001/* 002 * Copyright (C) 2007 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.collect; 018 019import static com.google.common.base.Preconditions.checkArgument; 020import static com.google.common.base.Preconditions.checkElementIndex; 021import static com.google.common.base.Preconditions.checkNotNull; 022import static com.google.common.base.Preconditions.checkPositionIndex; 023import static com.google.common.base.Preconditions.checkPositionIndexes; 024import static com.google.common.base.Preconditions.checkState; 025import static com.google.common.collect.CollectPreconditions.checkNonnegative; 026import static com.google.common.collect.CollectPreconditions.checkRemove; 027 028import com.google.common.annotations.Beta; 029import com.google.common.annotations.GwtCompatible; 030import com.google.common.annotations.GwtIncompatible; 031import com.google.common.annotations.VisibleForTesting; 032import com.google.common.base.Function; 033import com.google.common.base.Objects; 034import com.google.common.math.IntMath; 035import com.google.common.primitives.Ints; 036import java.io.Serializable; 037import java.math.RoundingMode; 038import java.util.AbstractList; 039import java.util.AbstractSequentialList; 040import java.util.ArrayList; 041import java.util.Arrays; 042import java.util.Collection; 043import java.util.Collections; 044import java.util.Iterator; 045import java.util.LinkedList; 046import java.util.List; 047import java.util.ListIterator; 048import java.util.NoSuchElementException; 049import java.util.RandomAccess; 050import java.util.concurrent.CopyOnWriteArrayList; 051import java.util.function.Predicate; 052import javax.annotation.CheckForNull; 053import org.checkerframework.checker.nullness.qual.Nullable; 054 055/** 056 * Static utility methods pertaining to {@link List} instances. Also see this class's counterparts 057 * {@link Sets}, {@link Maps} and {@link Queues}. 058 * 059 * <p>See the Guava User Guide article on <a href= 060 * "https://github.com/google/guava/wiki/CollectionUtilitiesExplained#lists"> {@code Lists}</a>. 061 * 062 * @author Kevin Bourrillion 063 * @author Mike Bostock 064 * @author Louis Wasserman 065 * @since 2.0 066 */ 067@GwtCompatible(emulated = true) 068@ElementTypesAreNonnullByDefault 069public final class Lists { 070 private Lists() {} 071 072 // ArrayList 073 074 /** 075 * Creates a <i>mutable</i>, empty {@code ArrayList} instance (for Java 6 and earlier). 076 * 077 * <p><b>Note:</b> if mutability is not required, use {@link ImmutableList#of()} instead. 078 * 079 * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as 080 * deprecated. Instead, use the {@code ArrayList} {@linkplain ArrayList#ArrayList() constructor} 081 * directly, taking advantage of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 082 */ 083 @GwtCompatible(serializable = true) 084 public static <E extends @Nullable Object> ArrayList<E> newArrayList() { 085 return new ArrayList<>(); 086 } 087 088 /** 089 * Creates a <i>mutable</i> {@code ArrayList} instance containing the given elements. 090 * 091 * <p><b>Note:</b> essentially the only reason to use this method is when you will need to add or 092 * remove elements later. Otherwise, for non-null elements use {@link ImmutableList#of()} (for 093 * varargs) or {@link ImmutableList#copyOf(Object[])} (for an array) instead. If any elements 094 * might be null, or you need support for {@link List#set(int, Object)}, use {@link 095 * Arrays#asList}. 096 * 097 * <p>Note that even when you do need the ability to add or remove, this method provides only a 098 * tiny bit of syntactic sugar for {@code newArrayList(}{@link Arrays#asList asList}{@code 099 * (...))}, or for creating an empty list then calling {@link Collections#addAll}. This method is 100 * not actually very useful and will likely be deprecated in the future. 101 */ 102 @SafeVarargs 103 @GwtCompatible(serializable = true) 104 public static <E extends @Nullable Object> ArrayList<E> newArrayList(E... elements) { 105 checkNotNull(elements); // for GWT 106 // Avoid integer overflow when a large array is passed in 107 int capacity = computeArrayListCapacity(elements.length); 108 ArrayList<E> list = new ArrayList<>(capacity); 109 Collections.addAll(list, elements); 110 return list; 111 } 112 113 /** 114 * Creates a <i>mutable</i> {@code ArrayList} instance containing the given elements; a very thin 115 * shortcut for creating an empty list then calling {@link Iterables#addAll}. 116 * 117 * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link 118 * ImmutableList#copyOf(Iterable)} instead. (Or, change {@code elements} to be a {@link 119 * FluentIterable} and call {@code elements.toList()}.) 120 * 121 * <p><b>Note for Java 7 and later:</b> if {@code elements} is a {@link Collection}, you don't 122 * need this method. Use the {@code ArrayList} {@linkplain ArrayList#ArrayList(Collection) 123 * constructor} directly, taking advantage of the new <a href="http://goo.gl/iz2Wi">"diamond" 124 * syntax</a>. 