001/*
002 * Copyright (C) 2007 The Guava Authors
003 *
004 * Licensed under the Apache License, Version 2.0 (the "License");
005 * you may not use this file except in compliance with the License.
006 * You may obtain a copy of the License at
007 *
008 * http://www.apache.org/licenses/LICENSE-2.0
009 *
010 * Unless required by applicable law or agreed to in writing, software
011 * distributed under the License is distributed on an "AS IS" BASIS,
012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
013 * See the License for the specific language governing permissions and
014 * limitations under the License.
015 */
016
017package com.google.common.collect;
018
019import static com.google.common.base.Preconditions.checkArgument;
020import static com.google.common.base.Preconditions.checkElementIndex;
021import static com.google.common.base.Preconditions.checkNotNull;
022import static com.google.common.base.Preconditions.checkPositionIndex;
023import static com.google.common.base.Preconditions.checkPositionIndexes;
024import static com.google.common.base.Preconditions.checkState;
025import static com.google.common.collect.CollectPreconditions.checkNonnegative;
026import static com.google.common.collect.CollectPreconditions.checkRemove;
027
028import com.google.common.annotations.Beta;
029import com.google.common.annotations.GwtCompatible;
030import com.google.common.annotations.GwtIncompatible;
031import com.google.common.annotations.VisibleForTesting;
032import com.google.common.base.Function;
033import com.google.common.base.Objects;
034import com.google.common.math.IntMath;
035import com.google.common.primitives.Ints;
036import java.io.Serializable;
037import java.math.RoundingMode;
038import java.util.AbstractList;
039import java.util.AbstractSequentialList;
040import java.util.ArrayList;
041import java.util.Arrays;
042import java.util.Collection;
043import java.util.Collections;
044import java.util.Iterator;
045import java.util.LinkedList;
046import java.util.List;
047import java.util.ListIterator;
048import java.util.NoSuchElementException;
049import java.util.RandomAccess;
050import java.util.concurrent.CopyOnWriteArrayList;
051import javax.annotation.CheckForNull;
052import org.checkerframework.checker.nullness.qual.Nullable;
053
054/**
055 * Static utility methods pertaining to {@link List} instances. Also see this class's counterparts
056 * {@link Sets}, {@link Maps} and {@link Queues}.
057 *
058 * <p>See the Guava User Guide article on <a href=
059 * "https://github.com/google/guava/wiki/CollectionUtilitiesExplained#lists">{@code Lists}</a>.
060 *
061 * @author Kevin Bourrillion
062 * @author Mike Bostock
063 * @author Louis Wasserman
064 * @since 2.0
065 */
066@GwtCompatible(emulated = true)
067@ElementTypesAreNonnullByDefault
068public final class Lists {
069  private Lists() {}
070
071  // ArrayList
072
073  /**
074   * Creates a <i>mutable</i>, empty {@code ArrayList} instance (for Java 6 and earlier).
075   *
076   * <p><b>Note:</b> if mutability is not required, use {@link ImmutableList#of()} instead.
077   *
078   * <p><b>Note:</b> this method is now unnecessary and should be treated as deprecated. Instead,
079   * use the {@code ArrayList} {@linkplain ArrayList#ArrayList() constructor} directly, taking
080   * advantage of <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
081   */
082  @GwtCompatible(serializable = true)
083  public static <E extends @Nullable Object> ArrayList<E> newArrayList() {
084    return new ArrayList<>();
085  }
086
087  /**
088   * Creates a <i>mutable</i> {@code ArrayList} instance containing the given elements.
089   *
090   * <p><b>Note:</b> essentially the only reason to use this method is when you will need to add or
091   * remove elements later. Otherwise, for non-null elements use {@link ImmutableList#of()} (for
092   * varargs) or {@link ImmutableList#copyOf(Object[])} (for an array) instead. If any elements
093   * might be null, or you need support for {@link List#set(int, Object)}, use {@link
094   * Arrays#asList}.
095   *
096   * <p>Note that even when you do need the ability to add or remove, this method provides only a
097   * tiny bit of syntactic sugar for {@code newArrayList(}{@link Arrays#asList asList}{@code
098   * (...))}, or for creating an empty list then calling {@link Collections#addAll}. This method is
099   * not actually very useful and will likely be deprecated in the future.
100   */
101  @SafeVarargs
102  @GwtCompatible(serializable = true)
103  public static <E extends @Nullable Object> ArrayList<E> newArrayList(E... elements) {
104    checkNotNull(elements); // for GWT
105    // Avoid integer overflow when a large array is passed in
106    int capacity = computeArrayListCapacity(elements.length);
107    ArrayList<E> list = new ArrayList<>(capacity);
108    Collections.addAll(list, elements);
109    return list;
110  }
111
112  /**
113   * Creates a <i>mutable</i> {@code ArrayList} instance containing the given elements; a very thin
114   * shortcut for creating an empty list then calling {@link Iterables#addAll}.
115   *
116   * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link
117   * ImmutableList#copyOf(Iterable)} instead. (Or, change {@code elements} to be a {@link
118   * FluentIterable} and call {@code elements.toList()}.)
