001/* 002 * Copyright (C) 2009 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 005 * in compliance with the License. You may obtain a copy of the License at 006 * 007 * http://www.apache.org/licenses/LICENSE-2.0 008 * 009 * Unless required by applicable law or agreed to in writing, software distributed under the License 010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express 011 * or implied. See the License for the specific language governing permissions and limitations under 012 * the License. 013 */ 014 015package com.google.common.cache; 016 017import static com.google.common.base.Preconditions.checkArgument; 018import static com.google.common.base.Preconditions.checkNotNull; 019import static com.google.common.base.Preconditions.checkState; 020 021import com.google.common.annotations.GwtCompatible; 022import com.google.common.annotations.GwtIncompatible; 023import com.google.common.base.Ascii; 024import com.google.common.base.Equivalence; 025import com.google.common.base.MoreObjects; 026import com.google.common.base.Supplier; 027import com.google.common.base.Suppliers; 028import com.google.common.base.Ticker; 029import com.google.common.cache.AbstractCache.SimpleStatsCounter; 030import com.google.common.cache.AbstractCache.StatsCounter; 031import com.google.common.cache.LocalCache.Strength; 032import com.google.errorprone.annotations.CheckReturnValue; 033import java.lang.ref.SoftReference; 034import java.lang.ref.WeakReference; 035import java.util.ConcurrentModificationException; 036import java.util.IdentityHashMap; 037import java.util.Map; 038import java.util.concurrent.ConcurrentHashMap; 039import java.util.concurrent.TimeUnit; 040import java.util.logging.Level; 041import java.util.logging.Logger; 042import org.checkerframework.checker.nullness.qual.Nullable; 043 044/** 045 * A builder of {@link LoadingCache} and {@link Cache} instances. 046 * 047 * <h2>Prefer <a href="https://github.com/ben-manes/caffeine/wiki">Caffeine</a> over Guava's caching 048 * API</h2> 049 * 050 * <p>The successor to Guava's caching API is <a 051 * href="https://github.com/ben-manes/caffeine/wiki">Caffeine</a>. Its API is designed to make it a 052 * nearly drop-in replacement -- though it requires Java 8 APIs, is not available for Android or 053 * GWT/j2cl, and may have <a href="https://github.com/ben-manes/caffeine/wiki/Guava">different 054 * (usually better) behavior</a> when multiple threads attempt concurrent mutations. Its equivalent 055 * to {@code CacheBuilder} is its <a 056 * href="https://www.javadoc.io/doc/com.github.ben-manes.caffeine/caffeine/latest/com.github.benmanes.caffeine/com/github/benmanes/caffeine/cache/Caffeine.html">{@code 057 * Caffeine}</a> class. Caffeine offers better performance, more features (including asynchronous 058 * loading), and fewer <a 059 * href="https://github.com/google/guava/issues?q=is%3Aopen+is%3Aissue+label%3Apackage%3Dcache+label%3Atype%3Ddefect">bugs</a>. 060 * 061 * <p>Caffeine defines its own interfaces (<a 062 * href="https://www.javadoc.io/doc/com.github.ben-manes.caffeine/caffeine/latest/com.github.benmanes.caffeine/com/github/benmanes/caffeine/cache/Cache.html">{@code 063 * Cache}</a>, <a 064 * href="https://www.javadoc.io/doc/com.github.ben-manes.caffeine/caffeine/latest/com.github.benmanes.caffeine/com/github/benmanes/caffeine/cache/LoadingCache.html">{@code 065 * LoadingCache}</a>, <a 066 * href="https://www.javadoc.io/doc/com.github.ben-manes.caffeine/caffeine/latest/com.github.benmanes.caffeine/com/github/benmanes/caffeine/cache/CacheLoader.html">{@code 067 * CacheLoader}</a>, etc.), so you can use Caffeine without needing to use any Guava types. 068 * Caffeine's types are better than Guava's, especially for <a 069 * href="https://www.javadoc.io/doc/com.github.ben-manes.caffeine/caffeine/latest/com.github.benmanes.caffeine/com/github/benmanes/caffeine/cache/AsyncLoadingCache.html">their 070 * deep support for asynchronous operations</a>. But if you want to migrate to Caffeine with minimal 071 * code changes, you can use <a 072 * href="https://www.javadoc.io/doc/com.github.ben-manes.caffeine/guava/latest/com.github.benmanes.caffeine.guava/com/github/benmanes/caffeine/guava/CaffeinatedGuava.html">its 073 * {@code CaffeinatedGuava} adapter class</a>, which lets you build a Guava {@code Cache} or a Guava 074 * {@code LoadingCache} backed by a Guava {@code CacheLoader}. 075 * 076 * <p>Caffeine's API for asynchronous operations uses {@code CompletableFuture}: <a 077 * href="https://www.javadoc.io/doc/com.github.ben-manes.caffeine/caffeine/latest/com.github.benmanes.caffeine/com/github/benmanes/caffeine/cache/AsyncLoadingCache.html#get(K)">{@code 078 * AsyncLoadingCache.get}</a> returns a {@code CompletableFuture}, and implementations of <a 079 * href="https://www.javadoc.io/doc/com.github.ben-manes.caffeine/caffeine/latest/com.github.benmanes.caffeine/com/github/benmanes/caffeine/cache/AsyncCacheLoader.html#asyncLoad(K,java.util.concurrent.Executor)">{@code 080 * AsyncCacheLoader.asyncLoad}</a> must return a {@code CompletableFuture}. Users of Guava's {@link 081 * com.google.common.util.concurrent.ListenableFuture} can adapt between the two {@code Future} 082 * types by using <a href="https://github.com/lukas-krecan/future-converter#java8-guava">{@code 083 * net.javacrumbs.futureconverter.java8guava.FutureConverter}</a>. 