001/* 002 * Copyright (C) 2008 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 005 * in compliance with the License. You may obtain a copy of the License at 006 * 007 * http://www.apache.org/licenses/LICENSE-2.0 008 * 009 * Unless required by applicable law or agreed to in writing, software distributed under the License 010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express 011 * or implied. See the License for the specific language governing permissions and limitations under 012 * the License. 013 */ 014 015package com.google.common.primitives; 016 017import static com.google.common.base.Preconditions.checkArgument; 018import static com.google.common.base.Preconditions.checkElementIndex; 019import static com.google.common.base.Preconditions.checkNotNull; 020import static com.google.common.base.Preconditions.checkPositionIndexes; 021import static com.google.common.base.Strings.lenientFormat; 022import static java.lang.Double.NEGATIVE_INFINITY; 023import static java.lang.Double.POSITIVE_INFINITY; 024 025import com.google.common.annotations.Beta; 026import com.google.common.annotations.GwtCompatible; 027import com.google.common.annotations.GwtIncompatible; 028import com.google.common.base.Converter; 029import java.io.Serializable; 030import java.util.AbstractList; 031import java.util.Arrays; 032import java.util.Collection; 033import java.util.Collections; 034import java.util.Comparator; 035import java.util.List; 036import java.util.RandomAccess; 037import javax.annotation.CheckForNull; 038 039/** 040 * Static utility methods pertaining to {@code double} primitives, that are not already found in 041 * either {@link Double} or {@link Arrays}. 042 * 043 * <p>See the Guava User Guide article on <a 044 * href="https://github.com/google/guava/wiki/PrimitivesExplained">primitive utilities</a>. 045 * 046 * @author Kevin Bourrillion 047 * @since 1.0 048 */ 049@GwtCompatible(emulated = true) 050@ElementTypesAreNonnullByDefault 051public final class Doubles extends DoublesMethodsForWeb { 052 private Doubles() {} 053 054 /** 055 * The number of bytes required to represent a primitive {@code double} value. 056 * 057 * <p><b>Java 8 users:</b> use {@link Double#BYTES} instead. 058 * 059 * @since 10.0 060 */ 061 public static final int BYTES = Double.SIZE / Byte.SIZE; 062 063 /** 064 * Returns a hash code for {@code value}; equal to the result of invoking {@code ((Double) 065 * value).hashCode()}. 066 * 067 * <p><b>Java 8 users:</b> use {@link Double#hashCode(double)} instead. 068 * 069 * @param value a primitive {@code double} value 070 * @return a hash code for the value 071 */ 072 public static int hashCode(double value) { 073 return ((Double) value).hashCode(); 074 // TODO(kevinb): do it this way when we can (GWT problem): 075 // long bits = Double.doubleToLongBits(value); 076 // return (int) (bits ^ (bits >>> 32)); 077 } 078 079 /** 080 * Compares the two specified {@code double} values. The sign of the value returned is the same as 081 * that of <code>((Double) a).{@linkplain Double#compareTo compareTo}(b)</code>. As with that 082 * method, {@code NaN} is treated as greater than all other values, and {@code 0.0 > -0.0}. 083 * 084 * <p><b>Note:</b> this method simply delegates to the JDK method {@link Double#compare}. It is 085 * provided for consistency with the other primitive types, whose compare methods were not added 086 * to the JDK until JDK 7. 087 * 088 * @param a the first {@code double} to compare 089 * @param b the second {@code double} to compare 090 * @return a negative value if {@code a} is less than {@code b}; a positive value if {@code a} is 091 * greater than {@code b}; or zero if they are equal 092 */ 093 public static int compare(double a, double b) { 094 return Double.compare(a, b); 095 } 096 097 /** 098 * Returns {@code true} if {@code value} represents a real number. This is equivalent to, but not 099 * necessarily implemented as, {@code !(Double.isInfinite(value) || Double.isNaN(value))}. 100 * 101 * <p><b>Java 8 users:</b> use {@link Double#isFinite(double)} instead. 102 * 103 * @since 10.0 104 */ 105 public static boolean isFinite(double value) { 106 return NEGATIVE_INFINITY < value && value < POSITIVE_INFINITY; 107 } 108 109 /** 110 * Returns {@code true} if {@code target} is present as an element anywhere in {@code array}. Note 111 * that this always returns {@code false} when {@code target} is {@code NaN}. 