001/*
002 * Copyright (C) 2008 The Guava Authors
003 *
004 * Licensed under the Apache License, Version 2.0 (the "License");
005 * you may not use this file except in compliance with the License.
006 * You may obtain a copy of the License at
007 *
008 * http://www.apache.org/licenses/LICENSE-2.0
009 *
010 * Unless required by applicable law or agreed to in writing, software
011 * distributed under the License is distributed on an "AS IS" BASIS,
012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
013 * See the License for the specific language governing permissions and
014 * limitations under the License.
015 */
016
017package com.google.common.collect;
018
019import static com.google.common.base.Preconditions.checkArgument;
020import static com.google.common.base.Preconditions.checkNotNull;
021import static com.google.common.collect.CollectPreconditions.checkNonnegative;
022import static java.util.Objects.requireNonNull;
023
024import com.google.common.annotations.Beta;
025import com.google.common.annotations.GwtCompatible;
026import com.google.common.base.Function;
027import com.google.common.base.Predicate;
028import com.google.common.base.Predicates;
029import com.google.common.math.IntMath;
030import com.google.common.primitives.Ints;
031import java.util.AbstractCollection;
032import java.util.ArrayList;
033import java.util.Arrays;
034import java.util.Collection;
035import java.util.Collections;
036import java.util.Comparator;
037import java.util.Iterator;
038import java.util.List;
039import javax.annotation.CheckForNull;
040import org.checkerframework.checker.nullness.qual.Nullable;
041
042/**
043 * Provides static methods for working with {@code Collection} instances.
044 *
045 * <p><b>Java 8 users:</b> several common uses for this class are now more comprehensively addressed
046 * by the new {@link java.util.stream.Stream} library. Read the method documentation below for
047 * comparisons. These methods are not being deprecated, but we gently encourage you to migrate to
048 * streams.
049 *
050 * @author Chris Povirk
051 * @author Mike Bostock
052 * @author Jared Levy
053 * @since 2.0
054 */
055@GwtCompatible
056@ElementTypesAreNonnullByDefault
057public final class Collections2 {
058  private Collections2() {}
059
060  /**
061   * Returns the elements of {@code unfiltered} that satisfy a predicate. The returned collection is
062   * a live view of {@code unfiltered}; changes to one affect the other.
063   *
064   * <p>The resulting collection's iterator does not support {@code remove()}, but all other
065   * collection methods are supported. When given an element that doesn't satisfy the predicate, the
066   * collection's {@code add()} and {@code addAll()} methods throw an {@link
067   * IllegalArgumentException}. When methods such as {@code removeAll()} and {@code clear()} are
068   * called on the filtered collection, only elements that satisfy the filter will be removed from
069   * the underlying collection.
070   *
071   * <p>The returned collection isn't threadsafe or serializable, even if {@code unfiltered} is.
072   *
073   * <p>Many of the filtered collection's methods, such as {@code size()}, iterate across every
074   * element in the underlying collection and determine which elements satisfy the filter. When a
075   * live view is <i>not</i> needed, it may be faster to copy {@code Iterables.filter(unfiltered,
076   * predicate)} and use the copy.
077   *
078   * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>, as documented at
079   * {@link Predicate#apply}. Do not provide a predicate such as {@code
080   * Predicates.instanceOf(ArrayList.class)}, which is inconsistent with equals. (See {@link
081   * Iterables#filter(Iterable, Class)} for related functionality.)
082   *
083   * <p><b>{@code Stream} equivalent:</b> {@link java.util.stream.Stream#filter Stream.filter}.
084   */
085  // TODO(kevinb): how can we omit that Iterables link when building gwt
086  // javadoc?
087  public static <E extends @Nullable Object> Collection<E> filter(
088      Collection<E> unfiltered, Predicate<? super E> predicate) {
089    if (unfiltered instanceof FilteredCollection) {
090      // Support clear(), removeAll(), and retainAll() when filtering a filtered
091      // collection.