084 * 085 * <h2>More on {@code CacheBuilder}</h2> 086 * 087 * {@code CacheBuilder} builds caches with any combination of the following features: 088 * 089 * <ul> 090 * <li>automatic loading of entries into the cache 091 * <li>least-recently-used eviction when a maximum size is exceeded (note that the cache is 092 * divided into segments, each of which does LRU internally) 093 * <li>time-based expiration of entries, measured since last access or last write 094 * <li>keys automatically wrapped in {@code WeakReference} 095 * <li>values automatically wrapped in {@code WeakReference} or {@code SoftReference} 096 * <li>notification of evicted (or otherwise removed) entries 097 * <li>accumulation of cache access statistics 098 * </ul> 099 * 100 * <p>These features are all optional; caches can be created using all or none of them. By default 101 * cache instances created by {@code CacheBuilder} will not perform any type of eviction. 102 * 103 * <p>Usage example: 104 * 105 * <pre>{@code 106 * LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder() 107 * .maximumSize(10000) 108 * .expireAfterWrite(10, TimeUnit.MINUTES) 109 * .removalListener(MY_LISTENER) 110 * .build( 111 * new CacheLoader<Key, Graph>() { 112 * public Graph load(Key key) throws AnyException { 113 * return createExpensiveGraph(key); 114 * } 115 * }); 116 * }</pre> 117 * 118 * <p>Or equivalently, 119 * 120 * <pre>{@code 121 * // In real life this would come from a command-line flag or config file 122 * String spec = "maximumSize=10000,expireAfterWrite=10m"; 123 * 124 * LoadingCache<Key, Graph> graphs = CacheBuilder.from(spec) 125 * .removalListener(MY_LISTENER) 126 * .build( 127 * new CacheLoader<Key, Graph>() { 128 * public Graph load(Key key) throws AnyException { 129 * return createExpensiveGraph(key); 130 * } 131 * }); 132 * }</pre> 133 * 134 * <p>The returned cache is implemented as a hash table with similar performance characteristics to 135 * {@link ConcurrentHashMap}. It implements all optional operations of the {@link LoadingCache} and 136 * {@link Cache} interfaces. The {@code asMap} view (and its collection views) have <i>weakly 137 * consistent iterators</i>. This means that they are safe for concurrent use, but if other threads 138 * modify the cache after the iterator is created, it is undefined which of these changes, if any, 139 * are reflected in that iterator. These iterators never throw {@link 140 * ConcurrentModificationException}. 141 * 142 * <p><b>Note:</b> by default, the returned cache uses equality comparisons (the {@link 143 * Object#equals equals} method) to determine equality for keys or values. However, if {@link 144 * #weakKeys} was specified, the cache uses identity ({@code ==}) comparisons instead for keys. 145 * Likewise, if {@link #weakValues} or {@link #softValues} was specified, the cache uses identity 146 * comparisons for values. 147 * 148 * <p>Entries are automatically evicted from the cache when any of {@linkplain #maximumSize(long) 149 * maximumSize}, {@linkplain #maximumWeight(long) maximumWeight}, {@linkplain #expireAfterWrite 150 * expireAfterWrite}, {@linkplain #expireAfterAccess expireAfterAccess}, {@linkplain #weakKeys 151 * weakKeys}, {@linkplain #weakValues weakValues}, or {@linkplain #softValues softValues} are 152 * requested. 153 * 154 * <p>If {@linkplain #maximumSize(long) maximumSize} or {@linkplain #maximumWeight(long) 155 * maximumWeight} is requested entries may be evicted on each cache modification. 156 * 157 * <p>If {@linkplain #expireAfterWrite expireAfterWrite} or {@linkplain #expireAfterAccess 158 * expireAfterAccess} is requested entries may be evicted on each cache modification, on occasional 159 * cache accesses, or on calls to {@link Cache#cleanUp}. Expired entries may be counted by {@link 160 * Cache#size}, but will never be visible to read or write operations. 161 * 162 * <p>If {@linkplain #weakKeys weakKeys}, {@linkplain #weakValues weakValues}, or {@linkplain 163 * #softValues softValues} are requested, it is possible for a key or value present in the cache to 164 * be reclaimed by the garbage collector. Entries with reclaimed keys or values may be removed from 165 * the cache on each cache modification, on occasional cache accesses, or on calls to {@link 166 * Cache#cleanUp}; such entries may be counted in {@link Cache#size}, but will never be visible to 167 * read or write operations. 168 * 169 * <p>Certain cache configurations will result in the accrual of periodic maintenance tasks which 170 * will be performed during write operations, or during occasional read operations in the absence of 171 * writes. The {@link Cache#cleanUp} method of the returned cache will also perform maintenance, but 172 * calling it should not be necessary with a high throughput cache. Only caches built with 173 * {@linkplain #removalListener removalListener}, {@linkplain #expireAfterWrite expireAfterWrite}, 174 * {@linkplain #expireAfterAccess expireAfterAccess}, {@linkplain #weakKeys weakKeys}, {@linkplain 175 * #weakValues weakValues}, or {@linkplain #softValues softValues} perform periodic maintenance. 176 * 177 * <p>The caches produced by {@code CacheBuilder} are serializable, and the deserialized caches 178 * retain all the configuration properties of the original cache. Note that the serialized form does 179 * <i>not</i> include cache contents, but only configuration. 180 * 181 * <p>See the Guava User Guide article on <a 182 * href="https://github.com/google/guava/wiki/CachesExplained">caching</a> for a higher-level 183 * explanation. 