112 * 113 * @param array an array of {@code double} values, possibly empty 114 * @param target a primitive {@code double} value 115 * @return {@code true} if {@code array[i] == target} for some value of {@code i} 116 */ 117 public static boolean contains(double[] array, double target) { 118 for (double value : array) { 119 if (value == target) { 120 return true; 121 } 122 } 123 return false; 124 } 125 126 /** 127 * Returns the index of the first appearance of the value {@code target} in {@code array}. Note 128 * that this always returns {@code -1} when {@code target} is {@code NaN}. 129 * 130 * @param array an array of {@code double} values, possibly empty 131 * @param target a primitive {@code double} value 132 * @return the least index {@code i} for which {@code array[i] == target}, or {@code -1} if no 133 * such index exists. 134 */ 135 public static int indexOf(double[] array, double target) { 136 return indexOf(array, target, 0, array.length); 137 } 138 139 // TODO(kevinb): consider making this public 140 private static int indexOf(double[] array, double target, int start, int end) { 141 for (int i = start; i < end; i++) { 142 if (array[i] == target) { 143 return i; 144 } 145 } 146 return -1; 147 } 148 149 /** 150 * Returns the start position of the first occurrence of the specified {@code target} within 151 * {@code array}, or {@code -1} if there is no such occurrence. 152 * 153 * <p>More formally, returns the lowest index {@code i} such that {@code Arrays.copyOfRange(array, 154 * i, i + target.length)} contains exactly the same elements as {@code target}. 155 * 156 * <p>Note that this always returns {@code -1} when {@code target} contains {@code NaN}. 157 * 158 * @param array the array to search for the sequence {@code target} 159 * @param target the array to search for as a sub-sequence of {@code array} 160 */ 161 public static int indexOf(double[] array, double[] target) { 162 checkNotNull(array, "array"); 163 checkNotNull(target, "target"); 164 if (target.length == 0) { 165 return 0; 166 } 167 168 outer: 169 for (int i = 0; i < array.length - target.length + 1; i++) { 170 for (int j = 0; j < target.length; j++) { 171 if (array[i + j] != target[j]) { 172 continue outer; 173 } 174 } 175 return i; 176 } 177 return -1; 178 } 179 180 /** 181 * Returns the index of the last appearance of the value {@code target} in {@code array}. Note 182 * that this always returns {@code -1} when {@code target} is {@code NaN}. 183 * 184 * @param array an array of {@code double} values, possibly empty 185 * @param target a primitive {@code double} value 186 * @return the greatest index {@code i} for which {@code array[i] == target}, or {@code -1} if no 187 * such index exists. 188 */ 189 public static int lastIndexOf(double[] array, double target) { 190 return lastIndexOf(array, target, 0, array.length); 191 } 192 193 // TODO(kevinb): consider making this public 194 private static int lastIndexOf(double[] array, double target, int start, int end) { 195 for (int i = end - 1; i >= start; i--) { 196 if (array[i] == target) { 197 return i; 198 } 199 } 200 return -1; 201 } 202 203 /** 204 * Returns the least value present in {@code array}, using the same rules of comparison as {@link 205 * Math#min(double, double)}. 206 * 207 * @param array a <i>nonempty</i> array of {@code double} values 208 * @return the value present in {@code array} that is less than or equal to every other value in 209 * the array 210 * @throws IllegalArgumentException if {@code array} is empty 211 */ 212 @GwtIncompatible( 213 "Available in GWT! Annotation is to avoid conflict with GWT specialization of base class.") 214 public static double min(double... array) { 215 checkArgument(array.length > 0); 216 double min = array[0]; 217 for (int i = 1; i < array.length; i++) { 218 min = Math.min(min, array[i]); 219 } 220 return min; 221 } 222 223 /** 224 * Returns the greatest value present in {@code array}, using the same rules of comparison as 225 * {@link Math#max(double, double)}. 226 * 227 * @param array a <i>nonempty</i> array of {@code double} values 228 * @return the value present in {@code array} that is greater than or equal to every other value 229 * in the array 230 * @throws IllegalArgumentException if {@code array} is empty 231 */ 232 @GwtIncompatible( 233 "Available in GWT! Annotation is to avoid conflict with GWT specialization of base class.") 