119   *
120   * <p><b>Note:</b> if {@code elements} is a {@link Collection}, you don't need this method. Use
121   * the {@code ArrayList} {@linkplain ArrayList#ArrayList(Collection) constructor} directly, taking
122   * advantage of <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
123   */
124  @GwtCompatible(serializable = true)
125  public static <E extends @Nullable Object> ArrayList<E> newArrayList(
126      Iterable<? extends E> elements) {
127    checkNotNull(elements); // for GWT
128    // Let ArrayList's sizing logic work, if possible
129    return (elements instanceof Collection)
130        ? new ArrayList<>((Collection<? extends E>) elements)
131        : newArrayList(elements.iterator());
132  }
133
134  /**
135   * Creates a <i>mutable</i> {@code ArrayList} instance containing the given elements; a very thin
136   * shortcut for creating an empty list and then calling {@link Iterators#addAll}.
137   *
138   * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link
139   * ImmutableList#copyOf(Iterator)} instead.
140   */
141  @GwtCompatible(serializable = true)
142  public static <E extends @Nullable Object> ArrayList<E> newArrayList(
143      Iterator<? extends E> elements) {
144    ArrayList<E> list = newArrayList();
145    Iterators.addAll(list, elements);
146    return list;
147  }
148
149  @VisibleForTesting
150  static int computeArrayListCapacity(int arraySize) {
151    checkNonnegative(arraySize, "arraySize");
152
153    // TODO(kevinb): Figure out the right behavior, and document it
154    return Ints.saturatedCast(5L + arraySize + (arraySize / 10));
155  }
156
157  /**
158   * Creates an {@code ArrayList} instance backed by an array with the specified initial size;
159   * simply delegates to {@link ArrayList#ArrayList(int)}.
160   *
161   * <p><b>Note:</b> this method is now unnecessary and should be treated as deprecated. Instead,
162   * use {@code new }{@link ArrayList#ArrayList(int) ArrayList}{@code <>(int)} directly, taking
163   * advantage of <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. (Unlike here, there is no risk
164   * of overload ambiguity, since the {@code ArrayList} constructors very wisely did not accept
165   * varargs.)
166   *
167   * @param initialArraySize the exact size of the initial backing array for the returned array list
168   *     ({@code ArrayList} documentation calls this value the "capacity")
169   * @return a new, empty {@code ArrayList} which is guaranteed not to resize itself unless its size
170   *     reaches {@code initialArraySize + 1}
171   * @throws IllegalArgumentException if {@code initialArraySize} is negative
172   */
173  @GwtCompatible(serializable = true)
174  public static <E extends @Nullable Object> ArrayList<E> newArrayListWithCapacity(
175      int initialArraySize) {
176    checkNonnegative(initialArraySize, "initialArraySize"); // for GWT.
177    return new ArrayList<>(initialArraySize);
178  }
179
180  /**
181   * Creates an {@code ArrayList} instance to hold {@code estimatedSize} elements, <i>plus</i> an
182   * unspecified amount of padding; you almost certainly mean to call {@link
183   * #newArrayListWithCapacity} (see that method for further advice on usage).
184   *
185   * <p><b>Note:</b> This method will soon be deprecated. Even in the rare case that you do want
186   * some amount of padding, it's best if you choose your desired amount explicitly.
187   *
188   * @param estimatedSize an estimate of the eventual {@link List#size()} of the new list
189   * @return a new, empty {@code ArrayList}, sized appropriately to hold the estimated number of
190   *     elements
191   * @throws IllegalArgumentException if {@code estimatedSize} is negative
192   */
193  @GwtCompatible(serializable = true)
194  public static <E extends @Nullable Object> ArrayList<E> newArrayListWithExpectedSize(
195      int estimatedSize) {
196    return new ArrayList<>(computeArrayListCapacity(estimatedSize));
197  }
198
199  // LinkedList
200
201  /**
202   * Creates a <i>mutable</i>, empty {@code LinkedList} instance (for Java 6 and earlier).
203   *
204   * <p><b>Note:</b> if you won't be adding any elements to the list, use {@link ImmutableList#of()}
205   * instead.
206   *
207   * <p><b>Performance note:</b> {@link ArrayList} and {@link java.util.ArrayDeque} consistently
208   * outperform {@code LinkedList} except in certain rare and specific situations. Unless you have
209   * spent a lot of time benchmarking your specific needs, use one of those instead.
210   *
211   * <p><b>Note:</b> this method is now unnecessary and should be treated as deprecated. Instead,
212   * use the {@code LinkedList} {@linkplain LinkedList#LinkedList() constructor} directly, taking
213   * advantage of <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
214   */
215  @GwtCompatible(serializable = true)
216  public static <E extends @Nullable Object> LinkedList<E> newLinkedList() {
217    return new LinkedList<>();
218  }
219
220  /**
221   * Creates a <i>mutable</i> {@code LinkedList} instance containing the given elements; a very thin
222   * shortcut for creating an empty list then calling {@link Iterables#addAll}.
223   *
224   * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link
225   * ImmutableList#copyOf(Iterable)} instead. (Or, change {@code elements} to be a {@link
226   * FluentIterable} and call {@code elements.toList()}.)
227   *
228   * <p><b>Performance note:</b> {@link ArrayList} and {@link java.util.ArrayDeque} consistently
229   * outperform {@code LinkedList} except in certain rare and specific situations. Unless you have
230   * spent a lot of time benchmarking your specific needs, use one of those instead.