184 * 185 * @param <K> the most general key type this builder will be able to create caches for. This is 186 * normally {@code Object} unless it is constrained by using a method like {@code 187 * #removalListener}. Cache keys may not be null. 188 * @param <V> the most general value type this builder will be able to create caches for. This is 189 * normally {@code Object} unless it is constrained by using a method like {@code 190 * #removalListener}. Cache values may not be null. 191 * @author Charles Fry 192 * @author Kevin Bourrillion 193 * @since 10.0 194 */ 195@GwtCompatible(emulated = true) 196@ElementTypesAreNonnullByDefault 197public final class CacheBuilder<K, V> { 198 private static final int DEFAULT_INITIAL_CAPACITY = 16; 199 private static final int DEFAULT_CONCURRENCY_LEVEL = 4; 200 201 @SuppressWarnings("GoodTime") // should be a java.time.Duration 202 private static final int DEFAULT_EXPIRATION_NANOS = 0; 203 204 @SuppressWarnings("GoodTime") // should be a java.time.Duration 205 private static final int DEFAULT_REFRESH_NANOS = 0; 206 207 static final Supplier<? extends StatsCounter> NULL_STATS_COUNTER = 208 Suppliers.ofInstance( 209 new StatsCounter() { 210 @Override 211 public void recordHits(int count) {} 212 213 @Override 214 public void recordMisses(int count) {} 215 216 @SuppressWarnings("GoodTime") // b/122668874 217 @Override 218 public void recordLoadSuccess(long loadTime) {} 219 220 @SuppressWarnings("GoodTime") // b/122668874 221 @Override 222 public void recordLoadException(long loadTime) {} 223 224 @Override 225 public void recordEviction() {} 226 227 @Override 228 public CacheStats snapshot() { 229 return EMPTY_STATS; 230 } 231 }); 232 static final CacheStats EMPTY_STATS = new CacheStats(0, 0, 0, 0, 0, 0); 233 234 static final Supplier<StatsCounter> CACHE_STATS_COUNTER = 235 new Supplier<StatsCounter>() { 236 @Override 237 public StatsCounter get() { 238 return new SimpleStatsCounter(); 239 } 240 }; 241 242 enum NullListener implements RemovalListener<Object, Object> { 243 INSTANCE; 244 245 @Override 246 public void onRemoval(RemovalNotification<Object, Object> notification) {} 247 } 248 249 enum OneWeigher implements Weigher<Object, Object> { 250 INSTANCE; 251 252 @Override 253 public int weigh(Object key, Object value) { 254 return 1; 255 } 256 } 257 258 static final Ticker NULL_TICKER = 259 new Ticker() { 260 @Override 261 public long read() { 262 return 0; 263 } 264 }; 265 266 private static final Logger logger = Logger.getLogger(CacheBuilder.class.getName()); 267 268 static final int UNSET_INT = -1; 269 270 boolean strictParsing = true; 271 272 int initialCapacity = UNSET_INT; 273 int concurrencyLevel = UNSET_INT; 274 long maximumSize = UNSET_INT; 275 long maximumWeight = UNSET_INT; 276 @Nullable Weigher<? super K, ? super V> weigher; 277 278 @Nullable Strength keyStrength; 279 @Nullable Strength valueStrength; 280 281 @SuppressWarnings("GoodTime") // should be a java.time.Duration 282 long expireAfterWriteNanos = UNSET_INT; 283 284 @SuppressWarnings("GoodTime") // should be a java.time.Duration 285 long expireAfterAccessNanos = UNSET_INT; 286 287 @SuppressWarnings("GoodTime") // should be a java.time.Duration 288 long refreshNanos = UNSET_INT; 289 290 @Nullable Equivalence<Object> keyEquivalence; 291 @Nullable Equivalence<Object> valueEquivalence; 292 293 @Nullable RemovalListener<? super K, ? super V> removalListener; 294 @Nullable Ticker ticker; 295 296 Supplier<? extends StatsCounter> statsCounterSupplier = NULL_STATS_COUNTER; 297 298 private CacheBuilder() {} 299 300 /** 301 * Constructs a new {@code CacheBuilder} instance with default settings, including strong keys, 302 * strong values, and no automatic eviction of any kind. 303 * 304 * <p>Note that while this return type is {@code CacheBuilder<Object, Object>}, type parameters on 305 * the {@link #build} methods allow you to create a cache of any key and value type desired. 306 */ 307 @CheckReturnValue 308 public static CacheBuilder<Object, Object> newBuilder() { 309 return new CacheBuilder<>(); 310 } 311 312 /** 313 * Constructs a new {@code CacheBuilder} instance with the settings specified in {@code spec}. 314 * 315 * @since 12.0 316 */ 317 @GwtIncompatible // To be supported 318 @CheckReturnValue 319 public static CacheBuilder<Object, Object> from(CacheBuilderSpec spec) { 320 return spec.toCacheBuilder().lenientParsing(); 321 } 322 323 /** 324 * Constructs a new {@code CacheBuilder} instance with the settings specified in {@code spec}. 325 * This is especially useful for command-line configuration of a {@code CacheBuilder}. 326 * 327 * @param spec a String in the format specified by {@link CacheBuilderSpec} 328 * @since 12.0 329 */ 330 @GwtIncompatible // To be supported 331 @CheckReturnValue 332 public static CacheBuilder<Object, Object> from(String spec) { 333 return from(CacheBuilderSpec.parse(spec)); 334 } 335 336 /** 337 * Enables lenient parsing. Useful for tests and spec parsing. 338 * 339 * @return this {@code CacheBuilder} instance (for chaining) 340 */ 341 @GwtIncompatible // To be supported 342 CacheBuilder<K, V> lenientParsing() { 343 strictParsing = false; 344 return this; 345 } 346 347 /** 348 * Sets a custom {@code Equivalence} strategy for comparing keys. 349 * 350 * <p>By default, the cache uses {@link Equivalence#identity} to determine key equality when 351 * {@link #weakKeys} is specified, and {@link Equivalence#equals()} otherwise. 352 * 353 * @return this {@code CacheBuilder} instance (for chaining) 354 */ 355 @GwtIncompatible // To be supported 356 CacheBuilder<K, V> keyEquivalence(Equivalence<Object> equivalence) { 357 checkState(keyEquivalence == null, "key equivalence was already set to %s", keyEquivalence); 358 keyEquivalence = checkNotNull(equivalence); 359 return this; 360 } 361 362 Equivalence<Object> getKeyEquivalence() { 363 return MoreObjects.firstNonNull(keyEquivalence, getKeyStrength().defaultEquivalence()); 364 } 365 366 /** 367 * Sets a custom {@code Equivalence} strategy for comparing values. 368 * 369 * <p>By default, the cache uses {@link Equivalence#identity} to determine value equality when 370 * {@link #weakValues} or {@link #softValues} is specified, and {@link Equivalence#equals()} 371 * otherwise. 