092      return ((FilteredCollection<E>) unfiltered).createCombined(predicate);
093    }
094
095    return new FilteredCollection<E>(checkNotNull(unfiltered), checkNotNull(predicate));
096  }
097
098  /**
099   * Delegates to {@link Collection#contains}. Returns {@code false} if the {@code contains} method
100   * throws a {@code ClassCastException} or {@code NullPointerException}.
101   */
102  static boolean safeContains(Collection<?> collection, @CheckForNull Object object) {
103    checkNotNull(collection);
104    try {
105      return collection.contains(object);
106    } catch (ClassCastException | NullPointerException e) {
107      return false;
108    }
109  }
110
111  /**
112   * Delegates to {@link Collection#remove}. Returns {@code false} if the {@code remove} method
113   * throws a {@code ClassCastException} or {@code NullPointerException}.
114   */
115  static boolean safeRemove(Collection<?> collection, @CheckForNull Object object) {
116    checkNotNull(collection);
117    try {
118      return collection.remove(object);
119    } catch (ClassCastException | NullPointerException e) {
120      return false;
121    }
122  }
123
124  static class FilteredCollection<E extends @Nullable Object> extends AbstractCollection<E> {
125    final Collection<E> unfiltered;
126    final Predicate<? super E> predicate;
127
128    FilteredCollection(Collection<E> unfiltered, Predicate<? super E> predicate) {
129      this.unfiltered = unfiltered;
130      this.predicate = predicate;
131    }
132
133    FilteredCollection<E> createCombined(Predicate<? super E> newPredicate) {
134      return new FilteredCollection<E>(unfiltered, Predicates.<E>and(predicate, newPredicate));
135      // .<E> above needed to compile in JDK 5
136    }
137
138    @Override
139    public boolean add(@ParametricNullness E element) {
140      checkArgument(predicate.apply(element));
141      return unfiltered.add(element);
142    }
143
144    @Override
145    public boolean addAll(Collection<? extends E> collection) {
146      for (E element : collection) {
147        checkArgument(predicate.apply(element));
148      }
149      return unfiltered.addAll(collection);
150    }
151
152    @Override
153    public void clear() {
154      Iterables.removeIf(unfiltered, predicate);
155    }
156
157    @Override
158    public boolean contains(@CheckForNull Object element) {
159      if (safeContains(unfiltered, element)) {
160        @SuppressWarnings("unchecked") // element is in unfiltered, so it must be an E
161        E e = (E) element;
162        return predicate.apply(e);
163      }
164      return false;
165    }
166
167    @Override
168    public boolean containsAll(Collection<?> collection) {
169      return containsAllImpl(this, collection);
170    }
171
172    @Override
173    public boolean isEmpty() {
174      return !Iterables.any(unfiltered, predicate);
175    }
176
177    @Override
178    public Iterator<E> iterator() {
179      return Iterators.filter(unfiltered.iterator(), predicate);
180    }
181
182    @Override
183    public boolean remove(@CheckForNull Object element) {
184      return contains(element) && unfiltered.remove(element);
185    }
186
187    @Override
188    public boolean removeAll(final Collection<?> collection) {
189      boolean changed = false;
190      Iterator<E> itr = unfiltered.iterator();
191      while (itr.hasNext()) {
192        E e = itr.next();
193        if (predicate.apply(e) && collection.contains(e)) {
194          itr.remove();
195          changed = true;
196        }
197      }
198      return changed;
199    }
200
201    @Override
202    public boolean retainAll(final Collection<?> collection) {
203      boolean changed = false;
204      Iterator<E> itr = unfiltered.iterator();
205      while (itr.hasNext()) {
206        E e = itr.next();
207        if (predicate.apply(e) && !collection.contains(e)) {
208          itr.remove();
209          changed = true;
210        }
211      }
212      return changed;
213    }
214
215    @Override
216    public int size() {
217      int size = 0;
218      for (E e : unfiltered) {
219        if (predicate.apply(e)) {
220          size++;
221        }
222      }
223      return size;
224    }
225
226    @Override
227    public @Nullable Object[] toArray() {
228      // creating an ArrayList so filtering happens once
229      return Lists.newArrayList(iterator()).toArray();
230    }
231
232    @Override
233    @SuppressWarnings("nullness") // b/192354773 in our checker affects toArray declarations
234    public <T extends @Nullable Object> T[] toArray(T[] array) {
235      return Lists.newArrayList(iterator()).toArray(array);
236    }
237  }
238
239  /**
240   * Returns a collection that applies {@code function} to each element of {@code fromCollection}.