231   *
232   * <p><b>Note:</b> if {@code elements} is a {@link Collection}, you don't need this method. Use
233   * the {@code LinkedList} {@linkplain LinkedList#LinkedList(Collection) constructor} directly,
234   * taking advantage of <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
235   */
236  @GwtCompatible(serializable = true)
237  public static <E extends @Nullable Object> LinkedList<E> newLinkedList(
238      Iterable<? extends E> elements) {
239    LinkedList<E> list = newLinkedList();
240    Iterables.addAll(list, elements);
241    return list;
242  }
243
244  /**
245   * Creates an empty {@code CopyOnWriteArrayList} instance.
246   *
247   * <p><b>Note:</b> if you need an immutable empty {@link List}, use {@link Collections#emptyList}
248   * instead.
249   *
250   * @return a new, empty {@code CopyOnWriteArrayList}
251   * @since 12.0
252   */
253  @GwtIncompatible // CopyOnWriteArrayList
254  public static <E extends @Nullable Object> CopyOnWriteArrayList<E> newCopyOnWriteArrayList() {
255    return new CopyOnWriteArrayList<>();
256  }
257
258  /**
259   * Creates a {@code CopyOnWriteArrayList} instance containing the given elements.
260   *
261   * @param elements the elements that the list should contain, in order
262   * @return a new {@code CopyOnWriteArrayList} containing those elements
263   * @since 12.0
264   */
265  @GwtIncompatible // CopyOnWriteArrayList
266  public static <E extends @Nullable Object> CopyOnWriteArrayList<E> newCopyOnWriteArrayList(
267      Iterable<? extends E> elements) {
268    // We copy elements to an ArrayList first, rather than incurring the
269    // quadratic cost of adding them to the COWAL directly.
270    Collection<? extends E> elementsCollection =
271        (elements instanceof Collection)
272            ? (Collection<? extends E>) elements
273            : newArrayList(elements);
274    return new CopyOnWriteArrayList<>(elementsCollection);
275  }
276
277  /**
278   * Returns an unmodifiable list containing the specified first element and backed by the specified
279   * array of additional elements. Changes to the {@code rest} array will be reflected in the
280   * returned list. Unlike {@link Arrays#asList}, the returned list is unmodifiable.
281   *
282   * <p>This is useful when a varargs method needs to use a signature such as {@code (Foo firstFoo,
283   * Foo... moreFoos)}, in order to avoid overload ambiguity or to enforce a minimum argument count.
284   *
285   * <p>The returned list is serializable and implements {@link RandomAccess}.
286   *
287   * @param first the first element
288   * @param rest an array of additional elements, possibly empty
289   * @return an unmodifiable list containing the specified elements
290   */
291  public static <E extends @Nullable Object> List<E> asList(@ParametricNullness E first, E[] rest) {
292    return new OnePlusArrayList<>(first, rest);
293  }
294
295  /**
296   * Returns an unmodifiable list containing the specified first and second element, and backed by
297   * the specified array of additional elements. Changes to the {@code rest} array will be reflected
298   * in the returned list. Unlike {@link Arrays#asList}, the returned list is unmodifiable.
299   *
300   * <p>This is useful when a varargs method needs to use a signature such as {@code (Foo firstFoo,
301   * Foo secondFoo, Foo... moreFoos)}, in order to avoid overload ambiguity or to enforce a minimum
302   * argument count.
303   *
304   * <p>The returned list is serializable and implements {@link RandomAccess}.
305   *
306   * @param first the first element
307   * @param second the second element
308   * @param rest an array of additional elements, possibly empty
309   * @return an unmodifiable list containing the specified elements
310   */
311  public static <E extends @Nullable Object> List<E> asList(
312      @ParametricNullness E first, @ParametricNullness E second, E[] rest) {
313    return new TwoPlusArrayList<>(first, second, rest);
314  }
315
316  /** @see Lists#asList(Object, Object[]) */
317  private static class OnePlusArrayList<E extends @Nullable Object> extends AbstractList<E>
318      implements Serializable, RandomAccess {
319    @ParametricNullness final E first;
320    final E[] rest;
321
322    OnePlusArrayList(@ParametricNullness E first, E[] rest) {
323      this.first = first;
324      this.rest = checkNotNull(rest);
325    }
326
327    @Override
328    public int size() {
329      return IntMath.saturatedAdd(rest.length, 1);
330    }
331
332    @Override
333    @ParametricNullness
334    public E get(int index) {
335      // check explicitly so the IOOBE will have the right message
336      checkElementIndex(index, size());
337      return (index == 0) ? first : rest[index - 1];
338    }
339
340    private static final long serialVersionUID = 0;
341  }
342
343  /** @see Lists#asList(Object, Object, Object[]) */
344  private static class TwoPlusArrayList<E extends @Nullable Object> extends AbstractList<E>
345      implements Serializable, RandomAccess {
346    @ParametricNullness final E first;
347    @ParametricNullness final E second;
348    final E[] rest;
349
350    TwoPlusArrayList(@ParametricNullness E first, @ParametricNullness E second, E[] rest) {
351      this.first = first;
352      this.second = second;
353      this.rest = checkNotNull(rest);
354    }
355
356    @Override
357    public int size() {
358      return IntMath.saturatedAdd(rest.length, 2);
359    }
360
361    @Override
362    @ParametricNullness
363    public E get(int index) {
364      switch (index) {
365        case 0:
366          return first;
367        case 1:
368          return second;
369        default:
370          // check explicitly so the IOOBE will have the right message
371          checkElementIndex(index, size());
372          return rest[index - 2];
373      }
374    }
375
376    private static final long serialVersionUID = 0;
377  }
378
379  /**
380   * Returns every possible list that can be formed by choosing one element from each of the given
381   * lists in order; the "n-ary <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian
382   * product</a>" of the lists. For example:
383   *
384   * <pre>{@code
385   * Lists.cartesianProduct(ImmutableList.of(
386   *     ImmutableList.of(1, 2),
387   *     ImmutableList.of("A", "B", "C")))
388   * }</pre>
389   *
390   * <p>returns a list containing six lists in the following order:
391   *
392   * <ul>
393   *   <li>{@code ImmutableList.of(1, "A")}
394   *   <li>{@code ImmutableList.of(1, "B")}
395   *   <li>{@code ImmutableList.of(1, "C")}
396   *   <li>{@code ImmutableList.of(2, "A")}
397   *   <li>{@code ImmutableList.of(2, "B")}
398   *   <li>{@code ImmutableList.of(2, "C")}
399   * </ul>
400   *
401   * <p>The result is guaranteed to be in the "traditional", lexicographical order for Cartesian
402   * products that you would get from nesting for loops:
403   *
404   * <pre>{@code
405   * for (B b0 : lists.get(0)) {
406   *   for (B b1 : lists.get(1)) {
407   *     ...