372 * 373 * @return this {@code CacheBuilder} instance (for chaining) 374 */ 375 @GwtIncompatible // To be supported 376 CacheBuilder<K, V> valueEquivalence(Equivalence<Object> equivalence) { 377 checkState( 378 valueEquivalence == null, "value equivalence was already set to %s", valueEquivalence); 379 this.valueEquivalence = checkNotNull(equivalence); 380 return this; 381 } 382 383 Equivalence<Object> getValueEquivalence() { 384 return MoreObjects.firstNonNull(valueEquivalence, getValueStrength().defaultEquivalence()); 385 } 386 387 /** 388 * Sets the minimum total size for the internal hash tables. For example, if the initial capacity 389 * is {@code 60}, and the concurrency level is {@code 8}, then eight segments are created, each 390 * having a hash table of size eight. Providing a large enough estimate at construction time 391 * avoids the need for expensive resizing operations later, but setting this value unnecessarily 392 * high wastes memory. 393 * 394 * @return this {@code CacheBuilder} instance (for chaining) 395 * @throws IllegalArgumentException if {@code initialCapacity} is negative 396 * @throws IllegalStateException if an initial capacity was already set 397 */ 398 public CacheBuilder<K, V> initialCapacity(int initialCapacity) { 399 checkState( 400 this.initialCapacity == UNSET_INT, 401 "initial capacity was already set to %s", 402 this.initialCapacity); 403 checkArgument(initialCapacity >= 0); 404 this.initialCapacity = initialCapacity; 405 return this; 406 } 407 408 int getInitialCapacity() { 409 return (initialCapacity == UNSET_INT) ? DEFAULT_INITIAL_CAPACITY : initialCapacity; 410 } 411 412 /** 413 * Guides the allowed concurrency among update operations. Used as a hint for internal sizing. The 414 * table is internally partitioned to try to permit the indicated number of concurrent updates 415 * without contention. Because assignment of entries to these partitions is not necessarily 416 * uniform, the actual concurrency observed may vary. Ideally, you should choose a value to 417 * accommodate as many threads as will ever concurrently modify the table. Using a significantly 418 * higher value than you need can waste space and time, and a significantly lower value can lead 419 * to thread contention. But overestimates and underestimates within an order of magnitude do not 420 * usually have much noticeable impact. A value of one permits only one thread to modify the cache 421 * at a time, but since read operations and cache loading computations can proceed concurrently, 422 * this still yields higher concurrency than full synchronization. 423 * 424 * <p>Defaults to 4. <b>Note:</b>The default may change in the future. If you care about this 425 * value, you should always choose it explicitly. 426 * 427 * <p>The current implementation uses the concurrency level to create a fixed number of hashtable 428 * segments, each governed by its own write lock. The segment lock is taken once for each explicit 429 * write, and twice for each cache loading computation (once prior to loading the new value, and 430 * once after loading completes). Much internal cache management is performed at the segment 431 * granularity. For example, access queues and write queues are kept per segment when they are 432 * required by the selected eviction algorithm. As such, when writing unit tests it is not 433 * uncommon to specify {@code concurrencyLevel(1)} in order to achieve more deterministic eviction 434 * behavior. 435 * 436 * <p>Note that future implementations may abandon segment locking in favor of more advanced 437 * concurrency controls. 438 * 439 * @return this {@code CacheBuilder} instance (for chaining) 440 * @throws IllegalArgumentException if {@code concurrencyLevel} is nonpositive 441 * @throws IllegalStateException if a concurrency level was already set 442 */ 443 public CacheBuilder<K, V> concurrencyLevel(int concurrencyLevel) { 444 checkState( 445 this.concurrencyLevel == UNSET_INT, 446 "concurrency level was already set to %s", 447 this.concurrencyLevel); 448 checkArgument(concurrencyLevel > 0); 449 this.concurrencyLevel = concurrencyLevel; 450 return this; 451 } 452 453 int getConcurrencyLevel() { 454 return (concurrencyLevel == UNSET_INT) ? DEFAULT_CONCURRENCY_LEVEL : concurrencyLevel; 455 } 456 457 /** 458 * Specifies the maximum number of entries the cache may contain. 459 * 460 * <p>Note that the cache <b>may evict an entry before this limit is exceeded</b>. For example, in 461 * the current implementation, when {@code concurrencyLevel} is greater than {@code 1}, each 462 * resulting segment inside the cache <i>independently</i> limits its own size to approximately 463 * {@code maximumSize / concurrencyLevel}. 464 * 465 * <p>When eviction is necessary, the cache evicts entries that are less likely to be used again. 466 * For example, the cache may evict an entry because it hasn't been used recently or very often. 467 * 468 * <p>If {@code maximumSize} is zero, elements will be evicted immediately after being loaded into 469 * cache. This can be useful in testing, or to disable caching temporarily. 470 * 471 * <p>This feature cannot be used in conjunction with {@link #maximumWeight}. 472 * 473 * @param maximumSize the maximum size of the cache 474 * @return this {@code CacheBuilder} instance (for chaining) 475 * @throws IllegalArgumentException if {@code maximumSize} is negative 476 * @throws IllegalStateException if a maximum size or weight was already set 477 */ 478 public CacheBuilder<K, V> maximumSize(long maximumSize) { 479 checkState( 480 this.maximumSize == UNSET_INT, "maximum size was already set to %s", this.maximumSize); 481 checkState( 482 this.maximumWeight == UNSET_INT, 483 "maximum weight was already set to %s", 484 this.maximumWeight); 485 checkState(this.weigher == null, "maximum size can not be combined with weigher"); 486 checkArgument(maximumSize >= 0, "maximum size must not be negative"); 487 this.maximumSize = maximumSize; 488 return this; 489 } 490 491 /** 492 * Specifies the maximum weight of entries the cache may contain. Weight is determined using the 493 * {@link Weigher} specified with {@link #weigher}, and use of this method requires a 494 * corresponding call to {@link #weigher} prior to calling {@link #build}. 