125 */ 126 @GwtCompatible(serializable = true) 127 public static <E extends @Nullable Object> ArrayList<E> newArrayList( 128 Iterable<? extends E> elements) { 129 checkNotNull(elements); // for GWT 130 // Let ArrayList's sizing logic work, if possible 131 return (elements instanceof Collection) 132 ? new ArrayList<>((Collection<? extends E>) elements) 133 : newArrayList(elements.iterator()); 134 } 135 136 /** 137 * Creates a <i>mutable</i> {@code ArrayList} instance containing the given elements; a very thin 138 * shortcut for creating an empty list and then calling {@link Iterators#addAll}. 139 * 140 * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link 141 * ImmutableList#copyOf(Iterator)} instead. 142 */ 143 @GwtCompatible(serializable = true) 144 public static <E extends @Nullable Object> ArrayList<E> newArrayList( 145 Iterator<? extends E> elements) { 146 ArrayList<E> list = newArrayList(); 147 Iterators.addAll(list, elements); 148 return list; 149 } 150 151 @VisibleForTesting 152 static int computeArrayListCapacity(int arraySize) { 153 checkNonnegative(arraySize, "arraySize"); 154 155 // TODO(kevinb): Figure out the right behavior, and document it 156 return Ints.saturatedCast(5L + arraySize + (arraySize / 10)); 157 } 158 159 /** 160 * Creates an {@code ArrayList} instance backed by an array with the specified initial size; 161 * simply delegates to {@link ArrayList#ArrayList(int)}. 162 * 163 * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as 164 * deprecated. Instead, use {@code new }{@link ArrayList#ArrayList(int) ArrayList}{@code <>(int)} 165 * directly, taking advantage of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. 166 * (Unlike here, there is no risk of overload ambiguity, since the {@code ArrayList} constructors 167 * very wisely did not accept varargs.) 168 * 169 * @param initialArraySize the exact size of the initial backing array for the returned array list 170 * ({@code ArrayList} documentation calls this value the "capacity") 171 * @return a new, empty {@code ArrayList} which is guaranteed not to resize itself unless its size 172 * reaches {@code initialArraySize + 1} 173 * @throws IllegalArgumentException if {@code initialArraySize} is negative 174 */ 175 @GwtCompatible(serializable = true) 176 public static <E extends @Nullable Object> ArrayList<E> newArrayListWithCapacity( 177 int initialArraySize) { 178 checkNonnegative(initialArraySize, "initialArraySize"); // for GWT. 179 return new ArrayList<>(initialArraySize); 180 } 181 182 /** 183 * Creates an {@code ArrayList} instance to hold {@code estimatedSize} elements, <i>plus</i> an 184 * unspecified amount of padding; you almost certainly mean to call {@link 185 * #newArrayListWithCapacity} (see that method for further advice on usage). 186 * 187 * <p><b>Note:</b> This method will soon be deprecated. Even in the rare case that you do want 188 * some amount of padding, it's best if you choose your desired amount explicitly. 189 * 190 * @param estimatedSize an estimate of the eventual {@link List#size()} of the new list 191 * @return a new, empty {@code ArrayList}, sized appropriately to hold the estimated number of 192 * elements 193 * @throws IllegalArgumentException if {@code estimatedSize} is negative 194 */ 195 @GwtCompatible(serializable = true) 196 public static <E extends @Nullable Object> ArrayList<E> newArrayListWithExpectedSize( 197 int estimatedSize) { 198 return new ArrayList<>(computeArrayListCapacity(estimatedSize)); 199 } 200 201 // LinkedList 202 203 /** 204 * Creates a <i>mutable</i>, empty {@code LinkedList} instance (for Java 6 and earlier). 205 * 206 * <p><b>Note:</b> if you won't be adding any elements to the list, use {@link ImmutableList#of()} 207 * instead. 208 * 209 * <p><b>Performance note:</b> {@link ArrayList} and {@link java.util.ArrayDeque} consistently 210 * outperform {@code LinkedList} except in certain rare and specific situations. Unless you have 211 * spent a lot of time benchmarking your specific needs, use one of those instead. 212 * 213 * <p><b>Note for Java 7 and later:</b> this method is now unnecessary and should be treated as 214 * deprecated. Instead, use the {@code LinkedList} {@linkplain LinkedList#LinkedList() 215 * constructor} directly, taking advantage of the new <a href="http://goo.gl/iz2Wi">"diamond" 216 * syntax</a>. 217 */ 218 @GwtCompatible(serializable = true) 219 public static <E extends @Nullable Object> LinkedList<E> newLinkedList() { 220 return new LinkedList<>(); 221 } 222 223 /** 224 * Creates a <i>mutable</i> {@code LinkedList} instance containing the given elements; a very thin 225 * shortcut for creating an empty list then calling {@link Iterables#addAll}. 226 * 227 * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link 228 * ImmutableList#copyOf(Iterable)} instead. (Or, change {@code elements} to be a {@link 229 * FluentIterable} and call {@code elements.toList()}.) 230 * 231 * <p><b>Performance note:</b> {@link ArrayList} and {@link java.util.ArrayDeque} consistently 232 * outperform {@code LinkedList} except in certain rare and specific situations. Unless you have 233 * spent a lot of time benchmarking your specific needs, use one of those instead. 234 * 235 * <p><b>Note for Java 7 and later:</b> if {@code elements} is a {@link Collection}, you don't 236 * need this method. Use the {@code LinkedList} {@linkplain LinkedList#LinkedList(Collection) 237 * constructor} directly, taking advantage of the new <a href="http://goo.gl/iz2Wi">"diamond" 238 * syntax</a>. 