241   * The returned collection is a live view of {@code fromCollection}; changes to one affect the
242   * other.
243   *
244   * <p>The returned collection's {@code add()} and {@code addAll()} methods throw an {@link
245   * UnsupportedOperationException}. All other collection methods are supported, as long as {@code
246   * fromCollection} supports them.
247   *
248   * <p>The returned collection isn't threadsafe or serializable, even if {@code fromCollection} is.
249   *
250   * <p>When a live view is <i>not</i> needed, it may be faster to copy the transformed collection
251   * and use the copy.
252   *
253   * <p>If the input {@code Collection} is known to be a {@code List}, consider {@link
254   * Lists#transform}. If only an {@code Iterable} is available, use {@link Iterables#transform}.
255   *
256   * <p><b>{@code Stream} equivalent:</b> {@link java.util.stream.Stream#map Stream.map}.
257   */
258  public static <F extends @Nullable Object, T extends @Nullable Object> Collection<T> transform(
259      Collection<F> fromCollection, Function<? super F, T> function) {
260    return new TransformedCollection<>(fromCollection, function);
261  }
262
263  static class TransformedCollection<F extends @Nullable Object, T extends @Nullable Object>
264      extends AbstractCollection<T> {
265    final Collection<F> fromCollection;
266    final Function<? super F, ? extends T> function;
267
268    TransformedCollection(Collection<F> fromCollection, Function<? super F, ? extends T> function) {
269      this.fromCollection = checkNotNull(fromCollection);
270      this.function = checkNotNull(function);
271    }
272
273    @Override
274    public void clear() {
275      fromCollection.clear();
276    }
277
278    @Override
279    public boolean isEmpty() {
280      return fromCollection.isEmpty();
281    }
282
283    @Override
284    public Iterator<T> iterator() {
285      return Iterators.transform(fromCollection.iterator(), function);
286    }
287
288    @Override
289    public int size() {
290      return fromCollection.size();
291    }
292  }
293
294  /**
295   * Returns {@code true} if the collection {@code self} contains all of the elements in the
296   * collection {@code c}.
297   *
298   * <p>This method iterates over the specified collection {@code c}, checking each element returned
299   * by the iterator in turn to see if it is contained in the specified collection {@code self}. If
300   * all elements are so contained, {@code true} is returned, otherwise {@code false}.
301   *
302   * @param self a collection which might contain all elements in {@code c}
303   * @param c a collection whose elements might be contained by {@code self}
304   */
305  static boolean containsAllImpl(Collection<?> self, Collection<?> c) {
306    for (Object o : c) {
307      if (!self.contains(o)) {
308        return false;
309      }
310    }
311    return true;
312  }
313
314  /** An implementation of {@link Collection#toString()}. */
315  static String toStringImpl(final Collection<?> collection) {
316    StringBuilder sb = newStringBuilderForCollection(collection.size()).append('[');
317    boolean first = true;
318    for (Object o : collection) {
319      if (!first) {
320        sb.append(", ");
321      }
322      first = false;
323      if (o == collection) {
324        sb.append("(this Collection)");
325      } else {
326        sb.append(o);
327      }
328    }
329    return sb.append(']').toString();
330  }
331
332  /** Returns best-effort-sized StringBuilder based on the given collection size. */
333  static StringBuilder newStringBuilderForCollection(int size) {
334    checkNonnegative(size, "size");
335    return new StringBuilder((int) Math.min(size * 8L, Ints.MAX_POWER_OF_TWO));
336  }
337
338  /**
339   * Returns a {@link Collection} of all the permutations of the specified {@link Iterable}.