408   *     ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...);
409   *     // operate on tuple
410   *   }
411   * }
412   * }</pre>
413   *
414   * <p>Note that if any input list is empty, the Cartesian product will also be empty. If no lists
415   * at all are provided (an empty list), the resulting Cartesian product has one element, an empty
416   * list (counter-intuitive, but mathematically consistent).
417   *
418   * <p><i>Performance notes:</i> while the cartesian product of lists of size {@code m, n, p} is a
419   * list of size {@code m x n x p}, its actual memory consumption is much smaller. When the
420   * cartesian product is constructed, the input lists are merely copied. Only as the resulting list
421   * is iterated are the individual lists created, and these are not retained after iteration.
422   *
423   * @param lists the lists to choose elements from, in the order that the elements chosen from
424   *     those lists should appear in the resulting lists
425   * @param <B> any common base class shared by all axes (often just {@link Object})
426   * @return the Cartesian product, as an immutable list containing immutable lists
427   * @throws IllegalArgumentException if the size of the cartesian product would be greater than
428   *     {@link Integer#MAX_VALUE}
429   * @throws NullPointerException if {@code lists}, any one of the {@code lists}, or any element of
430   *     a provided list is null
431   * @since 19.0
432   */
433  public static <B> List<List<B>> cartesianProduct(List<? extends List<? extends B>> lists) {
434    return CartesianList.create(lists);
435  }
436
437  /**
438   * Returns every possible list that can be formed by choosing one element from each of the given
439   * lists in order; the "n-ary <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian
440   * product</a>" of the lists. For example:
441   *
442   * <pre>{@code
443   * Lists.cartesianProduct(ImmutableList.of(
444   *     ImmutableList.of(1, 2),
445   *     ImmutableList.of("A", "B", "C")))
446   * }</pre>
447   *
448   * <p>returns a list containing six lists in the following order:
449   *
450   * <ul>
451   *   <li>{@code ImmutableList.of(1, "A")}
452   *   <li>{@code ImmutableList.of(1, "B")}
453   *   <li>{@code ImmutableList.of(1, "C")}
454   *   <li>{@code ImmutableList.of(2, "A")}
455   *   <li>{@code ImmutableList.of(2, "B")}
456   *   <li>{@code ImmutableList.of(2, "C")}
457   * </ul>
458   *
459   * <p>The result is guaranteed to be in the "traditional", lexicographical order for Cartesian
460   * products that you would get from nesting for loops:
461   *
462   * <pre>{@code
463   * for (B b0 : lists.get(0)) {
464   *   for (B b1 : lists.get(1)) {
465   *     ...
466   *     ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...);
467   *     // operate on tuple
468   *   }
469   * }
470   * }</pre>
471   *
472   * <p>Note that if any input list is empty, the Cartesian product will also be empty. If no lists
473   * at all are provided (an empty list), the resulting Cartesian product has one element, an empty
474   * list (counter-intuitive, but mathematically consistent).
475   *
476   * <p><i>Performance notes:</i> while the cartesian product of lists of size {@code m, n, p} is a
477   * list of size {@code m x n x p}, its actual memory consumption is much smaller. When the
478   * cartesian product is constructed, the input lists are merely copied. Only as the resulting list
479   * is iterated are the individual lists created, and these are not retained after iteration.
480   *
481   * @param lists the lists to choose elements from, in the order that the elements chosen from
482   *     those lists should appear in the resulting lists
483   * @param <B> any common base class shared by all axes (often just {@link Object})
484   * @return the Cartesian product, as an immutable list containing immutable lists
485   * @throws IllegalArgumentException if the size of the cartesian product would be greater than
486   *     {@link Integer#MAX_VALUE}
487   * @throws NullPointerException if {@code lists}, any one of the {@code lists}, or any element of
488   *     a provided list is null
489   * @since 19.0
490   */
491  @SafeVarargs
492  public static <B> List<List<B>> cartesianProduct(List<? extends B>... lists) {
493    return cartesianProduct(Arrays.asList(lists));
494  }
495
496  /**
497   * Returns a list that applies {@code function} to each element of {@code fromList}. The returned
498   * list is a transformed view of {@code fromList}; changes to {@code fromList} will be reflected
499   * in the returned list and vice versa.