239 */ 240 @GwtCompatible(serializable = true) 241 public static <E extends @Nullable Object> LinkedList<E> newLinkedList( 242 Iterable<? extends E> elements) { 243 LinkedList<E> list = newLinkedList(); 244 Iterables.addAll(list, elements); 245 return list; 246 } 247 248 /** 249 * Creates an empty {@code CopyOnWriteArrayList} instance. 250 * 251 * <p><b>Note:</b> if you need an immutable empty {@link List}, use {@link Collections#emptyList} 252 * instead. 253 * 254 * @return a new, empty {@code CopyOnWriteArrayList} 255 * @since 12.0 256 */ 257 @GwtIncompatible // CopyOnWriteArrayList 258 public static <E extends @Nullable Object> CopyOnWriteArrayList<E> newCopyOnWriteArrayList() { 259 return new CopyOnWriteArrayList<>(); 260 } 261 262 /** 263 * Creates a {@code CopyOnWriteArrayList} instance containing the given elements. 264 * 265 * @param elements the elements that the list should contain, in order 266 * @return a new {@code CopyOnWriteArrayList} containing those elements 267 * @since 12.0 268 */ 269 @GwtIncompatible // CopyOnWriteArrayList 270 public static <E extends @Nullable Object> CopyOnWriteArrayList<E> newCopyOnWriteArrayList( 271 Iterable<? extends E> elements) { 272 // We copy elements to an ArrayList first, rather than incurring the 273 // quadratic cost of adding them to the COWAL directly. 274 Collection<? extends E> elementsCollection = 275 (elements instanceof Collection) 276 ? (Collection<? extends E>) elements 277 : newArrayList(elements); 278 return new CopyOnWriteArrayList<>(elementsCollection); 279 } 280 281 /** 282 * Returns an unmodifiable list containing the specified first element and backed by the specified 283 * array of additional elements. Changes to the {@code rest} array will be reflected in the 284 * returned list. Unlike {@link Arrays#asList}, the returned list is unmodifiable. 285 * 286 * <p>This is useful when a varargs method needs to use a signature such as {@code (Foo firstFoo, 287 * Foo... moreFoos)}, in order to avoid overload ambiguity or to enforce a minimum argument count. 288 * 289 * <p>The returned list is serializable and implements {@link RandomAccess}. 290 * 291 * @param first the first element 292 * @param rest an array of additional elements, possibly empty 293 * @return an unmodifiable list containing the specified elements 294 */ 295 public static <E extends @Nullable Object> List<E> asList(@ParametricNullness E first, E[] rest) { 296 return new OnePlusArrayList<>(first, rest); 297 } 298 299 /** 300 * Returns an unmodifiable list containing the specified first and second element, and backed by 301 * the specified array of additional elements. Changes to the {@code rest} array will be reflected 302 * in the returned list. Unlike {@link Arrays#asList}, the returned list is unmodifiable. 303 * 304 * <p>This is useful when a varargs method needs to use a signature such as {@code (Foo firstFoo, 305 * Foo secondFoo, Foo... moreFoos)}, in order to avoid overload ambiguity or to enforce a minimum 306 * argument count. 307 * 308 * <p>The returned list is serializable and implements {@link RandomAccess}. 309 * 310 * @param first the first element 311 * @param second the second element 312 * @param rest an array of additional elements, possibly empty 313 * @return an unmodifiable list containing the specified elements 314 */ 315 public static <E extends @Nullable Object> List<E> asList( 316 @ParametricNullness E first, @ParametricNullness E second, E[] rest) { 317 return new TwoPlusArrayList<>(first, second, rest); 318 } 319 320 /** @see Lists#asList(Object, Object[]) */ 321 private static class OnePlusArrayList<E extends @Nullable Object> extends AbstractList<E> 322 implements Serializable, RandomAccess { 323 @ParametricNullness final E first; 324 final E[] rest; 325 326 OnePlusArrayList(@ParametricNullness E first, E[] rest) { 327 this.first = first; 328 this.rest = checkNotNull(rest); 329 } 330 331 @Override 332 public int size() { 333 return IntMath.saturatedAdd(rest.length, 1); 334 } 335 336 @Override 337 @ParametricNullness 338 public E get(int index) { 339 // check explicitly so the IOOBE will have the right message 340 checkElementIndex(index, size()); 341 return (index == 0) ? first : rest[index - 1]; 342 } 343 344 private static final long serialVersionUID = 0; 345 } 346 347 /** @see Lists#asList(Object, Object, Object[]) */ 348 private static class TwoPlusArrayList<E extends @Nullable Object> extends AbstractList<E> 349 implements Serializable, RandomAccess { 350 @ParametricNullness final E first; 351 @ParametricNullness final E second; 352 final E[] rest; 353 354 TwoPlusArrayList(@ParametricNullness E first, @ParametricNullness E second, E[] rest) { 355 this.first = first; 356 this.second = second; 357 this.rest = checkNotNull(rest); 358 } 359 360 @Override 361 public int size() { 362 return IntMath.saturatedAdd(rest.length, 2); 363 } 364 365 @Override 366 @ParametricNullness 367 public E get(int index) { 368 switch (index) { 369 case 0: 370 return first; 371 case 1: 372 return second; 373 default: 374 // check explicitly so the IOOBE will have the right message 375 checkElementIndex(index, size()); 