITY}, {@link 141 * Double#NEGATIVE_INFINITY}, or {@link Double#NaN}) then the result is {@link Double#NaN}. 142 * 143 * @throws IllegalStateException if the dataset is empty or contains a single pair of values 144 */ 145 public final double sampleCovariance() { 146 checkState(count() > 1); 147 return sumOfProductsOfDeltas / (count() - 1); 148 } 149 150 /** 151 * Returns the <a href="http://mathworld.wolfram.com/CorrelationCoefficient.html">Pearson's or 152 * product-moment correlation coefficient</a> of the values. The count must greater than one, and 153 * the {@code x} and {@code y} values must both have non-zero population variance (i.e. {@code 154 * xStats().populationVariance() > 0.0 && yStats().populationVariance() > 0.0}). The result is not 155 * guaranteed to be exactly +/-1 even when the data are perfectly (anti-)correlated, due to 156 * numerical errors. However, it is guaranteed to be in the inclusive range [-1, +1]. 157 * 158 * <h3>Non-finite values</h3> 159 * 160 * <p>If the dataset contains any non-finite values ({@link Double#POSITIVE_INFINITY}, {@link 161 * Double#NEGATIVE_INFINITY}, or {@link Double#NaN}) then the result is {@link Double#NaN}. 162 * 163 * @throws IllegalStateException if the dataset is empty or contains a single pair of values, or 164 * either the {@code x} and {@code y} dataset has zero population variance 165 */ 166 public final double pearsonsCorrelationCoefficient() { 167 checkState(count() > 1); 168 if (isNaN(sumOfProductsOfDeltas)) { 169 return NaN; 170 } 171 double xSumOfSquaresOfDeltas = xStats.sumOfSquaresOfDeltas(); 172 double ySumOfSquaresOfDeltas = yStats.sumOfSquaresOfDeltas(); 173 checkState(xSumOfSquaresOfDeltas > 0.0); 174 checkState(ySumOfSquaresOfDeltas > 0.0); 175 // The product of two positive numbers can be zero if the multiplication underflowed. We 176 // force a positive value by effectively rounding up to MIN_VALUE. 177 double productOfSumsOfSquaresOfDeltas = 178 ensurePositive(xSumOfSquaresOfDeltas * ySumOfSquaresOfDeltas); 179 return ensureInUnitRange(sumOfProductsOfDeltas / Math.sqrt(productOfSumsOfSquaresOfDeltas)); 180 } 181 182 /** 183 * Returns a linear transformation giving the best fit to the data according to <a 184 * href="http://mathworld.wolfram.com/LeastSquaresFitting.html">Ordinary Least Squares linear 185 * regression</a> of {@code y} as a function of {@code x}. The count must be greater than one, and 186 * either the {@code x} or {@code y} data must have a non-zero population variance (i.e. {@code 187 * xStats().populationVariance() > 0.0 || yStats().populationVariance() > 0.0}). The result is 188 * guaranteed to be horizontal if there is variance in the {@code x} data but not the {@code y} 189 * data, and vertical if there is variance in the {@code y} data but not the {@code x} data. 190 * 191 * <p>This fit minimizes the root-mean-square error in {@code y} as a function of {@code x}. This 192 * error is defined as the square root of the mean of the squares of the differences between the 193 * actual {@code y} values of the data and the values predicted by the fit for the {@code x} 194 * values (i.e. it is the square root of the mean of the squares of the vertical distances between 195 * the data points and the best fit line). For this fit, this error is a fraction {@code sqrt(1 - 196 * R*R)} of the population standard deviation of {@code y}, where {@code R} is the Pearson's 197 * correlation coefficient (as given by {@link #pearsonsCorrelationCoefficient()}). 198 * 199 * <p>The corresponding root-mean-square error in {@code x} as a function of {@code y} is a 200 * fraction {@code sqrt(1/(R*R) - 1)} of the population standard deviation of {@code x}. This fit 201 * does not normally minimize that error: to do that, you should swap the roles of {@code x} and 202 * {@code y}. 203 * 204 * <h3>Non-finite values</h3> 205 * 206 * <p>If the dataset contains any non-finite values ({@link Double#POSITIVE_INFINITY}, {@link 207 * Double#NEGATIVE_INFINITY}, or {@link Double#NaN}) then the result is {@link 208 * LinearTransformation#forNaN()}. 209 * 210 * @throws IllegalStateException if the dataset is empty or contains a single pair of values, or 211 * both the {@code x} and {@code y} dataset have zero population variance 212 */ 213 public final LinearTransformation leastSquaresFit() { 214 checkState(count() > 1); 215 if (isNaN(sumOfProductsOfDeltas)) { 216 return LinearTransformation.forNaN(); 217 } 218 double xSumOfSquaresOfDeltas = xStats.sumOfSquaresOfDeltas(); 219 if (xSumOfSquaresOfDeltas > 0.0) { 220 if (yStats.sumOfSquaresOfDeltas() > 0.0) { 221 return LinearTransformation.mapping(xStats.mean(), yStats.mean()) 222 .withSlope(sumOfProductsOfDeltas / xSumOfSquaresOfDeltas); 223 } else { 224 return LinearTransformation.horizontal(yStats.mean()); 225 } 226 } else { 227 checkState(yStats.sumOfSquaresOfDeltas() > 0.0); 228 return LinearTransformation.vertical(xStats.mean()); 229 } 230 } 231 232 private double ensurePositive(double value) { 233 if (value > 0.0) { 234 return value; 235 } else { 236 return Double.MIN_VALUE; 237 } 238 } 239 240 private static double ensureInUnitRange(double value) { 241 return Doubles.constrainToRange(value, -1.0, 1.0); 242 } 243}