340   *
341   * <p><i>Notes:</i> This is an implementation of the algorithm for Lexicographical Permutations
342   * Generation, described in Knuth's "The Art of Computer Programming", Volume 4, Chapter 7,
343   * Section 7.2.1.2. The iteration order follows the lexicographical order. This means that the
344   * first permutation will be in ascending order, and the last will be in descending order.
345   *
346   * <p>Duplicate elements are considered equal. For example, the list [1, 1] will have only one
347   * permutation, instead of two. This is why the elements have to implement {@link Comparable}.
348   *
349   * <p>An empty iterable has only one permutation, which is an empty list.
350   *
351   * <p>This method is equivalent to {@code Collections2.orderedPermutations(list,
352   * Ordering.natural())}.
353   *
354   * @param elements the original iterable whose elements have to be permuted.
355   * @return an immutable {@link Collection} containing all the different permutations of the
356   *     original iterable.
357   * @throws NullPointerException if the specified iterable is null or has any null elements.
358   * @since 12.0
359   */
360  @Beta
361  public static <E extends Comparable<? super E>> Collection<List<E>> orderedPermutations(
362      Iterable<E> elements) {
363    return orderedPermutations(elements, Ordering.natural());
364  }
365
366  /**
367   * Returns a {@link Collection} of all the permutations of the specified {@link Iterable} using
368   * the specified {@link Comparator} for establishing the lexicographical ordering.
369   *
370   * <p>Examples:
371   *
372   * <pre>{@code
373   * for (List<String> perm : orderedPermutations(asList("b", "c", "a"))) {
374   *   println(perm);
375   * }
376   * // -> ["a", "b", "c"]
377   * // -> ["a", "c", "b"]
378   * // -> ["b", "a", "c"]
379   * // -> ["b", "c", "a"]
380   * // -> ["c", "a", "b"]
381   * // -> ["c", "b", "a"]
382   *
383   * for (List<Integer> perm : orderedPermutations(asList(1, 2, 2, 1))) {
384   *   println(perm);
385   * }
386   * // -> [1, 1, 2, 2]
387   * // -> [1, 2, 1, 2]
388   * // -> [1, 2, 2, 1]
389   * // -> [2, 1, 1, 2]
390   * // -> [2, 1, 2, 1]
391   * // -> [2, 2, 1, 1]
392   * }</pre>
393   *
394   * <p><i>Notes:</i> This is an implementation of the algorithm for Lexicographical Permutations
395   * Generation, described in Knuth's "The Art of Computer Programming", Volume 4, Chapter 7,
396   * Section 7.2.1.2. The iteration order follows the lexicographical order. This means that the
397   * first permutation will be in ascending order, and the last will be in descending order.
398   *
399   * <p>Elements that compare equal are considered equal and no new permutations are created by
400   * swapping them.
401   *
402   * <p>An empty iterable has only one permutation, which is an empty list.
403   *
404   * @param elements the original iterable whose elements have to be permuted.
405   * @param comparator a comparator for the iterable's elements.
406   * @return an immutable {@link Collection} containing all the different permutations of the
407   *     original iterable.
408   * @throws NullPointerException If the specified iterable is null, has any null elements, or if
409   *     the specified comparator is null.
410   * @since 12.0
411   */
412  @Beta
413  public static <E> Collection<List<E>> orderedPermutations(
414      Iterable<E> elements, Comparator<? super E> comparator) {
415    return new OrderedPermutationCollection<E>(elements, comparator);
416  }
417
418  private static final class OrderedPermutationCollection<E> extends AbstractCollection<List<E>> {
419    final ImmutableList<E> inputList;
420    final Comparator<? super E> comparator;
421    final int size;
422
423    OrderedPermutationCollection(Iterable<E> input, Comparator<? super E> comparator) {
424      this.inputList = ImmutableList.sortedCopyOf(comparator, input);
425      this.comparator = comparator;
426      this.size = calculateSize(inputList, comparator);
427    }
428
429    /**
430     * The number of permutations with repeated elements is calculated as follows:
431     *
432     * <ul>
433     *   <li>For an empty list, it is 1 (base case).