376 return rest[index - 2]; 377 } 378 } 379 380 private static final long serialVersionUID = 0; 381 } 382 383 /** 384 * Returns every possible list that can be formed by choosing one element from each of the given 385 * lists in order; the "n-ary <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian 386 * product</a>" of the lists. For example: 387 * 388 * <pre>{@code 389 * Lists.cartesianProduct(ImmutableList.of( 390 * ImmutableList.of(1, 2), 391 * ImmutableList.of("A", "B", "C"))) 392 * }</pre> 393 * 394 * <p>returns a list containing six lists in the following order: 395 * 396 * <ul> 397 * <li>{@code ImmutableList.of(1, "A")} 398 * <li>{@code ImmutableList.of(1, "B")} 399 * <li>{@code ImmutableList.of(1, "C")} 400 * <li>{@code ImmutableList.of(2, "A")} 401 * <li>{@code ImmutableList.of(2, "B")} 402 * <li>{@code ImmutableList.of(2, "C")} 403 * </ul> 404 * 405 * <p>The result is guaranteed to be in the "traditional", lexicographical order for Cartesian 406 * products that you would get from nesting for loops: 407 * 408 * <pre>{@code 409 * for (B b0 : lists.get(0)) { 410 * for (B b1 : lists.get(1)) { 411 * ... 412 * ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...); 413 * // operate on tuple 414 * } 415 * } 416 * }</pre> 417 * 418 * <p>Note that if any input list is empty, the Cartesian product will also be empty. If no lists 419 * at all are provided (an empty list), the resulting Cartesian product has one element, an empty 420 * list (counter-intuitive, but mathematically consistent). 421 * 422 * <p><i>Performance notes:</i> while the cartesian product of lists of size {@code m, n, p} is a 423 * list of size {@code m x n x p}, its actual memory consumption is much smaller. When the 424 * cartesian product is constructed, the input lists are merely copied. Only as the resulting list 425 * is iterated are the individual lists created, and these are not retained after iteration. 426 * 427 * @param lists the lists to choose elements from, in the order that the elements chosen from 428 * those lists should appear in the resulting lists 429 * @param <B> any common base class shared by all axes (often just {@link Object}) 430 * @return the Cartesian product, as an immutable list containing immutable lists 431 * @throws IllegalArgumentException if the size of the cartesian product would be greater than 432 * {@link Integer#MAX_VALUE} 433 * @throws NullPointerException if {@code lists}, any one of the {@code lists}, or any element of 434 * a provided list is null 435 * @since 19.0 436 */ 437 public static <B> List<List<B>> cartesianProduct(List<? extends List<? extends B>> lists) { 438 return CartesianList.create(lists); 439 } 440 441 /** 442 * Returns every possible list that can be formed by choosing one element from each of the given 443 * lists in order; the "n-ary <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian 444 * product</a>" of the lists. For example: 445 * 446 * <pre>{@code 447 * Lists.cartesianProduct(ImmutableList.of( 448 * ImmutableList.of(1, 2), 449 * ImmutableList.of("A", "B", "C"))) 450 * }</pre> 451 * 452 * <p>returns a list containing six lists in the following order: 453 * 454 * <ul> 455 * <li>{@code ImmutableList.of(1, "A")} 456 * <li>{@code ImmutableList.of(1, "B")} 457 * <li>{@code ImmutableList.of(1, "C")} 458 * <li>{@code ImmutableList.of(2, "A")} 459 * <li>{@code ImmutableList.of(2, "B")} 460 * <li>{@code ImmutableList.of(2, "C")} 461 * </ul> 462 * 463 * <p>The result is guaranteed to be in the "traditional", lexicographical order for Cartesian 464 * products that you would get from nesting for loops: 465 * 466 * <pre>{@code 467 * for (B b0 : lists.get(0)) { 468 * for (B b1 : lists.get(1)) { 469 * ... 470 * ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...); 471 * // operate on tuple 472 * } 473 * } 474 * }</pre> 475 * 476 * <p>Note that if any input list is empty, the Cartesian product will also be empty. If no lists 477 * at all are provided (an empty list), the resulting Cartesian product has one element, an empty 478 * list (counter-intuitive, but mathematically consistent). 479 * 480 * <p><i>Performance notes:</i> while the cartesian product of lists of size {@code m, n, p} is a 481 * list of size {@code m x n x p}, its actual memory consumption is much smaller. When the 482 * cartesian product is constructed, the input lists are merely copied. Only as the resulting list 483 * is iterated are the individual lists created, and these are not retained after iteration. 484 * 485 * @param lists the lists to choose elements from, in the order that the elements chosen from 486 * those lists should appear in the resulting lists 487 * @param <B> any common base class shared by all axes (often just {@link Object}) 488 * @return the Cartesian product, as an immutable list containing immutable lists 489 * @throws IllegalArgumentException if the size of the cartesian product would be greater than 490 * {@link Integer#MAX_VALUE} 491 * @throws NullPointerException if {@code lists}, any one of the {@code lists}, or any element of 492 * a provided list is null 493 * @since 19.0 494 */ 495 @SafeVarargs 496 public static <B> List<List<B>> cartesianProduct(List<? extends B>... lists) { 497 return cartesianProduct(Arrays.asList(lists)); 498 } 499 500 /** 501 * Returns a list that applies {@code function} to each element of {@code fromList}. The returned 502 * list is a transformed view of {@code fromList}; changes to {@code fromList} will be reflected 503 * in the returned list and vice versa. 