001/* 002 * Copyright (C) 2014 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.graph; 018 019import static com.google.common.base.Preconditions.checkArgument; 020import static com.google.common.graph.GraphConstants.NODE_NOT_IN_GRAPH; 021import static java.util.Objects.requireNonNull; 022 023import com.google.common.annotations.Beta; 024import com.google.common.base.Function; 025import com.google.common.base.Objects; 026import com.google.common.collect.ImmutableSet; 027import com.google.common.collect.Iterables; 028import com.google.common.collect.Iterators; 029import com.google.common.collect.Maps; 030import com.google.errorprone.annotations.CanIgnoreReturnValue; 031import java.util.Collection; 032import java.util.HashSet; 033import java.util.Iterator; 034import java.util.Map; 035import java.util.Set; 036import javax.annotation.CheckForNull; 037 038/** 039 * Static utility methods for {@link Graph}, {@link ValueGraph}, and {@link Network} instances. 040 * 041 * @author James Sexton 042 * @author Joshua O'Madadhain 043 * @since 20.0 044 */ 045@Beta 046@ElementTypesAreNonnullByDefault 047public final class Graphs { 048 049 private Graphs() {} 050 051 // Graph query methods 052 053 /** 054 * Returns true if {@code graph} has at least one cycle. A cycle is defined as a non-empty subset 055 * of edges in a graph arranged to form a path (a sequence of adjacent outgoing edges) starting 056 * and ending with the same node. 057 * 058 * <p>This method will detect any non-empty cycle, including self-loops (a cycle of length 1). 059 */ 060 public static <N> boolean hasCycle(Graph<N> graph) { 061 int numEdges = graph.edges().size(); 062 if (numEdges == 0) { 063 return false; // An edge-free graph is acyclic by definition. 064 } 065 if (!graph.isDirected() && numEdges >= graph.nodes().size()) { 066 return true; // Optimization for the undirected case: at least one cycle must exist. 067 } 068 069 Map<Object, NodeVisitState> visitedNodes = 070 Maps.newHashMapWithExpectedSize(graph.nodes().size()); 071 for (N node : graph.nodes()) { 072 if (subgraphHasCycle(graph, visitedNodes, node, null)) { 073 return true; 074 } 075 } 076 return false; 077 } 078 079 /** 080 * Returns true if {@code network} has at least one cycle. A cycle is defined as a non-empty 081 * subset of edges in a graph arranged to form a path (a sequence of adjacent outgoing edges) 082 * starting and ending with the same node. 083 * 084 * <p>This method will detect any non-empty cycle, including self-loops (a cycle of length 1). 085 */ 086 public static boolean hasCycle(Network<?, ?> network) { 087 // In a directed graph, parallel edges cannot introduce a cycle in an acyclic graph. 088 // However, in an undirected graph, any parallel edge induces a cycle in the graph. 089 if (!network.isDirected() 090 && network.allowsParallelEdges() 091 && network.edges().size() > network.asGraph().edges().size()) { 092 return true; 093 } 094 return hasCycle(network.asGraph()); 095 } 096 097 /** 098 * Performs a traversal of the nodes reachable from {@code node}. If we ever reach a node we've 099 * already visited (following only outgoing edges and without reusing edges), we know there's a 100 * cycle in the graph. 101 */ 102 private static <N> boolean subgraphHasCycle( 103 Graph<N> graph, 104 Map<Object, NodeVisitState> visitedNodes, 105 N node, 106 @CheckForNull N previousNode) { 107 NodeVisitState state = visitedNodes.get(node); 108 if (state == NodeVisitState.COMPLETE) { 109 return false; 110 } 111 if (state == NodeVisitState.PENDING) { 112 return true; 113 } 114 115 visitedNodes.put(node, NodeVisitState.PENDING); 116 for (N nextNode : graph.successors(node)) { 117 if (canTraverseWithoutReusingEdge(graph, nextNode, previousNode) 118 && subgraphHasCycle(graph, visitedNodes, nextNode, node)) { 119 return true; 120 } 121 } 122 visitedNodes.put(node, NodeVisitState.COMPLETE); 123 return false; 124 } 125 126 /** 127 * Determines whether an edge has already been used during traversal. In the directed case a cycle 128 * is always detected before reusing an edge, so no special logic is required. In the undirected 129 * case, we must take care not to "backtrack" over an edge (i.e. going from A to B and then going 130 * from B to A). 