500   *
501   * <p>Since functions are not reversible, the transform is one-way and new items cannot be stored
502   * in the returned list. The {@code add}, {@code addAll} and {@code set} methods are unsupported
503   * in the returned list.
504   *
505   * <p>The function is applied lazily, invoked when needed. This is necessary for the returned list
506   * to be a view, but it means that the function will be applied many times for bulk operations
507   * like {@link List#contains} and {@link List#hashCode}. For this to perform well, {@code
508   * function} should be fast. To avoid lazy evaluation when the returned list doesn't need to be a
509   * view, copy the returned list into a new list of your choosing.
510   *
511   * <p>If {@code fromList} implements {@link RandomAccess}, so will the returned list. The returned
512   * list is threadsafe if the supplied list and function are.
513   *
514   * <p>If only a {@code Collection} or {@code Iterable} input is available, use {@link
515   * Collections2#transform} or {@link Iterables#transform}.
516   *
517   * <p><b>Note:</b> serializing the returned list is implemented by serializing {@code fromList},
518   * its contents, and {@code function} -- <i>not</i> by serializing the transformed values. This
519   * can lead to surprising behavior, so serializing the returned list is <b>not recommended</b>.
520   * Instead, copy the list using {@link ImmutableList#copyOf(Collection)} (for example), then
521   * serialize the copy. Other methods similar to this do not implement serialization at all for
522   * this reason.
523   *
524   * <p><b>Java 8 users:</b> many use cases for this method are better addressed by {@link
525   * java.util.stream.Stream#map}. This method is not being deprecated, but we gently encourage you
526   * to migrate to streams.
527   */
528  public static <F extends @Nullable Object, T extends @Nullable Object> List<T> transform(
529      List<F> fromList, Function<? super F, ? extends T> function) {
530    return (fromList instanceof RandomAccess)
531        ? new TransformingRandomAccessList<>(fromList, function)
532        : new TransformingSequentialList<>(fromList, function);
533  }
534
535  /**
536   * Implementation of a sequential transforming list.
537   *
538   * @see Lists#transform
539   */
540  private static class TransformingSequentialList<
541          F extends @Nullable Object, T extends @Nullable Object>
542      extends AbstractSequentialList<T> implements Serializable {
543    final List<F> fromList;
544    final Function<? super F, ? extends T> function;
545
546    TransformingSequentialList(List<F> fromList, Function<? super F, ? extends T> function) {
547      this.fromList = checkNotNull(fromList);
548      this.function = checkNotNull(function);
549    }
550
551    /**
552     * The default implementation inherited is based on iteration and removal of each element which
553     * can be overkill. That's why we forward this call directly to the backing list.
554     */
555    @Override
556    public void clear() {
557      fromList.clear();
558    }
559
560    @Override
561    public int size() {
562      return fromList.size();
563    }
564
565    @Override
566    public ListIterator<T> listIterator(final int index) {
567      return new TransformedListIterator<F, T>(fromList.listIterator(index)) {
568        @Override
569        @ParametricNullness
570        T transform(@ParametricNullness F from) {
571          return function.apply(from);
572        }
573      };
574    }
575
576    private static final long serialVersionUID = 0;
577  }
578
579  /**
580   * Implementation of a transforming random access list. We try to make as many of these methods
581   * pass-through to the source list as possible so that the performance characteristics of the
582   * source list and transformed list are similar.
583   *
584   * @see Lists#transform
585   */
586  private static class TransformingRandomAccessList<
587          F extends @Nullable Object, T extends @Nullable Object>
588      extends AbstractList<T> implements RandomAccess, Serializable {
589    final List<F> fromList;
590    final Function<? super F, ? extends T> function;
591
592    TransformingRandomAccessList(List<F> fromList, Function<? super F, ? extends T> function) {
593      this.fromList = checkNotNull(fromList);
594      this.function = checkNotNull(function);
595    }
596
597    @Override
598    public void clear() {
599      fromList.clear();
600    }
601
602    @Override
603    @ParametricNullness
604    public T get(int index) {
605      return function.apply(fromList.get(index));
606    }
607
608    @Override
609    public Iterator<T> iterator() {
610      return listIterator();
611    }
612
613    @Override
614    public ListIterator<T> listIterator(int index) {
615      return new TransformedListIterator<F, T>(fromList.listIterator(index)) {
616        @Override
617        T transform(F from) {
618          return function.apply(from);
619        }
620      };
621    }
622
623    @Override
624    public boolean isEmpty() {
625      return fromList.isEmpty();
626    }
627
628    @Override
629    public T remove(int index) {
630      return function.apply(fromList.remove(index));
631    }
632
633    @Override
634    public int size() {
635      return fromList.size();
636    }
637
638    private static final long serialVersionUID = 0;
639  }
640
641  /**
642   * Returns consecutive {@linkplain List#subList(int, int) sublists} of a list, each of the same
643   * size (the final list may be smaller). For example, partitioning a list containing {@code [a, b,
644   * c, d, e]} with a partition size of 3 yields {@code [[a, b, c], [d, e]]} -- an outer list
645   * containing two inner lists of three and two elements, all in the original order.