234 public static double max(double... array) { 235 checkArgument(array.length > 0); 236 double max = array[0]; 237 for (int i = 1; i < array.length; i++) { 238 max = Math.max(max, array[i]); 239 } 240 return max; 241 } 242 243 /** 244 * Returns the value nearest to {@code value} which is within the closed range {@code [min..max]}. 245 * 246 * <p>If {@code value} is within the range {@code [min..max]}, {@code value} is returned 247 * unchanged. If {@code value} is less than {@code min}, {@code min} is returned, and if {@code 248 * value} is greater than {@code max}, {@code max} is returned. 249 * 250 * @param value the {@code double} value to constrain 251 * @param min the lower bound (inclusive) of the range to constrain {@code value} to 252 * @param max the upper bound (inclusive) of the range to constrain {@code value} to 253 * @throws IllegalArgumentException if {@code min > max} 254 * @since 21.0 255 */ 256 @Beta 257 public static double constrainToRange(double value, double min, double max) { 258 // avoid auto-boxing by not using Preconditions.checkArgument(); see Guava issue 3984 259 // Reject NaN by testing for the good case (min <= max) instead of the bad (min > max). 260 if (min <= max) { 261 return Math.min(Math.max(value, min), max); 262 } 263 throw new IllegalArgumentException( 264 lenientFormat("min (%s) must be less than or equal to max (%s)", min, max)); 265 } 266 267 /** 268 * Returns the values from each provided array combined into a single array. For example, {@code 269 * concat(new double[] {a, b}, new double[] {}, new double[] {c}} returns the array {@code {a, b, 270 * c}}. 271 * 272 * @param arrays zero or more {@code double} arrays 273 * @return a single array containing all the values from the source arrays, in order 274 */ 275 public static double[] concat(double[]... arrays) { 276 int length = 0; 277 for (double[] array : arrays) { 278 length += array.length; 279 } 280 double[] result = new double[length]; 281 int pos = 0; 282 for (double[] array : arrays) { 283 System.arraycopy(array, 0, result, pos, array.length); 284 pos += array.length; 285 } 286 return result; 287 } 288 289 private static final class DoubleConverter extends Converter<String, Double> 290 implements Serializable { 291 static final DoubleConverter INSTANCE = new DoubleConverter(); 292 293 @Override 294 protected Double doForward(String value) { 295 return Double.valueOf(value); 296 } 297 298 @Override 299 protected String doBackward(Double value) { 300 return value.toString(); 301 } 302 303 @Override 304 public String toString() { 305 return "Doubles.stringConverter()"; 306 } 307 308 private Object readResolve() { 309 return INSTANCE; 310 } 311 312 private static final long serialVersionUID = 1; 313 } 314 315 /** 316 * Returns a serializable converter object that converts between strings and doubles using {@link 317 * Double#valueOf} and {@link Double#toString()}. 318 * 319 * @since 16.0 320 */ 321 @Beta 322 public static Converter<String, Double> stringConverter() { 323 return DoubleConverter.INSTANCE; 324 } 325 326 /** 327 * Returns an array containing the same values as {@code array}, but guaranteed to be of a 328 * specified minimum length. If {@code array} already has a length of at least {@code minLength}, 329 * it is returned directly. Otherwise, a new array of size {@code minLength + padding} is 330 * returned, containing the values of {@code array}, and zeroes in the remaining places. 331 * 332 * @param array the source array 333 * @param minLength the minimum length the returned array must guarantee 334 * @param padding an extra amount to "grow" the array by if growth is necessary 335 * @throws IllegalArgumentException if {@code minLength} or {@code padding} is negative 336 * @return an array containing the values of {@code array}, with guaranteed minimum length {@code 337 * minLength} 338 */ 339 public static double[] ensureCapacity(double[] array, int minLength, int padding) { 340 checkArgument(minLength >= 0, "Invalid minLength: %s", minLength); 341 checkArgument(padding >= 0, "Invalid padding: %s", padding); 342 return (array.length < minLength) ? Arrays.copyOf(array, minLength + padding) : array; 343 } 344 345 /** 346 * Returns a string containing the supplied {@code double} values, converted to strings as 347 * specified by {@link Double#toString(double)}, and separated by {@code separator}. For example, 348 * {@code join("-", 1.0, 2.0, 3.0)} returns the string {@code "1.0-2.0-3.0"}. 