131 */ 132 private static boolean canTraverseWithoutReusingEdge( 133 Graph<?> graph, Object nextNode, @CheckForNull Object previousNode) { 134 if (graph.isDirected() || !Objects.equal(previousNode, nextNode)) { 135 return true; 136 } 137 // This falls into the undirected A->B->A case. The Graph interface does not support parallel 138 // edges, so this traversal would require reusing the undirected AB edge. 139 return false; 140 } 141 142 /** 143 * Returns the transitive closure of {@code graph}. The transitive closure of a graph is another 144 * graph with an edge connecting node A to node B if node B is {@link #reachableNodes(Graph, 145 * Object) reachable} from node A. 146 * 147 * <p>This is a "snapshot" based on the current topology of {@code graph}, rather than a live view 148 * of the transitive closure of {@code graph}. In other words, the returned {@link Graph} will not 149 * be updated after modifications to {@code graph}. 150 */ 151 // TODO(b/31438252): Consider potential optimizations for this algorithm. 152 public static <N> Graph<N> transitiveClosure(Graph<N> graph) { 153 MutableGraph<N> transitiveClosure = GraphBuilder.from(graph).allowsSelfLoops(true).build(); 154 // Every node is, at a minimum, reachable from itself. Since the resulting transitive closure 155 // will have no isolated nodes, we can skip adding nodes explicitly and let putEdge() do it. 156 157 if (graph.isDirected()) { 158 // Note: works for both directed and undirected graphs, but we only use in the directed case. 159 for (N node : graph.nodes()) { 160 for (N reachableNode : reachableNodes(graph, node)) { 161 transitiveClosure.putEdge(node, reachableNode); 162 } 163 } 164 } else { 165 // An optimization for the undirected case: for every node B reachable from node A, 166 // node A and node B have the same reachability set. 167 Set<N> visitedNodes = new HashSet<N>(); 168 for (N node : graph.nodes()) { 169 if (!visitedNodes.contains(node)) { 170 Set<N> reachableNodes = reachableNodes(graph, node); 171 visitedNodes.addAll(reachableNodes); 172 int pairwiseMatch = 1; // start at 1 to include self-loops 173 for (N nodeU : reachableNodes) { 174 for (N nodeV : Iterables.limit(reachableNodes, pairwiseMatch++)) { 175 transitiveClosure.putEdge(nodeU, nodeV); 176 } 177 } 178 } 179 } 180 } 181 182 return transitiveClosure; 183 } 184 185 /** 186 * Returns the set of nodes that are reachable from {@code node}. Node B is defined as reachable 187 * from node A if there exists a path (a sequence of adjacent outgoing edges) starting at node A 188 * and ending at node B. Note that a node is always reachable from itself via a zero-length path. 189 * 190 * <p>This is a "snapshot" based on the current topology of {@code graph}, rather than a live view 191 * of the set of nodes reachable from {@code node}. In other words, the returned {@link Set} will 192 * not be updated after modifications to {@code graph}. 193 * 194 * @throws IllegalArgumentException if {@code node} is not present in {@code graph} 195 */ 196 public static <N> Set<N> reachableNodes(Graph<N> graph, N node) { 197 checkArgument(graph.nodes().contains(node), NODE_NOT_IN_GRAPH, node); 198 return ImmutableSet.copyOf(Traverser.forGraph(graph).breadthFirst(node)); 199 } 200 201 // Graph mutation methods 202 203 // Graph view methods 204 205 /** 206 * Returns a view of {@code graph} with the direction (if any) of every edge reversed. All other 207 * properties remain intact, and further updates to {@code graph} will be reflected in the view. 208 */ 209 public static <N> Graph<N> transpose(Graph<N> graph) { 210 if (!graph.isDirected()) { 211 return graph; // the transpose of an undirected graph is an identical graph 212 } 213 214 if (graph instanceof TransposedGraph) { 215 return ((TransposedGraph<N>) graph).graph; 216 } 217 218 return new TransposedGraph<N>(graph); 219 } 220 221 /** 222 * Returns a view of {@code graph} with the direction (if any) of every edge reversed. All other 223 * properties remain intact, and further updates to {@code graph} will be reflected in the view. 224 */ 225 public static <N, V> ValueGraph<N, V> transpose(ValueGraph<N, V> graph) { 226 if (!graph.isDirected()) { 227 return graph; // the transpose of an undirected graph is an identical graph 228 } 229 230 if (graph instanceof TransposedValueGraph) { 231 return ((TransposedValueGraph<N, V>) graph).graph; 232 } 233 234 return new TransposedValueGraph<>(graph); 235 } 236 237 /** 238 * Returns a view of {@code network} with the direction (if any) of every edge reversed. All other 239 * properties remain intact, and further updates to {@code network} will be reflected in the view. 240 */ 241 public static <N, E> Network<N, E> transpose(Network<N, E> network) { 242 if (!network.isDirected()) { 243 return network; // the transpose of an undirected network is an identical network 244 } 245 246 if (network instanceof TransposedNetwork) { 247 return ((TransposedNetwork<N, E>) network).network; 248 } 249 250 return new TransposedNetwork<>(network); 251 } 252 253 static <N> EndpointPair<N> transpose(EndpointPair<N> endpoints) { 254 if (endpoints.isOrdered()) { 255 return EndpointPair.ordered(endpoints.target(), endpoints.source()); 256 } 257 return endpoints; 258 } 259 260 // NOTE: this should work as long as the delegate graph's implementation of edges() (like that of 261 // AbstractGraph) derives its behavior from calling successors(). 262 private static class TransposedGraph<N> extends ForwardingGraph<N> { 263 private final Graph<N> graph; 264 265 TransposedGraph(Graph<N> graph) { 266 this.graph = graph; 267 } 268 269 @Override 270 Graph<N> delegate() { 271 return graph; 272 } 273 274 @Override 275 public Set<N> predecessors(N node) { 276 return delegate().successors(node); // transpose 277 } 278 279 @Override 280 public Set<N> successors(N node) { 281 return delegate().predecessors(node); // transpose 282 } 283 284 @Override 285 public Set<EndpointPair<N>> incidentEdges(N node) { 286 return new IncidentEdgeSet<N>(this, node) { 287 @Override 288 public Iterator<EndpointPair<N>> iterator() { 289 return Iterators.transform( 290 delegate().incidentEdges(node).iterator(), 291 new Function<EndpointPair<N>, EndpointPair<N>>() { 292 @Override 293 public EndpointPair<N> apply(EndpointPair<N> edge) { 294 return EndpointPair.of(delegate(), edge.nodeV(), edge.nodeU()); 295 } 296 }); 297 } 298 }; 299 } 300 301 @Override 302 public int inDegree(N node) { 303 return delegate().outDegree(node); // transpose 304 } 305 306 @Override 307 public int outDegree(N node) { 308 return delegate().inDegree(node); // transpose 309 } 310 311 @Override 312 public boolean hasEdgeConnecting(N nodeU, N nodeV) { 313 return delegate().hasEdgeConnecting(nodeV, nodeU); // transpose 314 } 315 316 @Override 317 public boolean hasEdgeConnecting(EndpointPair<N> endpoints) { 318 return delegate().hasEdgeConnecting(transpose(endpoints)); 319 } 320 } 321 322 // NOTE: this should work as long as the delegate graph's implementation of edges() (like that of 323 // AbstractValueGraph) derives its behavior from calling successors(). 324 private static class TransposedValueGraph<N, V> extends ForwardingValueGraph<N, V> { 325 private final ValueGraph<N, V> graph; 326 327 TransposedValueGraph(ValueGraph<N, V> graph) { 328 this.graph = graph; 329 } 330 331 @Override 332 ValueGraph<N, V> delegate() { 333 return graph; 334 } 335 336 @Override 337 public Set<N> predecessors(N node) { 338 return delegate().successors(node); // transpose 339 } 340 341 @Override 342 public Set<N> successors(N node) { 343 return delegate().predecessors(node); // transpose 344 } 345 346 @Override 347 public int inDegree(N node) { 348 return delegate().outDegree(node); // transpose 349 } 350 351 @Override 352 public int outDegree(N node) { 353 return delegate().inDegree(node); // transpose 354 } 355 356 @Override 357 public boolean hasEdgeConnecting(N nodeU, N nodeV) { 358 return delegate().hasEdgeConnecting(nodeV, nodeU); // transpose 359 } 360 361 @Override 362 public boolean hasEdgeConnecting(EndpointPair<N> endpoints) { 363 return delegate().hasEdgeConnecting(transpose(endpoints)); 364 } 365 366 @Override 367 @CheckForNull 368 public V edgeValueOrDefault(N nodeU, N nodeV, @CheckForNull V defaultValue) { 369 return delegate().edgeValueOrDefault(nodeV, nodeU, defaultValue); // transpose 370 } 371 372 @Override 