646   *
647   * <p>The outer list is unmodifiable, but reflects the latest state of the source list. The inner
648   * lists are sublist views of the original list, produced on demand using {@link List#subList(int,
649   * int)}, and are subject to all the usual caveats about modification as explained in that API.
650   *
651   * @param list the list to return consecutive sublists of
652   * @param size the desired size of each sublist (the last may be smaller)
653   * @return a list of consecutive sublists
654   * @throws IllegalArgumentException if {@code partitionSize} is nonpositive
655   */
656  public static <T extends @Nullable Object> List<List<T>> partition(List<T> list, int size) {
657    checkNotNull(list);
658    checkArgument(size > 0);
659    return (list instanceof RandomAccess)
660        ? new RandomAccessPartition<>(list, size)
661        : new Partition<>(list, size);
662  }
663
664  private static class Partition<T extends @Nullable Object> extends AbstractList<List<T>> {
665    final List<T> list;
666    final int size;
667
668    Partition(List<T> list, int size) {
669      this.list = list;
670      this.size = size;
671    }
672
673    @Override
674    public List<T> get(int index) {
675      checkElementIndex(index, size());
676      int start = index * size;
677      int end = Math.min(start + size, list.size());
678      return list.subList(start, end);
679    }
680
681    @Override
682    public int size() {
683      return IntMath.divide(list.size(), size, RoundingMode.CEILING);
684    }
685
686    @Override
687    public boolean isEmpty() {
688      return list.isEmpty();
689    }
690  }
691
692  private static class RandomAccessPartition<T extends @Nullable Object> extends Partition<T>
693      implements RandomAccess {
694    RandomAccessPartition(List<T> list, int size) {
695      super(list, size);
696    }
697  }
698
699  /**
700   * Returns a view of the specified string as an immutable list of {@code Character} values.
701   *
702   * @since 7.0
703   */
704  public static ImmutableList<Character> charactersOf(String string) {
705    return new StringAsImmutableList(checkNotNull(string));
706  }
707
708  /**
709   * Returns a view of the specified {@code CharSequence} as a {@code List<Character>}, viewing
710   * {@code sequence} as a sequence of Unicode code units. The view does not support any
711   * modification operations, but reflects any changes to the underlying character sequence.
712   *
713   * @param sequence the character sequence to view as a {@code List} of characters
714   * @return an {@code List<Character>} view of the character sequence
715   * @since 7.0
716   */
717  @Beta
718  public static List<Character> charactersOf(CharSequence sequence) {
719    return new CharSequenceAsList(checkNotNull(sequence));
720  }
721
722  @SuppressWarnings("serial") // serialized using ImmutableList serialization
723  private static final class StringAsImmutableList extends ImmutableList<Character> {
724
725    private final String string;
726
727    StringAsImmutableList(String string) {
728      this.string = string;
729    }
730
731    @Override
732    public int indexOf(@CheckForNull Object object) {
733      return (object instanceof Character) ? string.indexOf((Character) object) : -1;
734    }
735
736    @Override
737    public int lastIndexOf(@CheckForNull Object object) {
738      return (object instanceof Character) ? string.lastIndexOf((Character) object) : -1;
739    }
740
741    @Override
742    public ImmutableList<Character> subList(int fromIndex, int toIndex) {
743      checkPositionIndexes(fromIndex, toIndex, size()); // for GWT
744      return charactersOf(string.substring(fromIndex, toIndex));
745    }
746
747    @Override
748    boolean isPartialView() {
749      return false;
750    }
751
752    @Override
753    public Character get(int index) {
754      checkElementIndex(index, size()); // for GWT
755      return string.charAt(index);
756    }
757
758    @Override
759    public int size() {
760      return string.length();
761    }
762  }
763
764  private static final class CharSequenceAsList extends AbstractList<Character> {
765    private final CharSequence sequence;
766
767    CharSequenceAsList(CharSequence sequence) {
768      this.sequence = sequence;
769    }
770
771    @Override
772    public Character get(int index) {
773      checkElementIndex(index, size()); // for GWT
774      return sequence.charAt(index);
775    }
776
777    @Override
778    public int size() {
779      return sequence.length();
780    }
781  }
782
783  /**
784   * Returns a reversed view of the specified list. For example, {@code
785   * Lists.reverse(Arrays.asList(1, 2, 3))} returns a list containing {@code 3, 2, 1}. The returned
786   * list is backed by this list, so changes in the returned list are reflected in this list, and
787   * vice-versa. The returned list supports all of the optional list operations supported by this
788   * list.
789   *
790   * <p>The returned list is random-access if the specified list is random access.
791   *
792   * @since 7.0
793   */
794  public static <T extends @Nullable Object> List<T> reverse(List<T> list) {
795    if (list instanceof ImmutableList) {
796      // Avoid nullness warnings.