504 * 505 * <p>Since functions are not reversible, the transform is one-way and new items cannot be stored 506 * in the returned list. The {@code add}, {@code addAll} and {@code set} methods are unsupported 507 * in the returned list. 508 * 509 * <p>The function is applied lazily, invoked when needed. This is necessary for the returned list 510 * to be a view, but it means that the function will be applied many times for bulk operations 511 * like {@link List#contains} and {@link List#hashCode}. For this to perform well, {@code 512 * function} should be fast. To avoid lazy evaluation when the returned list doesn't need to be a 513 * view, copy the returned list into a new list of your choosing. 514 * 515 * <p>If {@code fromList} implements {@link RandomAccess}, so will the returned list. The returned 516 * list is threadsafe if the supplied list and function are. 517 * 518 * <p>If only a {@code Collection} or {@code Iterable} input is available, use {@link 519 * Collections2#transform} or {@link Iterables#transform}. 520 * 521 * <p><b>Note:</b> serializing the returned list is implemented by serializing {@code fromList}, 522 * its contents, and {@code function} -- <i>not</i> by serializing the transformed values. This 523 * can lead to surprising behavior, so serializing the returned list is <b>not recommended</b>. 524 * Instead, copy the list using {@link ImmutableList#copyOf(Collection)} (for example), then 525 * serialize the copy. Other methods similar to this do not implement serialization at all for 526 * this reason. 527 * 528 * <p><b>Java 8 users:</b> many use cases for this method are better addressed by {@link 529 * java.util.stream.Stream#map}. This method is not being deprecated, but we gently encourage you 530 * to migrate to streams. 531 */ 532 public static <F extends @Nullable Object, T extends @Nullable Object> List<T> transform( 533 List<F> fromList, Function<? super F, ? extends T> function) { 534 return (fromList instanceof RandomAccess) 535 ? new TransformingRandomAccessList<>(fromList, function) 536 : new TransformingSequentialList<>(fromList, function); 537 } 538 539 /** 540 * Implementation of a sequential transforming list. 541 * 542 * @see Lists#transform 543 */ 544 private static class TransformingSequentialList< 545 F extends @Nullable Object, T extends @Nullable Object> 546 extends AbstractSequentialList<T> implements Serializable { 547 final List<F> fromList; 548 final Function<? super F, ? extends T> function; 549 550 TransformingSequentialList(List<F> fromList, Function<? super F, ? extends T> function) { 551 this.fromList = checkNotNull(fromList); 552 this.function = checkNotNull(function); 553 } 554 555 /** 556 * The default implementation inherited is based on iteration and removal of each element which 557 * can be overkill. That's why we forward this call directly to the backing list. 558 */ 559 @Override 560 public void clear() { 561 fromList.clear(); 562 } 563 564 @Override 565 public int size() { 566 return fromList.size(); 567 } 568 569 @Override 570 public ListIterator<T> listIterator(final int index) { 571 return new TransformedListIterator<F, T>(fromList.listIterator(index)) { 572 @Override 573 @ParametricNullness 574 T transform(@ParametricNullness F from) { 575 return function.apply(from); 576 } 577 }; 578 } 579 580 @Override 581 public boolean removeIf(Predicate<? super T> filter) { 582 checkNotNull(filter); 583 return fromList.removeIf(element -> filter.test(function.apply(element))); 584 } 585 586 private static final long serialVersionUID = 0; 587 } 588 589 /** 590 * Implementation of a transforming random access list. We try to make as many of these methods 591 * pass-through to the source list as possible so that the performance characteristics of the 592 * source list and transformed list are similar. 593 * 594 * @see Lists#transform 595 */ 596 private static class TransformingRandomAccessList< 597 F extends @Nullable Object, T extends @Nullable Object> 598 extends AbstractList<T> implements RandomAccess, Serializable { 599 final List<F> fromList; 600 final Function<? super F, ? extends T> function; 601 602 TransformingRandomAccessList(List<F> fromList, Function<? super F, ? extends T> function) { 603 this.fromList = checkNotNull(fromList); 604 this.function = checkNotNull(function); 605 } 606 607 @Override 608 public void clear() { 609 fromList.clear(); 610 } 611 612 @Override 613 @ParametricNullness 614 public T get(int index) { 615 return function.apply(fromList.get(index)); 616 } 617 618 @Override 619 public Iterator<T> iterator() { 620 return listIterator(); 621 } 622 623 @Override 624 public ListIterator<T> listIterator(int index) { 625 return new TransformedListIterator<F, T>(fromList.listIterator(index)) { 626 @Override 627 T transform(F from) { 628 return function.apply(from); 629 } 630 }; 631 } 632 633 @Override 634 public boolean isEmpty() { 635 return