349 * 350 * <p>Note that {@link Double#toString(double)} formats {@code double} differently in GWT 351 * sometimes. In the previous example, it returns the string {@code "1-2-3"}. 352 * 353 * @param separator the text that should appear between consecutive values in the resulting string 354 * (but not at the start or end) 355 * @param array an array of {@code double} values, possibly empty 356 */ 357 public static String join(String separator, double... array) { 358 checkNotNull(separator); 359 if (array.length == 0) { 360 return ""; 361 } 362 363 // For pre-sizing a builder, just get the right order of magnitude 364 StringBuilder builder = new StringBuilder(array.length * 12); 365 builder.append(array[0]); 366 for (int i = 1; i < array.length; i++) { 367 builder.append(separator).append(array[i]); 368 } 369 return builder.toString(); 370 } 371 372 /** 373 * Returns a comparator that compares two {@code double} arrays <a 374 * href="http://en.wikipedia.org/wiki/Lexicographical_order">lexicographically</a>. That is, it 375 * compares, using {@link #compare(double, double)}), the first pair of values that follow any 376 * common prefix, or when one array is a prefix of the other, treats the shorter array as the 377 * lesser. For example, {@code [] < [1.0] < [1.0, 2.0] < [2.0]}. 378 * 379 * <p>The returned comparator is inconsistent with {@link Object#equals(Object)} (since arrays 380 * support only identity equality), but it is consistent with {@link Arrays#equals(double[], 381 * double[])}. 382 * 383 * @since 2.0 384 */ 385 public static Comparator<double[]> lexicographicalComparator() { 386 return LexicographicalComparator.INSTANCE; 387 } 388 389 private enum LexicographicalComparator implements Comparator<double[]> { 390 INSTANCE; 391 392 @Override 393 public int compare(double[] left, double[] right) { 394 int minLength = Math.min(left.length, right.length); 395 for (int i = 0; i < minLength; i++) { 396 int result = Double.compare(left[i], right[i]); 397 if (result != 0) { 398 return result; 399 } 400 } 401 return left.length - right.length; 402 } 403 404 @Override 405 public String toString() { 406 return "Doubles.lexicographicalComparator()"; 407 } 408 } 409 410 /** 411 * Sorts the elements of {@code array} in descending order. 412 * 413 * <p>Note that this method uses the total order imposed by {@link Double#compare}, which treats 414 * all NaN values as equal and 0.0 as greater than -0.0. 415 * 416 * @since 23.1 417 */ 418 public static void sortDescending(double[] array) { 419 checkNotNull(array); 420 sortDescending(array, 0, array.length); 421 } 422 423 /** 424 * Sorts the elements of {@code array} between {@code fromIndex} inclusive and {@code toIndex} 425 * exclusive in descending order. 426 * 427 * <p>Note that this method uses the total order imposed by {@link Double#compare}, which treats 428 * all NaN values as equal and 0.0 as greater than -0.0. 429 * 430 * @since 23.1 431 */ 432 public static void sortDescending(double[] array, int fromIndex, int toIndex) { 433 checkNotNull(array); 434 checkPositionIndexes(fromIndex, toIndex, array.length); 435 Arrays.sort(array, fromIndex, toIndex); 436 reverse(array, fromIndex, toIndex); 437 } 438 439 /** 440 * Reverses the elements of {@code array}. This is equivalent to {@code 441 * Collections.reverse(Doubles.asList(array))}, but is likely to be more efficient. 442 * 443 * @since 23.1 444 */ 445 public static void reverse(double[] array) { 446 checkNotNull(array); 447 reverse(array, 0, array.length); 448 } 449 450 /** 451 * Reverses the elements of {@code array} between {@code fromIndex} inclusive and {@code toIndex} 452 * exclusive. This is equivalent to {@code 453 * Collections.reverse(Doubles.asList(array).subList(fromIndex, toIndex))}, but is likely to be 454 * more efficient. 