373 @CheckForNull 374 public V edgeValueOrDefault(EndpointPair<N> endpoints, @CheckForNull V defaultValue) { 375 return delegate().edgeValueOrDefault(transpose(endpoints), defaultValue); 376 } 377 } 378 379 private static class TransposedNetwork<N, E> extends ForwardingNetwork<N, E> { 380 private final Network<N, E> network; 381 382 TransposedNetwork(Network<N, E> network) { 383 this.network = network; 384 } 385 386 @Override 387 Network<N, E> delegate() { 388 return network; 389 } 390 391 @Override 392 public Set<N> predecessors(N node) { 393 return delegate().successors(node); // transpose 394 } 395 396 @Override 397 public Set<N> successors(N node) { 398 return delegate().predecessors(node); // transpose 399 } 400 401 @Override 402 public int inDegree(N node) { 403 return delegate().outDegree(node); // transpose 404 } 405 406 @Override 407 public int outDegree(N node) { 408 return delegate().inDegree(node); // transpose 409 } 410 411 @Override 412 public Set<E> inEdges(N node) { 413 return delegate().outEdges(node); // transpose 414 } 415 416 @Override 417 public Set<E> outEdges(N node) { 418 return delegate().inEdges(node); // transpose 419 } 420 421 @Override 422 public EndpointPair<N> incidentNodes(E edge) { 423 EndpointPair<N> endpointPair = delegate().incidentNodes(edge); 424 return EndpointPair.of(network, endpointPair.nodeV(), endpointPair.nodeU()); // transpose 425 } 426 427 @Override 428 public Set<E> edgesConnecting(N nodeU, N nodeV) { 429 return delegate().edgesConnecting(nodeV, nodeU); // transpose 430 } 431 432 @Override 433 public Set<E> edgesConnecting(EndpointPair<N> endpoints) { 434 return delegate().edgesConnecting(transpose(endpoints)); 435 } 436 437 @Override 438 @CheckForNull 439 public E edgeConnectingOrNull(N nodeU, N nodeV) { 440 return delegate().edgeConnectingOrNull(nodeV, nodeU); // transpose 441 } 442 443 @Override 444 @CheckForNull 445 public E edgeConnectingOrNull(EndpointPair<N> endpoints) { 446 return delegate().edgeConnectingOrNull(transpose(endpoints)); 447 } 448 449 @Override 450 public boolean hasEdgeConnecting(N nodeU, N nodeV) { 451 return delegate().hasEdgeConnecting(nodeV, nodeU); // transpose 452 } 453 454 @Override 455 public boolean hasEdgeConnecting(EndpointPair<N> endpoints) { 456 return delegate().hasEdgeConnecting(transpose(endpoints)); 457 } 458 } 459 460 // Graph copy methods 461 462 /** 463 * Returns the subgraph of {@code graph} induced by {@code nodes}. This subgraph is a new graph 464 * that contains all of the nodes in {@code nodes}, and all of the {@link Graph#edges() edges} 465 * from {@code graph} for which both nodes are contained by {@code nodes}. 466 * 467 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 468 */ 469 public static <N> MutableGraph<N> inducedSubgraph(Graph<N> graph, Iterable<? extends N> nodes) { 470 MutableGraph<N> subgraph = 471 (nodes instanceof Collection) 472 ? GraphBuilder.from(graph).expectedNodeCount(((Collection) nodes).size()).build() 473 : GraphBuilder.from(graph).build(); 474 for (N node : nodes) { 475 subgraph.addNode(node); 476 } 477 for (N node : subgraph.nodes()) { 478 for (N successorNode : graph.successors(node)) { 479 if (subgraph.nodes().contains(successorNode)) { 480 subgraph.putEdge(node, successorNode); 481 } 482 } 483 } 484 return subgraph; 485 } 486 487 /** 488 * Returns the subgraph of {@code graph} induced by {@code nodes}. This subgraph is a new graph 489 * that contains all of the nodes in {@code nodes}, and all of the {@link Graph#edges() edges} 490 * (and associated edge values) from {@code graph} for which both nodes are contained by {@code 491 * nodes}. 492 * 493 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 494 */ 495 public static <N, V> MutableValueGraph<N, V> inducedSubgraph( 496 ValueGraph<N, V> graph, Iterable<? extends N> nodes) { 497 MutableValueGraph<N, V> subgraph = 498 (nodes instanceof Collection) 499 ? ValueGraphBuilder.from(graph).expectedNodeCount(((Collection) nodes).size()).build() 500 : ValueGraphBuilder.from(graph).build(); 501 for (N node : nodes) { 502 subgraph.addNode(node); 503 } 504 for (N node : subgraph.nodes()) { 505 for (N successorNode : graph.successors(node)) { 506 if (subgraph.nodes().contains(successorNode)) { 507 // requireNonNull is safe because the endpoint pair comes from the graph. 