495 * 496 * <p>Note that the cache <b>may evict an entry before this limit is exceeded</b>. For example, in 497 * the current implementation, when {@code concurrencyLevel} is greater than {@code 1}, each 498 * resulting segment inside the cache <i>independently</i> limits its own weight to approximately 499 * {@code maximumWeight / concurrencyLevel}. 500 * 501 * <p>When eviction is necessary, the cache evicts entries that are less likely to be used again. 502 * For example, the cache may evict an entry because it hasn't been used recently or very often. 503 * 504 * <p>If {@code maximumWeight} is zero, elements will be evicted immediately after being loaded 505 * into cache. This can be useful in testing, or to disable caching temporarily. 506 * 507 * <p>Note that weight is only used to determine whether the cache is over capacity; it has no 508 * effect on selecting which entry should be evicted next. 509 * 510 * <p>This feature cannot be used in conjunction with {@link #maximumSize}. 511 * 512 * @param maximumWeight the maximum total weight of entries the cache may contain 513 * @return this {@code CacheBuilder} instance (for chaining) 514 * @throws IllegalArgumentException if {@code maximumWeight} is negative 515 * @throws IllegalStateException if a maximum weight or size was already set 516 * @since 11.0 517 */ 518 @GwtIncompatible // To be supported 519 public CacheBuilder<K, V> maximumWeight(long maximumWeight) { 520 checkState( 521 this.maximumWeight == UNSET_INT, 522 "maximum weight was already set to %s", 523 this.maximumWeight); 524 checkState( 525 this.maximumSize == UNSET_INT, "maximum size was already set to %s", this.maximumSize); 526 checkArgument(maximumWeight >= 0, "maximum weight must not be negative"); 527 this.maximumWeight = maximumWeight; 528 return this; 529 } 530 531 /** 532 * Specifies the weigher to use in determining the weight of entries. Entry weight is taken into 533 * consideration by {@link #maximumWeight(long)} when determining which entries to evict, and use 534 * of this method requires a corresponding call to {@link #maximumWeight(long)} prior to calling 535 * {@link #build}. Weights are measured and recorded when entries are inserted into the cache, and 536 * are thus effectively static during the lifetime of a cache entry. 537 * 538 * <p>When the weight of an entry is zero it will not be considered for size-based eviction 539 * (though it still may be evicted by other means). 540 * 541 * <p><b>Important note:</b> Instead of returning <em>this</em> as a {@code CacheBuilder} 542 * instance, this method returns {@code CacheBuilder<K1, V1>}. From this point on, either the 543 * original reference or the returned reference may be used to complete configuration and build 544 * the cache, but only the "generic" one is type-safe. That is, it will properly prevent you from 545 * building caches whose key or value types are incompatible with the types accepted by the 546 * weigher already provided; the {@code CacheBuilder} type cannot do this. For best results, 547 * simply use the standard method-chaining idiom, as illustrated in the documentation at top, 548 * configuring a {@code CacheBuilder} and building your {@link Cache} all in a single statement. 549 * 550 * <p><b>Warning:</b> if you ignore the above advice, and use this {@code CacheBuilder} to build a 551 * cache whose key or value type is incompatible with the weigher, you will likely experience a 552 * {@link ClassCastException} at some <i>undefined</i> point in the future. 553 * 554 * @param weigher the weigher to use in calculating the weight of cache entries 555 * @return this {@code CacheBuilder} instance (for chaining) 556 * @throws IllegalArgumentException if {@code size} is negative 557 * @throws IllegalStateException if a maximum size was already set 558 * @since 11.0 559 */ 560 @GwtIncompatible // To be supported 561 public <K1 extends K, V1 extends V> CacheBuilder<K1, V1> weigher( 562 Weigher<? super K1, ? super V1> weigher) { 563 checkState(this.weigher == null); 564 if (strictParsing) { 565 checkState( 566 this.maximumSize == UNSET_INT, 567 "weigher can not be combined with maximum size", 568 this.maximumSize); 569 } 570 571 // safely limiting the kinds of caches this can produce 572 @SuppressWarnings("unchecked") 573 CacheBuilder<K1, V1> me = (CacheBuilder<K1, V1>) this; 574 me.weigher = checkNotNull(weigher); 575 return me; 576 } 577 578 long getMaximumWeight() { 579 if (expireAfterWriteNanos == 0 || expireAfterAccessNanos == 0) { 580 return 0; 581 } 582 return (weigher == null) ? maximumSize : maximumWeight; 583 } 584 585 // Make a safe contravariant cast now so we don't have to do it over and over. 586 @SuppressWarnings("unchecked") 587 <K1 extends K, V1 extends V> Weigher<K1, V1> getWeigher() { 588 return (Weigher<K1, V1>) MoreObjects.firstNonNull(weigher, OneWeigher.INSTANCE); 589 } 590 591 /** 592 * Specifies that each key (not value) stored in the cache should be wrapped in a {@link 593 * WeakReference} (by default, strong references are used). 594 * 595 * <p><b>Warning:</b> when this method is used, the resulting cache will use identity ({@code ==}) 596 * comparison to determine equality of keys. Its {@link Cache#asMap} view will therefore 597 * technically violate the {@link Map} specification (in the same way that {@link IdentityHashMap} 598 * does). 