797      List<?> reversed = ((ImmutableList<?>) list).reverse();
798      @SuppressWarnings("unchecked")
799      List<T> result = (List<T>) reversed;
800      return result;
801    } else if (list instanceof ReverseList) {
802      return ((ReverseList<T>) list).getForwardList();
803    } else if (list instanceof RandomAccess) {
804      return new RandomAccessReverseList<>(list);
805    } else {
806      return new ReverseList<>(list);
807    }
808  }
809
810  private static class ReverseList<T extends @Nullable Object> extends AbstractList<T> {
811    private final List<T> forwardList;
812
813    ReverseList(List<T> forwardList) {
814      this.forwardList = checkNotNull(forwardList);
815    }
816
817    List<T> getForwardList() {
818      return forwardList;
819    }
820
821    private int reverseIndex(int index) {
822      int size = size();
823      checkElementIndex(index, size);
824      return (size - 1) - index;
825    }
826
827    private int reversePosition(int index) {
828      int size = size();
829      checkPositionIndex(index, size);
830      return size - index;
831    }
832
833    @Override
834    public void add(int index, @ParametricNullness T element) {
835      forwardList.add(reversePosition(index), element);
836    }
837
838    @Override
839    public void clear() {
840      forwardList.clear();
841    }
842
843    @Override
844    @ParametricNullness
845    public T remove(int index) {
846      return forwardList.remove(reverseIndex(index));
847    }
848
849    @Override
850    protected void removeRange(int fromIndex, int toIndex) {
851      subList(fromIndex, toIndex).clear();
852    }
853
854    @Override
855    @ParametricNullness
856    public T set(int index, @ParametricNullness T element) {
857      return forwardList.set(reverseIndex(index), element);
858    }
859
860    @Override
861    @ParametricNullness
862    public T get(int index) {
863      return forwardList.get(reverseIndex(index));
864    }
865
866    @Override
867    public int size() {
868      return forwardList.size();
869    }
870
871    @Override
872    public List<T> subList(int fromIndex, int toIndex) {
873      checkPositionIndexes(fromIndex, toIndex, size());
874      return reverse(forwardList.subList(reversePosition(toIndex), reversePosition(fromIndex)));
875    }
876
877    @Override
878    public Iterator<T> iterator() {
879      return listIterator();
880    }
881
882    @Override
883    public ListIterator<T> listIterator(int index) {
884      int start = reversePosition(index);
885      final ListIterator<T> forwardIterator = forwardList.listIterator(start);
886      return new ListIterator<T>() {
887
888        boolean canRemoveOrSet;
889
890        @Override
891        public void add(@ParametricNullness T e) {
892          forwardIterator.add(e);
893          forwardIterator.previous();
894          canRemoveOrSet = false;
895        }
896
897        @Override
898        public boolean hasNext() {
899          return forwardIterator.hasPrevious();
900        }
901
902        @Override
903        public boolean hasPrevious() {
904          return forwardIterator.hasNext();
905        }
906
907        @Override
908        @ParametricNullness
909        public T next() {
910          if (!hasNext()) {
911            throw new NoSuchElementException();
912          }
913          canRemoveOrSet = true;
914          return forwardIterator.previous();
915        }
916
917        @Override
918        public int nextIndex() {
919          return reversePosition(forwardIterator.nextIndex());
920        }
921
922        @Override
923        @ParametricNullness
924        public T previous() {
925          if (!hasPrevious()) {
926            throw new NoSuchElementException();
927          }
928          canRemoveOrSet = true;
929          return forwardIterator.next();
930        }
931
932        @Override
933        public int previousIndex() {
934          return nextIndex() - 1;
935        }
936
937        @Override
938        public void remove() {
939          checkRemove(canRemoveOrSet);
940          forwardIterator.remove();
941          canRemoveOrSet = false;
942        }
943
944        @Override
945        public void set(@ParametricNullness T e) {
946          checkState(canRemoveOrSet);
947          forwardIterator.set(e);
948        }
949      };
950    }
951  }
952
953  private static class RandomAccessReverseList<T extends @Nullable Object> extends ReverseList<T>
954      implements RandomAccess {
955    RandomAccessReverseList(List<T> forwardList) {
956      super(forwardList);
957    }
958  }
959
960  /** An implementation of {@link List#hashCode()}. */
961  static int hashCodeImpl(List<?> list) {
962    // TODO(lowasser): worth optimizing for RandomAccess?