508 subgraph.putEdgeValue( 509 node, 510 successorNode, 511 requireNonNull(graph.edgeValueOrDefault(node, successorNode, null))); 512 } 513 } 514 } 515 return subgraph; 516 } 517 518 /** 519 * Returns the subgraph of {@code network} induced by {@code nodes}. This subgraph is a new graph 520 * that contains all of the nodes in {@code nodes}, and all of the {@link Network#edges() edges} 521 * from {@code network} for which the {@link Network#incidentNodes(Object) incident nodes} are 522 * both contained by {@code nodes}. 523 * 524 * @throws IllegalArgumentException if any element in {@code nodes} is not a node in the graph 525 */ 526 public static <N, E> MutableNetwork<N, E> inducedSubgraph( 527 Network<N, E> network, Iterable<? extends N> nodes) { 528 MutableNetwork<N, E> subgraph = 529 (nodes instanceof Collection) 530 ? NetworkBuilder.from(network).expectedNodeCount(((Collection) nodes).size()).build() 531 : NetworkBuilder.from(network).build(); 532 for (N node : nodes) { 533 subgraph.addNode(node); 534 } 535 for (N node : subgraph.nodes()) { 536 for (E edge : network.outEdges(node)) { 537 N successorNode = network.incidentNodes(edge).adjacentNode(node); 538 if (subgraph.nodes().contains(successorNode)) { 539 subgraph.addEdge(node, successorNode, edge); 540 } 541 } 542 } 543 return subgraph; 544 } 545 546 /** Creates a mutable copy of {@code graph} with the same nodes and edges. */ 547 public static <N> MutableGraph<N> copyOf(Graph<N> graph) { 548 MutableGraph<N> copy = GraphBuilder.from(graph).expectedNodeCount(graph.nodes().size()).build(); 549 for (N node : graph.nodes()) { 550 copy.addNode(node); 551 } 552 for (EndpointPair<N> edge : graph.edges()) { 553 copy.putEdge(edge.nodeU(), edge.nodeV()); 554 } 555 return copy; 556 } 557 558 /** Creates a mutable copy of {@code graph} with the same nodes, edges, and edge values. */ 559 public static <N, V> MutableValueGraph<N, V> copyOf(ValueGraph<N, V> graph) { 560 MutableValueGraph<N, V> copy = 561 ValueGraphBuilder.from(graph).expectedNodeCount(graph.nodes().size()).build(); 562 for (N node : graph.nodes()) { 563 copy.addNode(node); 564 } 565 for (EndpointPair<N> edge : graph.edges()) { 566 // requireNonNull is safe because the endpoint pair comes from the graph. 567 copy.putEdgeValue( 568 edge.nodeU(), 569 edge.nodeV(), 570 requireNonNull(graph.edgeValueOrDefault(edge.nodeU(), edge.nodeV(), null))); 571 } 572 return copy; 573 } 574 575 /** Creates a mutable copy of {@code network} with the same nodes and edges. */ 576 public static <N, E> MutableNetwork<N, E> copyOf(Network<N, E> network) { 577 MutableNetwork<N, E> copy = 578 NetworkBuilder.from(network) 579 .expectedNodeCount(network.nodes().size()) 580 .expectedEdgeCount(network.edges().size()) 581 .build(); 582 for (N node : network.nodes()) { 583 copy.addNode(node); 584 } 585 for (E edge : network.edges()) { 586 EndpointPair<N> endpointPair = network.incidentNodes(edge); 587 copy.addEdge(endpointPair.nodeU(), endpointPair.nodeV(), edge); 588 } 589 return copy; 590 } 591 592 @CanIgnoreReturnValue 593 static int checkNonNegative(int value) { 594 checkArgument(value >= 0, "Not true that %s is non-negative.", value); 595 return value; 596 } 597 598 @CanIgnoreReturnValue 599 static long checkNonNegative(long value) { 600 checkArgument(value >= 0, "Not true that %s is non-negative.", value); 601 return value; 602 } 603 604 @CanIgnoreReturnValue 605 static int checkPositive(int value) { 606 checkArgument(value > 0, "Not true that %s is positive.", value); 607 return value; 608 } 609 610 @CanIgnoreReturnValue 611 static long checkPositive(long value) { 612 checkArgument(value > 0, "Not true that %s is positive.", value); 613 return value; 614 } 615 616 /** 617 * An enum representing the state of a node during DFS. {@code PENDING} means that the node is on 618 * the stack of the DFS, while {@code COMPLETE} means that the node and all its successors have 619 * been already explored. Any node that has not been explored will not have a state at all. 620 */ 621 private enum NodeVisitState { 622 PENDING, 623 COMPLETE 624 } 625}