599 * 600 * <p>Entries with keys that have been garbage collected may be counted in {@link Cache#size}, but 601 * will never be visible to read or write operations; such entries are cleaned up as part of the 602 * routine maintenance described in the class javadoc. 603 * 604 * @return this {@code CacheBuilder} instance (for chaining) 605 * @throws IllegalStateException if the key strength was already set 606 */ 607 @GwtIncompatible // java.lang.ref.WeakReference 608 public CacheBuilder<K, V> weakKeys() { 609 return setKeyStrength(Strength.WEAK); 610 } 611 612 CacheBuilder<K, V> setKeyStrength(Strength strength) { 613 checkState(keyStrength == null, "Key strength was already set to %s", keyStrength); 614 keyStrength = checkNotNull(strength); 615 return this; 616 } 617 618 Strength getKeyStrength() { 619 return MoreObjects.firstNonNull(keyStrength, Strength.STRONG); 620 } 621 622 /** 623 * Specifies that each value (not key) stored in the cache should be wrapped in a {@link 624 * WeakReference} (by default, strong references are used). 625 * 626 * <p>Weak values will be garbage collected once they are weakly reachable. This makes them a poor 627 * candidate for caching; consider {@link #softValues} instead. 628 * 629 * <p><b>Note:</b> when this method is used, the resulting cache will use identity ({@code ==}) 630 * comparison to determine equality of values. 631 * 632 * <p>Entries with values that have been garbage collected may be counted in {@link Cache#size}, 633 * but will never be visible to read or write operations; such entries are cleaned up as part of 634 * the routine maintenance described in the class javadoc. 635 * 636 * @return this {@code CacheBuilder} instance (for chaining) 637 * @throws IllegalStateException if the value strength was already set 638 */ 639 @GwtIncompatible // java.lang.ref.WeakReference 640 public CacheBuilder<K, V> weakValues() { 641 return setValueStrength(Strength.WEAK); 642 } 643 644 /** 645 * Specifies that each value (not key) stored in the cache should be wrapped in a {@link 646 * SoftReference} (by default, strong references are used). Softly-referenced objects will be 647 * garbage-collected in a <i>globally</i> least-recently-used manner, in response to memory 648 * demand. 649 * 650 * <p><b>Warning:</b> in most circumstances it is better to set a per-cache {@linkplain 651 * #maximumSize(long) maximum size} instead of using soft references. You should only use this 652 * method if you are well familiar with the practical consequences of soft references. 653 * 654 * <p><b>Note:</b> when this method is used, the resulting cache will use identity ({@code ==}) 655 * comparison to determine equality of values. 656 * 657 * <p>Entries with values that have been garbage collected may be counted in {@link Cache#size}, 658 * but will never be visible to read or write operations; such entries are cleaned up as part of 659 * the routine maintenance described in the class javadoc. 660 * 661 * @return this {@code CacheBuilder} instance (for chaining) 662 * @throws IllegalStateException if the value strength was already set 663 */ 664 @GwtIncompatible // java.lang.ref.SoftReference 665 public CacheBuilder<K, V> softValues() { 666 return setValueStrength(Strength.SOFT); 667 } 668 669 CacheBuilder<K, V> setValueStrength(Strength strength) { 670 checkState(valueStrength == null, "Value strength was already set to %s", valueStrength); 671 valueStrength = checkNotNull(strength); 672 return this; 673 } 674 675 Strength getValueStrength() { 676 return MoreObjects.firstNonNull(valueStrength, Strength.STRONG); 677 } 678 679 /** 680 * Specifies that each entry should be automatically removed from the cache once a fixed duration 681 * has elapsed after the entry's creation, or the most recent replacement of its value. 682 * 683 * <p>When {@code duration} is zero, this method hands off to {@link #maximumSize(long) 684 * maximumSize}{@code (0)}, ignoring any otherwise-specified maximum size or weight. This can be 685 * useful in testing, or to disable caching temporarily without a code change. 686 * 687 * <p>Expired entries may be counted in {@link Cache#size}, but will never be visible to read or 688 * write operations. Expired entries are cleaned up as part of the routine maintenance described 689 * in the class javadoc. 690 * 691 * @param duration the length of time after an entry is created that it should be automatically 692 * removed 693 * @param unit the unit that {@code duration} is expressed in 694 * @return this {@code CacheBuilder} instance (for chaining) 695 * @throws IllegalArgumentException if {@code duration} is negative 696 * @throws IllegalStateException if {@link #expireAfterWrite} was already set 697 */ 698 @SuppressWarnings("GoodTime") // should accept a java.time.Duration 699 public CacheBuilder<K, V> expireAfterWrite(long duration, TimeUnit unit) { 700 checkState( 701 expireAfterWriteNanos == UNSET_INT, 702 "expireAfterWrite was already set to %s ns", 703 expireAfterWriteNanos); 704 checkArgument(duration >= 0, "duration cannot be negative: %s %s", duration, unit); 705 this.expireAfterWriteNanos = unit.toNanos(duration); 706 return this; 707 } 708 709 @SuppressWarnings("GoodTime") // nanos internally, should be Duration 710 long getExpireAfterWriteNanos() { 711 return (expireAfterWriteNanos == UNSET_INT) ? DEFAULT_EXPIRATION_NANOS : expireAfterWriteNanos; 712 } 713 714 /** 715 * Specifies that each entry should be automatically removed from the cache once a fixed duration 716 * has elapsed after the entry's creation, the most recent replacement of its value, or its last 717 * access. Access time is reset by all cache read and write operations (including {@code 718 * Cache.asMap().get(Object)} and {@code Cache.asMap().put(K, V)}), but not by {@code 719 * containsKey(Object)}, nor by operations on the collection-views of {@link Cache#asMap}. So, for 720 * example, iterating through {@code Cache.asMap().entrySet()} does not reset access time for the 721 * entries you retrieve. 