963    int hashCode = 1;
964    for (Object o : list) {
965      hashCode = 31 * hashCode + (o == null ? 0 : o.hashCode());
966
967      hashCode = ~~hashCode;
968      // needed to deal with GWT integer overflow
969    }
970    return hashCode;
971  }
972
973  /** An implementation of {@link List#equals(Object)}. */
974  static boolean equalsImpl(List<?> thisList, @CheckForNull Object other) {
975    if (other == checkNotNull(thisList)) {
976      return true;
977    }
978    if (!(other instanceof List)) {
979      return false;
980    }
981    List<?> otherList = (List<?>) other;
982    int size = thisList.size();
983    if (size != otherList.size()) {
984      return false;
985    }
986    if (thisList instanceof RandomAccess && otherList instanceof RandomAccess) {
987      // avoid allocation and use the faster loop
988      for (int i = 0; i < size; i++) {
989        if (!Objects.equal(thisList.get(i), otherList.get(i))) {
990          return false;
991        }
992      }
993      return true;
994    } else {
995      return Iterators.elementsEqual(thisList.iterator(), otherList.iterator());
996    }
997  }
998
999  /** An implementation of {@link List#addAll(int, Collection)}. */
1000  static <E extends @Nullable Object> boolean addAllImpl(
1001      List<E> list, int index, Iterable<? extends E> elements) {
1002    boolean changed = false;
1003    ListIterator<E> listIterator = list.listIterator(index);
1004    for (E e : elements) {
1005      listIterator.add(e);
1006      changed = true;
1007    }
1008    return changed;
1009  }
1010
1011  /** An implementation of {@link List#indexOf(Object)}. */
1012  static int indexOfImpl(List<?> list, @CheckForNull Object element) {
1013    if (list instanceof RandomAccess) {
1014      return indexOfRandomAccess(list, element);
1015    } else {
1016      ListIterator<?> listIterator = list.listIterator();
1017      while (listIterator.hasNext()) {
1018        if (Objects.equal(element, listIterator.next())) {
1019          return listIterator.previousIndex();
1020        }
1021      }
1022      return -1;
1023    }
1024  }
1025
1026  private static int indexOfRandomAccess(List<?> list, @CheckForNull Object element) {
1027    int size = list.size();
1028    if (element == null) {
1029      for (int i = 0; i < size; i++) {
1030        if (list.get(i) == null) {
1031          return i;
1032        }
1033      }
1034    } else {
1035      for (int i = 0; i < size; i++) {
1036        if (element.equals(list.get(i))) {
1037          return i;
1038        }
1039      }
1040    }
1041    return -1;
1042  }
1043
1044  /** An implementation of {@link List#lastIndexOf(Object)}. */
1045  static int lastIndexOfImpl(List<?> list, @CheckForNull Object element) {
1046    if (list instanceof RandomAccess) {
1047      return lastIndexOfRandomAccess(list, element);
1048    } else {
1049      ListIterator<?> listIterator = list.listIterator(list.size());
1050      while (listIterator.hasPrevious()) {
1051        if (Objects.equal(element, listIterator.previous())) {
1052          return listIterator.nextIndex();
1053        }
1054      }
1055      return -1;
1056    }
1057  }
1058
1059  private static int lastIndexOfRandomAccess(List<?> list, @CheckForNull Object element) {
1060    if (element == null) {
1061      for (int i = list.size() - 1; i >= 0; i--) {
1062        if (list.get(i) == null) {
1063          return i;
1064        }
1065      }
1066    } else {
1067      for (int i = list.size() - 1; i >= 0; i--) {
1068        if (element.equals(list.get(i))) {
1069          return i;
1070        }
1071      }
1072    }
1073    return -1;
1074  }
1075
1076  /** Returns an implementation of {@link List#listIterator(int)}. */
1077  static <E extends @Nullable Object> ListIterator<E> listIteratorImpl(List<E> list, int index) {
1078    return new AbstractListWrapper<>(list).listIterator(index);
1079  }
1080
1081  /** An implementation of {@link List#subList(int, int)}. */
1082  static <E extends @Nullable Object> List<E> subListImpl(
1083      final List<E> list, int fromIndex, int toIndex) {
1084    List<E> wrapper;
1085    if (list instanceof RandomAccess) {
1086      wrapper =
1087          new RandomAccessListWrapper<E>(list) {
1088            @Override
1089            public ListIterator<E> listIterator(int index) {
1090              return backingList.listIterator(index);
1091            }
1092
1093            private static final long serialVersionUID = 0;
1094          };
1095    } else {
1096      wrapper =
1097          new AbstractListWrapper<E>(list) {
1098            @Override
1099            public ListIterator<E> listIterator(int index) {
1100              return backingList.listIterator(index);
1101            }
1102
1103            private static final long serialVersionUID = 0;
1104          };
1105    }
1106    return wrapper.subList(fromIndex, toIndex);
1107  }
1108
1109  private static class AbstractListWrapper<E extends @Nullable Object> extends AbstractList<E> {
1110    final List<E> backingList;
1111
1112    AbstractListWrapper(List<E> backingList) {
1113      this.backingList = checkNotNull(backingList);
1114    }
1115
1116    @Override
1117    public void add(int index, @ParametricNullness E element) {
1118      backingList.add(index, element);
1119    }
1120
1121    @Override
1122    public boolean addAll(int index, Collection<? extends E> c) {
1123      return backingList.addAll(index, c);
1124    }
1125
1126    @Override
1127    @ParametricNullness
1128    public E get(int index) {
1129      return backingList.get(index);
1130    }
1131
1132    @Override
1133    @ParametricNullness
1134    public E remove(int index) {
1135      return backingList.remove(index);
1136    }
1137
1138    @Override
1139    @ParametricNullness
1140    public E set(int index, @ParametricNullness E element) {
1141      return backingList.set(index, element);
1142    }
1143
1144    @Override
1145    public boolean contains(@CheckForNull Object o) {
1146      return backingList.contains(o);
1147    }
1148
1149    @Override
1150    public int size() {
1151      return backingList.size();
1152    }
1153  }
1154
1155  private static class RandomAccessListWrapper<E extends @Nullable Object>
1156      extends AbstractListWrapper<E> implements RandomAccess {
1157    RandomAccessListWrapper(List<E> backingList) {
1158      super(backingList);
1159    }
1160  }
1161
1162  /** Used to avoid http://bugs.sun.com/view_bug.do?bug_id=6558557 */
1163  static <T extends @Nullable Object> List<T> cast(Iterable<T> iterable) {
1164    return (List<T>) iterable;
1165  }
1166}