fromList.isEmpty(); 636 } 637 638 @Override 639 public boolean removeIf(Predicate<? super T> filter) { 640 checkNotNull(filter); 641 return fromList.removeIf(element -> filter.test(function.apply(element))); 642 } 643 644 @Override 645 @ParametricNullness 646 public T remove(int index) { 647 return function.apply(fromList.remove(index)); 648 } 649 650 @Override 651 public int size() { 652 return fromList.size(); 653 } 654 655 private static final long serialVersionUID = 0; 656 } 657 658 /** 659 * Returns consecutive {@linkplain List#subList(int, int) sublists} of a list, each of the same 660 * size (the final list may be smaller). For example, partitioning a list containing {@code [a, b, 661 * c, d, e]} with a partition size of 3 yields {@code [[a, b, c], [d, e]]} -- an outer list 662 * containing two inner lists of three and two elements, all in the original order. 663 * 664 * <p>The outer list is unmodifiable, but reflects the latest state of the source list. The inner 665 * lists are sublist views of the original list, produced on demand using {@link List#subList(int, 666 * int)}, and are subject to all the usual caveats about modification as explained in that API. 667 * 668 * @param list the list to return consecutive sublists of 669 * @param size the desired size of each sublist (the last may be smaller) 670 * @return a list of consecutive sublists 671 * @throws IllegalArgumentException if {@code partitionSize} is nonpositive 672 */ 673 public static <T extends @Nullable Object> List<List<T>> partition(List<T> list, int size) { 674 checkNotNull(list); 675 checkArgument(size > 0); 676 return (list instanceof RandomAccess) 677 ? new RandomAccessPartition<>(list, size) 678 : new Partition<>(list, size); 679 } 680 681 private static class Partition<T extends @Nullable Object> extends AbstractList<List<T>> { 682 final List<T> list; 683 final int size; 684 685 Partition(List<T> list, int size) { 686 this.list = list; 687 this.size = size; 688 } 689 690 @Override 691 public List<T> get(int index) { 692 checkElementIndex(index, size()); 693 int start = index * size; 694 int end = Math.min(start + size, list.size()); 695 return list.subList(start, end); 696 } 697 698 @Override 699 public int size() { 700 return IntMath.divide(list.size(), size, RoundingMode.CEILING); 701 } 702 703 @Override 704 public boolean isEmpty() { 705 return list.isEmpty(); 706 } 707 } 708 709 private static class RandomAccessPartition<T extends @Nullable Object> extends Partition<T> 710 implements RandomAccess { 711 RandomAccessPartition(List<T> list, int size) { 712 super(list, size); 713 } 714 } 715 716 /** 717 * Returns a view of the specified string as an immutable list of {@code Character} values. 718 * 719 * @since 7.0 720 */ 721 public static ImmutableList<Character> charactersOf(String string) { 722 return new StringAsImmutableList(checkNotNull(string)); 723 } 724 725 /** 726 * Returns a view of the specified {@code CharSequence} as a {@code List<Character>}, viewing 727 * {@code sequence} as a sequence of Unicode code units. The view does not support any 728 * modification operations, but reflects any changes to the underlying character sequence. 729 * 730 * @param sequence the character sequence to view as a {@code List} of characters 731 * @return an {@code List<Character>} view of the character sequence 732 * @since 7.0 733 */ 734 @Beta 735 public static List<Character> charactersOf(CharSequence sequence) { 736 return new CharSequenceAsList(checkNotNull(sequence)); 737 } 738 739 @SuppressWarnings("serial") // serialized using ImmutableList serialization 740 private static final class StringAsImmutableList extends ImmutableList<Character> { 741 742 private final String string; 743 744 StringAsImmutableList(String string) { 745 this.string = string; 746 } 747 748 @Override 749 public int indexOf(@CheckForNull Object object) { 750 return (object instanceof Character) ? string.indexOf((Character) object) : -1; 751 } 752 753 @Override 754 public int lastIndexOf(@CheckForNull Object object) { 755 return (object instanceof Character) ? string.lastIndexOf((Character) object) : -1; 756 } 757 758 @Override 759 public ImmutableList<Character> subList(int fromIndex, int toIndex) { 760 checkPositionIndexes(fromIndex, toIndex, size()); // for GWT 761 return charactersOf(string.substring(fromIndex, toIndex)); 762 } 763 764 @Override 765 boolean isPartialView() { 766 return false; 767 } 768 769 @Override 770 public Character get(int index) { 771 checkElementIndex(index, size()); // for GWT 772 return string.charAt(index); 773 } 774 775 @Override 776 public int size() { 777 return string.length(); 778 } 779 } 780 781 private static final class CharSequenceAsList extends AbstractList<Character> { 782 private final CharSequence sequence; 783 784 CharSequenceAsList(CharSequence sequence) { 785 this.sequence = sequence; 786 } 787 788 @Override 789 public Character get(int index) { 790 checkElementIndex(index, size()); // for GWT 791 return sequence.charAt(index); 792 } 793 794 @Override 795 public int size() { 796 return sequence.length(); 797 } 798 } 799 800 /** 801 * Returns a reversed view of the specified list. For example, {@code 802 * Lists.reverse(Arrays.asList(1, 2, 3))} returns a list containing {@code 3, 2, 1}. The returned 803 * list is backed by this list, so changes in the returned list are reflected in this list, and 804 * vice-versa. The returned list supports all of the optional list operations supported by this 805 * list. 806 * 807 * <p>The returned list is random-access if the specified list is random access. 