722 * 723 * <p>When {@code duration} is zero, this method hands off to {@link #maximumSize(long) 724 * maximumSize}{@code (0)}, ignoring any otherwise-specified maximum size or weight. This can be 725 * useful in testing, or to disable caching temporarily without a code change. 726 * 727 * <p>Expired entries may be counted in {@link Cache#size}, but will never be visible to read or 728 * write operations. Expired entries are cleaned up as part of the routine maintenance described 729 * in the class javadoc. 730 * 731 * @param duration the length of time after an entry is last accessed that it should be 732 * automatically removed 733 * @param unit the unit that {@code duration} is expressed in 734 * @return this {@code CacheBuilder} instance (for chaining) 735 * @throws IllegalArgumentException if {@code duration} is negative 736 * @throws IllegalStateException if {@link #expireAfterAccess} was already set 737 */ 738 @SuppressWarnings("GoodTime") // should accept a java.time.Duration 739 public CacheBuilder<K, V> expireAfterAccess(long duration, TimeUnit unit) { 740 checkState( 741 expireAfterAccessNanos == UNSET_INT, 742 "expireAfterAccess was already set to %s ns", 743 expireAfterAccessNanos); 744 checkArgument(duration >= 0, "duration cannot be negative: %s %s", duration, unit); 745 this.expireAfterAccessNanos = unit.toNanos(duration); 746 return this; 747 } 748 749 @SuppressWarnings("GoodTime") // nanos internally, should be Duration 750 long getExpireAfterAccessNanos() { 751 return (expireAfterAccessNanos == UNSET_INT) 752 ? DEFAULT_EXPIRATION_NANOS 753 : expireAfterAccessNanos; 754 } 755 756 /** 757 * Specifies that active entries are eligible for automatic refresh once a fixed duration has 758 * elapsed after the entry's creation, or the most recent replacement of its value. The semantics 759 * of refreshes are specified in {@link LoadingCache#refresh}, and are performed by calling {@link 760 * CacheLoader#reload}. 761 * 762 * <p>As the default implementation of {@link CacheLoader#reload} is synchronous, it is 763 * recommended that users of this method override {@link CacheLoader#reload} with an asynchronous 764 * implementation; otherwise refreshes will be performed during unrelated cache read and write 765 * operations. 766 * 767 * <p>Currently automatic refreshes are performed when the first stale request for an entry 768 * occurs. The request triggering refresh will make a synchronous call to {@link 769 * CacheLoader#reload} 770 * and immediately return the new value if the returned future is complete, and the old value 771 * otherwise. 772 * 773 * <p><b>Note:</b> <i>all exceptions thrown during refresh will be logged and then swallowed</i>. 774 * 775 * @param duration the length of time after an entry is created that it should be considered 776 * stale, and thus eligible for refresh 777 * @param unit the unit that {@code duration} is expressed in 778 * @return this {@code CacheBuilder} instance (for chaining) 779 * @throws IllegalArgumentException if {@code duration} is negative 780 * @throws IllegalStateException if {@link #refreshAfterWrite} was already set 781 * @since 11.0 782 */ 783 @GwtIncompatible // To be supported (synchronously). 784 @SuppressWarnings("GoodTime") // should accept a java.time.Duration 785 public CacheBuilder<K, V> refreshAfterWrite(long duration, TimeUnit unit) { 786 checkNotNull(unit); 787 checkState(refreshNanos == UNSET_INT, "refresh was already set to %s ns", refreshNanos); 788 checkArgument(duration > 0, "duration must be positive: %s %s", duration, unit); 789 this.refreshNanos = unit.toNanos(duration); 790 return this; 791 } 792 793 @SuppressWarnings("GoodTime") // nanos internally, should be Duration 794 long getRefreshNanos() { 795 return (refreshNanos == UNSET_INT) ? DEFAULT_REFRESH_NANOS : refreshNanos; 796 } 797 798 /** 799 * Specifies a nanosecond-precision time source for this cache. By default, {@link 800 * System#nanoTime} is used. 801 * 802 * <p>The primary intent of this method is to facilitate testing of caches with a fake or mock 803 * time source. 804 * 805 * @return this {@code CacheBuilder} instance (for chaining) 806 * @throws IllegalStateException if a ticker was already set 807 */ 808 public CacheBuilder<K, V> ticker(Ticker ticker) { 809 checkState(this.ticker == null); 810 this.ticker = checkNotNull(ticker); 811 return this; 812 } 813 814 Ticker getTicker(boolean recordsTime) { 815 if (ticker != null) { 816 return ticker; 817 } 818 return recordsTime ? Ticker.systemTicker() : NULL_TICKER; 819 } 820 821 /** 822 * Specifies a listener instance that caches should notify each time an entry is removed for any 823 * {@linkplain RemovalCause reason}. Each cache created by this builder will invoke this listener 824 * as part of the routine maintenance described in the class documentation above. 825 * 826 * <p><b>Warning:</b> after invoking this method, do not continue to use <i>this</i> cache builder 827 * reference; instead use the reference this method <i>returns</i>. At runtime, these point to the 828 * same instance, but only the returned reference has the correct generic type information so as 829 * to ensure type safety. For best results, use the standard method-chaining idiom illustrated in 830 * the class documentation above, configuring a builder and building your cache in a single 831 * statement. Failure to heed this advice can result in a {@link ClassCastException} being thrown 832 * by a cache operation at some <i>undefined</i> point in the future. 