455 * 456 * @throws IndexOutOfBoundsException if {@code fromIndex < 0}, {@code toIndex > array.length}, or 457 * {@code toIndex > fromIndex} 458 * @since 23.1 459 */ 460 public static void reverse(double[] array, int fromIndex, int toIndex) { 461 checkNotNull(array); 462 checkPositionIndexes(fromIndex, toIndex, array.length); 463 for (int i = fromIndex, j = toIndex - 1; i < j; i++, j--) { 464 double tmp = array[i]; 465 array[i] = array[j]; 466 array[j] = tmp; 467 } 468 } 469 470 /** 471 * Returns an array containing each value of {@code collection}, converted to a {@code double} 472 * value in the manner of {@link Number#doubleValue}. 473 * 474 * <p>Elements are copied from the argument collection as if by {@code collection.toArray()}. 475 * Calling this method is as thread-safe as calling that method. 476 * 477 * @param collection a collection of {@code Number} instances 478 * @return an array containing the same values as {@code collection}, in the same order, converted 479 * to primitives 480 * @throws NullPointerException if {@code collection} or any of its elements is null 481 * @since 1.0 (parameter was {@code Collection<Double>} before 12.0) 482 */ 483 public static double[] toArray(Collection<? extends Number> collection) { 484 if (collection instanceof DoubleArrayAsList) { 485 return ((DoubleArrayAsList) collection).toDoubleArray(); 486 } 487 488 Object[] boxedArray = collection.toArray(); 489 int len = boxedArray.length; 490 double[] array = new double[len]; 491 for (int i = 0; i < len; i++) { 492 // checkNotNull for GWT (do not optimize) 493 array[i] = ((Number) checkNotNull(boxedArray[i])).doubleValue(); 494 } 495 return array; 496 } 497 498 /** 499 * Returns a fixed-size list backed by the specified array, similar to {@link 500 * Arrays#asList(Object[])}. The list supports {@link List#set(int, Object)}, but any attempt to 501 * set a value to {@code null} will result in a {@link NullPointerException}. 502 * 503 * <p>The returned list maintains the values, but not the identities, of {@code Double} objects 504 * written to or read from it. For example, whether {@code list.get(0) == list.get(0)} is true for 505 * the returned list is unspecified. 506 * 507 * <p>The returned list may have unexpected behavior if it contains {@code NaN}, or if {@code NaN} 508 * is used as a parameter to any of its methods. 509 * 510 * <p><b>Note:</b> when possible, you should represent your data as an {@link 511 * ImmutableDoubleArray} instead, which has an {@link ImmutableDoubleArray#asList asList} view. 512 * 513 * @param backingArray the array to back the list 514 * @return a list view of the array 515 */ 516 public static List<Double> asList(double... backingArray) { 517 if (backingArray.length == 0) { 518 return Collections.emptyList(); 519 } 520 return new DoubleArrayAsList(backingArray); 521 } 522 523 @GwtCompatible 524 private static class DoubleArrayAsList extends AbstractList<Double> 525 implements RandomAccess, Serializable { 526 final double[] array; 527 final int start; 528 final int end; 529 530 DoubleArrayAsList(double[] array) { 531 this(array, 0, array.length); 532 } 533 534 DoubleArrayAsList(double[] array, int start, int end) { 535 this.array = array; 536 this.start = start; 537 this.end = end; 538 } 539 540 @Override 541 public int size() { 542 return end - start; 543 } 544 545 @Override 546 public boolean isEmpty() { 547 return false; 548 } 549 550 @Override 551 public Double get(int index) { 552 checkElementIndex(index, size()); 553 return array[start + index]; 554 } 555 556 @Override 557 public boolean contains(@CheckForNull Object target) { 558 // Overridden to prevent a ton of boxing 559 return (target instanceof Double) 560 && Doubles.indexOf(array, (Double) target, start, end) != -1; 561 } 562 563 @Override 564 public int indexOf(@CheckForNull Object target) { 565 // Overridden to prevent a ton of boxing 566 if (target instanceof Double) { 567 int i = Doubles.indexOf(array, (Double) target, start, end); 568 if (i >= 0) { 569 return i - start; 570 } 571 } 572 return -1; 573 } 574 575 @Override 576 public int lastIndexOf(@CheckForNull Object target) { 577 // Overridden to prevent a ton of boxing 578 if (target instanceof Double) { 579 int i = Doubles.lastIndexOf(array, (Double) target, start, end); 580 if (i >= 0) { 581 return i - start; 582 } 583 } 584 return -1; 585 } 586 587 @Override 588 public Double set(int index, Double element) { 589 checkElementIndex(index, size()); 590 double oldValue = array[start + index]; 591 // checkNotNull for GWT (do not optimize) 592 array[start + index] = checkNotNull(element); 593 return oldValue; 594 } 595 596 @Override 597 public List<Double> subList(int fromIndex, int toIndex) { 598 int size = size(); 599 checkPositionIndexes(fromIndex, toIndex, size); 600 if (fromIndex == toIndex) { 601 return Collections.emptyList(); 602 } 603 return new DoubleArrayAsList(array, start + fromIndex, start + toIndex); 604 } 605 606 @Override 607 public boolean equals(@CheckForNull Object object) { 608 if (object == this) { 609 return true; 610 } 611 if (object instanceof DoubleArrayAsList) { 612 DoubleArrayAsList that = (DoubleArrayAsList) object; 613 int size = size(); 614 if (that.size() != size) { 615 return false; 616 } 617 for (int i = 0; i < size; i++) { 618 if (array[start + i] != that.array[that.start + i]) { 619 return false; 620 } 621 } 622 return true; 623 } 624 return super.equals(object); 625 } 626 627 @Override 628 public int hashCode() { 629 int result = 1; 630 for (int i = start; i < end; i++) { 631 result = 31 * result + Doubles.hashCode(array[i]); 632 } 633 return result; 634 } 635 636 @Override 637 public String toString() { 638 StringBuilder builder = new StringBuilder(size() * 12); 639 builder.append('[').append(array[start]); 640 for (int i = start + 1; i < end; i++) { 641 builder.append(", ").append(array[i]); 642 } 643 return builder.append(']').toString(); 644 } 645 646 double[] toDoubleArray() { 647 return Arrays.copyOfRange(array, start, end); 648 } 649 650 private static final long serialVersionUID = 0; 651 } 652 653 /** 654 * This is adapted from the regex suggested by {@link Double#valueOf(String)} for prevalidating 655 * inputs. All valid inputs must pass this regex, but it's semantically fine if not all inputs 656 * that pass this regex are valid -- only a performance hit is incurred, not a semantics bug. 657 */ 658 @GwtIncompatible // regular expressions 659 static final 660 java.util.regex.Pattern 661 FLOATING_POINT_PATTERN = fpPattern(); 662 663 @GwtIncompatible // regular expressions 664 private static 665 java.util.regex.Pattern 666 fpPattern() { 667 /* 668 * We use # instead of * for possessive quantifiers. This lets us strip them out when building 669 * the regex for RE2 (which doesn't support them) but leave them in when building it for 670 * java.util.regex (where we want them in order to avoid catastrophic backtracking). 671 */ 672 String decimal = "(?:\\d+#(?:\\.\\d*#)?|\\.\\d+#)"; 673 String completeDec = decimal + "(?:[eE][+-]?\\d+#)?[fFdD]?"; 674 String hex = "(?:[0-9a-fA-F]+#(?:\\.[0-9a-fA-F]*#)?|\\.[0-9a-fA-F]+#)"; 675 String completeHex = "0[xX]" + hex + "[pP][+-]?\\d+#[fFdD]?"; 676 String fpPattern = "[+-]?(?:NaN|Infinity|" + completeDec + "|" + completeHex + ")"; 677 fpPattern = 678 fpPattern.replace( 679 "#", 680 "+" 681 ); 682 return 683 java.util.regex.Pattern 684 .compile(fpPattern); 685 } 686 687 /** 688 * Parses the specified string as a double-precision floating point value. The ASCII character 689 * {@code '-'} (<code>'\u002D'</code>) is recognized as the minus sign. 690 * 691 * <p>Unlike {@link Double#parseDouble(String)}, this method returns {@code null} instead of 692 * throwing an exception if parsing fails. Valid inputs are exactly those accepted by {@link 693 * Double#valueOf(String)}, except that leading and trailing whitespace is not permitted. 694 * 695 * <p>This implementation is likely to be faster than {@code Double.parseDouble} if many failures 696 * are expected. 697 * 698 * @param string the string representation of a {@code double} value 699 * @return the floating point value represented by {@code string}, or {@code null} if {@code 700 * string} has a length of zero or cannot be parsed as a {@code double} value 701 * @throws NullPointerException if {@code string} is {@code null} 702 * @since 14.0 703 */ 704 @Beta 705 @GwtIncompatible // regular expressions 706 @CheckForNull 707 public static Double tryParse(String string) { 708 if (FLOATING_POINT_PATTERN.matcher(string).matches()) { 709 // TODO(lowasser): could be potentially optimized, but only with 710 // extensive testing 711 try { 712 return Double.parseDouble(string); 713 } catch (NumberFormatException e) { 714 // Double.parseDouble has changed specs several times, so fall through 715 // gracefully 716 } 717 } 718 return null; 719 } 720}