808 * 809 * @since 7.0 810 */ 811 public static <T extends @Nullable Object> List<T> reverse(List<T> list) { 812 if (list instanceof ImmutableList) { 813 // Avoid nullness warnings. 814 List<?> reversed = ((ImmutableList<?>) list).reverse(); 815 @SuppressWarnings("unchecked") 816 List<T> result = (List<T>) reversed; 817 return result; 818 } else if (list instanceof ReverseList) { 819 return ((ReverseList<T>) list).getForwardList(); 820 } else if (list instanceof RandomAccess) { 821 return new RandomAccessReverseList<>(list); 822 } else { 823 return new ReverseList<>(list); 824 } 825 } 826 827 private static class ReverseList<T extends @Nullable Object> extends AbstractList<T> { 828 private final List<T> forwardList; 829 830 ReverseList(List<T> forwardList) { 831 this.forwardList = checkNotNull(forwardList); 832 } 833 834 List<T> getForwardList() { 835 return forwardList; 836 } 837 838 private int reverseIndex(int index) { 839 int size = size(); 840 checkElementIndex(index, size); 841 return (size - 1) - index; 842 } 843 844 private int reversePosition(int index) { 845 int size = size(); 846 checkPositionIndex(index, size); 847 return size - index; 848 } 849 850 @Override 851 public void add(int index, @ParametricNullness T element) { 852 forwardList.add(reversePosition(index), element); 853 } 854 855 @Override 856 public void clear() { 857 forwardList.clear(); 858 } 859 860 @Override 861 @ParametricNullness 862 public T remove(int index) { 863 return forwardList.remove(reverseIndex(index)); 864 } 865 866 @Override 867 protected void removeRange(int fromIndex, int toIndex) { 868 subList(fromIndex, toIndex).clear(); 869 } 870 871 @Override 872 @ParametricNullness 873 public T set(int index, @ParametricNullness T element) { 874 return forwardList.set(reverseIndex(index), element); 875 } 876 877 @Override 878 @ParametricNullness 879 public T get(int index) { 880 return forwardList.get(reverseIndex(index)); 881 } 882 883 @Override 884 public int size() { 885 return forwardList.size(); 886 } 887 888 @Override 889 public List<T> subList(int fromIndex, int toIndex) { 890 checkPositionIndexes(fromIndex, toIndex, size()); 891 return reverse(forwardList.subList(reversePosition(toIndex), reversePosition(fromIndex))); 892 } 893 894 @Override 895 public Iterator<T> iterator() { 896 return listIterator(); 897 } 898 899 @Override 900 public ListIterator<T> listIterator(int index) { 901 int start = reversePosition(index); 902 final ListIterator<T> forwardIterator = forwardList.listIterator(start); 903 return new ListIterator<T>() { 904 905 boolean canRemoveOrSet; 906 907 @Override 908 public void add(@ParametricNullness T e) { 909 forwardIterator.add(e); 910 forwardIterator.previous(); 911 canRemoveOrSet = false; 912 } 913 914 @Override 915 public boolean hasNext() { 916 return forwardIterator.hasPrevious(); 917 } 918 919 @Override 920 public boolean hasPrevious() { 921 return forwardIterator.hasNext(); 922 } 923 924 @Override 925 @ParametricNullness 926 public T next() { 927 if (!hasNext()) { 928 throw new NoSuchElementException(); 929 } 930 canRemoveOrSet = true; 931 return forwardIterator.previous(); 932 } 933 934 @Override 935 public int nextIndex() { 936 return reversePosition(forwardIterator.nextIndex()); 937 } 938 939 @Override 940 @ParametricNullness 941 public T previous() { 942 if (!hasPrevious()) { 943 throw new NoSuchElementException(); 944 } 945 canRemoveOrSet = true; 946 return forwardIterator.next(); 947 } 948 949 @Override 950 public int previousIndex() { 951 return nextIndex() - 1; 952 } 953 954 @Override 955 public void remove() { 956 checkRemove(canRemoveOrSet); 957 forwardIterator.remove(); 958 canRemoveOrSet = false; 959 } 960 961 @Override 962 public void set(@ParametricNullness T e) { 963 checkState(canRemoveOrSet); 964 forwardIterator.set(e); 965 } 966 }; 967 } 968 } 969 970 private static class RandomAccessReverseList<T extends @Nullable Object> extends ReverseList<T> 971 implements RandomAccess { 972 RandomAccessReverseList(List<T> forwardList) { 973 super(forwardList); 974 } 975 } 976 977 /** An implementation of {@link List#hashCode()}. */ 978 static int hashCodeImpl(List<?> list) { 979 // TODO(lowasser): worth optimizing for RandomAccess? 980 int hashCode = 1; 981 for (Object o : list) { 982 hashCode = 31 * hashCode + (o == null ? 0 : o.hashCode()); 983 984 hashCode = ~~hashCode; 985 // needed to deal with GWT integer overflow 986 } 987 return hashCode; 988 } 989 990 /** An implementation of {@link List#equals(Object)}. */ 991 static boolean equalsImpl(List<?> thisList, @CheckForNull Object other) { 992 if (other == checkNotNull(thisList)) { 993 return true; 994 } 995 if (!(other instanceof List)) { 996 return false; 997 } 998 List<?> otherList = (List<?