434     *   <li>When r numbers are added to a list of n-r elements, the number of permutations is
435     *       increased by a factor of (n choose r).
436     * </ul>
437     */
438    private static <E> int calculateSize(
439        List<E> sortedInputList, Comparator<? super E> comparator) {
440      int permutations = 1;
441      int n = 1;
442      int r = 1;
443      while (n < sortedInputList.size()) {
444        int comparison = comparator.compare(sortedInputList.get(n - 1), sortedInputList.get(n));
445        if (comparison < 0) {
446          // We move to the next non-repeated element.
447          permutations = IntMath.saturatedMultiply(permutations, IntMath.binomial(n, r));
448          r = 0;
449          if (permutations == Integer.MAX_VALUE) {
450            return Integer.MAX_VALUE;
451          }
452        }
453        n++;
454        r++;
455      }
456      return IntMath.saturatedMultiply(permutations, IntMath.binomial(n, r));
457    }
458
459    @Override
460    public int size() {
461      return size;
462    }
463
464    @Override
465    public boolean isEmpty() {
466      return false;
467    }
468
469    @Override
470    public Iterator<List<E>> iterator() {
471      return new OrderedPermutationIterator<E>(inputList, comparator);
472    }
473
474    @Override
475    public boolean contains(@CheckForNull Object obj) {
476      if (obj instanceof List) {
477        List<?> list = (List<?>) obj;
478        return isPermutation(inputList, list);
479      }
480      return false;
481    }
482
483    @Override
484    public String toString() {
485      return "orderedPermutationCollection(" + inputList + ")";
486    }
487  }
488
489  private static final class OrderedPermutationIterator<E> extends AbstractIterator<List<E>> {
490    @CheckForNull List<E> nextPermutation;
491    final Comparator<? super E> comparator;
492
493    OrderedPermutationIterator(List<E> list, Comparator<? super E> comparator) {
494      this.nextPermutation = Lists.newArrayList(list);
495      this.comparator = comparator;
496    }
497
498    @Override
499    @CheckForNull
500    protected List<E> computeNext() {
501      if (nextPermutation == null) {
502        return endOfData();
503      }
504      ImmutableList<E> next = ImmutableList.copyOf(nextPermutation);
505      calculateNextPermutation();
506      return next;
507    }
508
509    void calculateNextPermutation() {
510      int j = findNextJ();
511      if (j == -1) {
512        nextPermutation = null;
513        return;
514      }
515      /*
516       * requireNonNull is safe because we don't clear nextPermutation until we're done calling this
517       * method.
518       */
519      requireNonNull(nextPermutation);
520
521      int l = findNextL(j);
522      Collections.swap(nextPermutation, j, l);
523      int n = nextPermutation.size();
524      Collections.reverse(nextPermutation.subList(j + 1, n));
525    }
526
527    int findNextJ() {
528      /*
529       * requireNonNull is safe because we don't clear nextPermutation until we're done calling this
530       * method.
531       */
532      requireNonNull(nextPermutation);
533      for (int k = nextPermutation.size() - 2; k >= 0; k--) {
534        if (comparator.compare(nextPermutation.get(k), nextPermutation.get(k + 1)) < 0) {
535          return k;
536        }
537      }
538      return -1;
539    }
540
541    int findNextL(int j) {
542      /*
543       * requireNonNull is safe because we don't clear nextPermutation until we're done calling this
544       * method.
545       */
546      requireNonNull(nextPermutation);
547      E ak = nextPermutation.get(j);
548      for (int l = nextPermutation.size() - 1; l > j; l--) {
549        if (comparator.compare(ak, nextPermutation.get(l)) < 0) {
550          return l;
551        }
552      }
553      throw new AssertionError("this statement should be unreachable");
554    }
555  }
556
557  /**
558   * Returns a {@link Collection} of all the permutations of the specified {@link Collection}.