833 * 834 * <p><b>Warning:</b> any exception thrown by {@code listener} will <i>not</i> be propagated to 835 * the {@code Cache} user, only logged via a {@link Logger}. 836 * 837 * @return the cache builder reference that should be used instead of {@code this} for any 838 * remaining configuration and cache building 839 * @return this {@code CacheBuilder} instance (for chaining) 840 * @throws IllegalStateException if a removal listener was already set 841 */ 842 @CheckReturnValue 843 public <K1 extends K, V1 extends V> CacheBuilder<K1, V1> removalListener( 844 RemovalListener<? super K1, ? super V1> listener) { 845 checkState(this.removalListener == null); 846 847 // safely limiting the kinds of caches this can produce 848 @SuppressWarnings("unchecked") 849 CacheBuilder<K1, V1> me = (CacheBuilder<K1, V1>) this; 850 me.removalListener = checkNotNull(listener); 851 return me; 852 } 853 854 // Make a safe contravariant cast now so we don't have to do it over and over. 855 @SuppressWarnings("unchecked") 856 <K1 extends K, V1 extends V> RemovalListener<K1, V1> getRemovalListener() { 857 return (RemovalListener<K1, V1>) 858 MoreObjects.firstNonNull(removalListener, NullListener.INSTANCE); 859 } 860 861 /** 862 * Enable the accumulation of {@link CacheStats} during the operation of the cache. Without this 863 * {@link Cache#stats} will return zero for all statistics. Note that recording stats requires 864 * bookkeeping to be performed with each operation, and thus imposes a performance penalty on 865 * cache operation. 866 * 867 * @return this {@code CacheBuilder} instance (for chaining) 868 * @since 12.0 (previously, stats collection was automatic) 869 */ 870 public CacheBuilder<K, V> recordStats() { 871 statsCounterSupplier = CACHE_STATS_COUNTER; 872 return this; 873 } 874 875 boolean isRecordingStats() { 876 return statsCounterSupplier == CACHE_STATS_COUNTER; 877 } 878 879 Supplier<? extends StatsCounter> getStatsCounterSupplier() { 880 return statsCounterSupplier; 881 } 882 883 /** 884 * Builds a cache, which either returns an already-loaded value for a given key or atomically 885 * computes or retrieves it using the supplied {@code CacheLoader}. If another thread is currently 886 * loading the value for this key, simply waits for that thread to finish and returns its loaded 887 * value. Note that multiple threads can concurrently load values for distinct keys. 888 * 889 * <p>This method does not alter the state of this {@code CacheBuilder} instance, so it can be 890 * invoked again to create multiple independent caches. 891 * 892 * @param loader the cache loader used to obtain new values 893 * @return a cache having the requested features 894 */ 895 @CheckReturnValue 896 public <K1 extends K, V1 extends V> LoadingCache<K1, V1> build( 897 CacheLoader<? super K1, V1> loader) { 898 checkWeightWithWeigher(); 899 return new LocalCache.LocalLoadingCache<>(this, loader); 900 } 901 902 /** 903 * Builds a cache which does not automatically load values when keys are requested. 904 * 905 * <p>Consider {@link #build(CacheLoader)} instead, if it is feasible to implement a {@code 906 * CacheLoader}. 907 * 908 * <p>This method does not alter the state of this {@code CacheBuilder} instance, so it can be 909 * invoked again to create multiple independent caches. 910 * 911 * @return a cache having the requested features 912 * @since 11.0 913 */ 914 @CheckReturnValue 915 public <K1 extends K, V1 extends V> Cache<K1, V1> build() { 916 checkWeightWithWeigher(); 917 checkNonLoadingCache(); 918 return new LocalCache.LocalManualCache<>(this); 919 } 920 921 private void checkNonLoadingCache() { 922 checkState(refreshNanos == UNSET_INT, "refreshAfterWrite requires a LoadingCache"); 923 } 924 925 private void checkWeightWithWeigher() { 926 if (weigher == null) { 927 checkState(maximumWeight == UNSET_INT, "maximumWeight requires weigher"); 928 } else { 929 if (strictParsing) { 930 checkState(maximumWeight != UNSET_INT, "weigher requires maximumWeight"); 931 } else { 932 if (maximumWeight == UNSET_INT) { 933 logger.log(Level.WARNING, "ignoring weigher specified without maximumWeight"); 934 } 935 } 936 } 937 } 938 939 /** 940 * Returns a string representation for this CacheBuilder instance. The exact form of the returned 941 * string is not specified. 942 */ 943 @Override 944 public String toString() { 945 MoreObjects.ToStringHelper s = MoreObjects.toStringHelper(this); 946 if (initialCapacity != UNSET_INT) { 947 s.add("initialCapacity", initialCapacity); 948 } 949 if (concurrencyLevel != UNSET_INT) { 950 s.add("concurrencyLevel", concurrencyLevel); 951 } 952 if (maximumSize != UNSET_INT) { 953 s.add("maximumSize", maximumSize); 954 } 955 if (maximumWeight != UNSET_INT) { 956 s.add("maximumWeight", maximumWeight); 957 } 958 if (expireAfterWriteNanos != UNSET_INT) { 959 s.add("expireAfterWrite", expireAfterWriteNanos + "ns"); 960 } 961 if (expireAfterAccessNanos != UNSET_INT) { 962 s.add("expireAfterAccess", expireAfterAccessNanos + "ns"); 963 } 964 if (keyStrength != null) { 965 s.add("keyStrength", Ascii.toLowerCase(keyStrength.toString())); 966 } 967 if (valueStrength != null) { 968 s.add("valueStrength", Ascii.toLowerCase(valueStrength.toString())); 969 } 970 if (keyEquivalence != null) { 971 s.addValue("keyEquivalence"); 972 } 973 if (valueEquivalence != null) { 974 s.addValue("valueEquivalence"); 975 } 976 if (removalListener != null) { 977 s.addValue("removalListener"); 978 } 979 return s.toString(); 980 } 981}