>) other; 999 int size = thisList.size(); 1000 if (size != otherList.size()) { 1001 return false; 1002 } 1003 if (thisList instanceof RandomAccess && otherList instanceof RandomAccess) { 1004 // avoid allocation and use the faster loop 1005 for (int i = 0; i < size; i++) { 1006 if (!Objects.equal(thisList.get(i), otherList.get(i))) { 1007 return false; 1008 } 1009 } 1010 return true; 1011 } else { 1012 return Iterators.elementsEqual(thisList.iterator(), otherList.iterator()); 1013 } 1014 } 1015 1016 /** An implementation of {@link List#addAll(int, Collection)}. */ 1017 static <E extends @Nullable Object> boolean addAllImpl( 1018 List<E> list, int index, Iterable<? extends E> elements) { 1019 boolean changed = false; 1020 ListIterator<E> listIterator = list.listIterator(index); 1021 for (E e : elements) { 1022 listIterator.add(e); 1023 changed = true; 1024 } 1025 return changed; 1026 } 1027 1028 /** An implementation of {@link List#indexOf(Object)}. */ 1029 static int indexOfImpl(List<?> list, @CheckForNull Object element) { 1030 if (list instanceof RandomAccess) { 1031 return indexOfRandomAccess(list, element); 1032 } else { 1033 ListIterator<?> listIterator = list.listIterator(); 1034 while (listIterator.hasNext()) { 1035 if (Objects.equal(element, listIterator.next())) { 1036 return listIterator.previousIndex(); 1037 } 1038 } 1039 return -1; 1040 } 1041 } 1042 1043 private static int indexOfRandomAccess(List<?> list, @CheckForNull Object element) { 1044 int size = list.size(); 1045 if (element == null) { 1046 for (int i = 0; i < size; i++) { 1047 if (list.get(i) == null) { 1048 return i; 1049 } 1050 } 1051 } else { 1052 for (int i = 0; i < size; i++) { 1053 if (element.equals(list.get(i))) { 1054 return i; 1055 } 1056 } 1057 } 1058 return -1; 1059 } 1060 1061 /** An implementation of {@link List#lastIndexOf(Object)}. */ 1062 static int lastIndexOfImpl(List<?> list, @CheckForNull Object element) { 1063 if (list instanceof RandomAccess) { 1064 return lastIndexOfRandomAccess(list, element); 1065 } else { 1066 ListIterator<?> listIterator = list.listIterator(list.size()); 1067 while (listIterator.hasPrevious()) { 1068 if (Objects.equal(element, listIterator.previous())) { 1069 return listIterator.nextIndex(); 1070 } 1071 } 1072 return -1; 1073 } 1074 } 1075 1076 private static int lastIndexOfRandomAccess(List<?> list, @CheckForNull Object element) { 1077 if (element == null) { 1078 for (int i = list.size() - 1; i >= 0; i--) { 1079 if (list.get(i) == null) { 1080 return i; 1081 } 1082 } 1083 } else { 1084 for (int i = list.size() - 1; i >= 0; i--) { 1085 if (element.equals(list.get(i))) { 1086 return i; 1087 } 1088 } 1089 } 1090 return -1; 1091 } 1092 1093 /** Returns an implementation of {@link List#listIterator(int)}. */ 1094 static <E extends @Nullable Object> ListIterator<E> listIteratorImpl(List<E> list, int index) { 1095 return new AbstractListWrapper<>(list).listIterator(index); 1096 } 1097 1098 /** An implementation of {@link List#subList(int, int)}. */ 1099 static <E extends @Nullable Object> List<E> subListImpl( 1100 final List<E> list, int fromIndex, int toIndex) { 1101 List<E> wrapper; 1102 if (list instanceof RandomAccess) { 1103 wrapper = 1104 new RandomAccessListWrapper<E>(list) { 1105 @Override 1106 public ListIterator<E> listIterator(int index) { 1107 return backingList.listIterator(index); 1108 } 1109 1110 private static final long serialVersionUID = 0; 1111 }; 1112 } else { 1113 wrapper = 1114 new AbstractListWrapper<E>(list) { 1115 @Override 1116 public ListIterator<E> listIterator(int index) { 1117 return backingList.listIterator(index); 1118 } 1119 1120 private static final long serialVersionUID = 0; 1121 }; 1122 } 1123 return wrapper.subList(fromIndex, toIndex); 1124 } 1125 1126 private static class AbstractListWrapper<E extends @Nullable Object> extends AbstractList<E> { 1127 final List<E> backingList; 1128 1129 AbstractListWrapper(List<E> backingList) { 1130 this.backingList = checkNotNull(backingList); 1131 } 1132 1133 @Override 1134 public void add(int index, @ParametricNullness E element) { 1135 backingList.add(index, element); 1136 } 1137 1138 @Override 1139 public boolean addAll(int index, Collection<? extends E> c) { 1140 return backingList.addAll(index, c); 1141 } 1142 1143 @Override 1144 @ParametricNullness 1145 public E get(int index) { 1146 return backingList.get(index); 1147 } 1148 1149 @Override 1150 @ParametricNullness 1151 public E remove(int index) { 1152 return backingList.remove(index); 1153 } 1154 1155 @Override 1156 @ParametricNullness 1157 public E set(int index, @ParametricNullness E element) { 1158 return backingList.set(index, element); 1159 } 1160 1161 @Override 1162 public boolean contains(@CheckForNull Object o) { 1163 return backingList.contains(o); 1164 } 1165 1166 @Override 1167 public int size() { 1168 return backingList.size(); 1169 } 1170 } 1171 1172 private static class RandomAccessListWrapper<E extends @Nullable Object> 1173 extends AbstractListWrapper<E> implements RandomAccess { 1174 RandomAccessListWrapper(List<E> backingList) { 1175 super(backingList); 1176 } 1177 } 1178 1179 /** Used to avoid http://bugs.sun.com/view_bug.do?bug_id=6558557 */ 1180 static <T extends @Nullable Object> List<T> cast(Iterable<T> iterable) { 1181 return (List<T>) iterable; 1182 } 1183}