559   *
560   * <p><i>Notes:</i> This is an implementation of the Plain Changes algorithm for permutations
561   * generation, described in Knuth's "The Art of Computer Programming", Volume 4, Chapter 7,
562   * Section 7.2.1.2.
563   *
564   * <p>If the input list contains equal elements, some of the generated permutations will be equal.
565   *
566   * <p>An empty collection has only one permutation, which is an empty list.
567   *
568   * @param elements the original collection whose elements have to be permuted.
569   * @return an immutable {@link Collection} containing all the different permutations of the
570   *     original collection.
571   * @throws NullPointerException if the specified collection is null or has any null elements.
572   * @since 12.0
573   */
574  @Beta
575  public static <E> Collection<List<E>> permutations(Collection<E> elements) {
576    return new PermutationCollection<E>(ImmutableList.copyOf(elements));
577  }
578
579  private static final class PermutationCollection<E> extends AbstractCollection<List<E>> {
580    final ImmutableList<E> inputList;
581
582    PermutationCollection(ImmutableList<E> input) {
583      this.inputList = input;
584    }
585
586    @Override
587    public int size() {
588      return IntMath.factorial(inputList.size());
589    }
590
591    @Override
592    public boolean isEmpty() {
593      return false;
594    }
595
596    @Override
597    public Iterator<List<E>> iterator() {
598      return new PermutationIterator<E>(inputList);
599    }
600
601    @Override
602    public boolean contains(@CheckForNull Object obj) {
603      if (obj instanceof List) {
604        List<?> list = (List<?>) obj;
605        return isPermutation(inputList, list);
606      }
607      return false;
608    }
609
610    @Override
611    public String toString() {
612      return "permutations(" + inputList + ")";
613    }
614  }
615
616  private static class PermutationIterator<E> extends AbstractIterator<List<E>> {
617    final List<E> list;
618    final int[] c;
619    final int[] o;
620    int j;
621
622    PermutationIterator(List<E> list) {
623      this.list = new ArrayList<E>(list);
624      int n = list.size();
625      c = new int[n];
626      o = new int[n];
627      Arrays.fill(c, 0);
628      Arrays.fill(o, 1);
629      j = Integer.MAX_VALUE;
630    }
631
632    @Override
633    @CheckForNull
634    protected List<E> computeNext() {
635      if (j <= 0) {
636        return endOfData();
637      }
638      ImmutableList<E> next = ImmutableList.copyOf(list);
639      calculateNextPermutation();
640      return next;
641    }
642
643    void calculateNextPermutation() {
644      j = list.size() - 1;
645      int s = 0;
646
647      // Handle the special case of an empty list. Skip the calculation of the
648      // next permutation.
649      if (j == -1) {
650        return;
651      }
652
653      while (true) {
654        int q = c[j] + o[j];
655        if (q < 0) {
656          switchDirection();
657          continue;
658        }
659        if (q == j + 1) {
660          if (j == 0) {
661            break;
662          }
663          s++;
664          switchDirection();
665          continue;
666        }
667
668        Collections.swap(list, j - c[j] + s, j - q + s);
669        c[j] = q;
670        break;
671      }
672    }
673
674    void switchDirection() {
675      o[j] = -o[j];
676      j--;
677    }
678  }
679
680  /** Returns {@code true} if the second list is a permutation of the first. */
681  private static boolean isPermutation(List<?> first, List<?> second) {
682    if (first.size() != second.size()) {
683      return false;
684    }
685    ObjectCountHashMap<?> firstCounts = counts(first);
686    ObjectCountHashMap<?> secondCounts = counts(second);
687    if (first.size() != second.size()) {
688      return false;
689    }
690    for (int i = 0; i < first.size(); i++) {
691      if (firstCounts.getValue(i) != secondCounts.get(firstCounts.getKey(i))) {
692        return false;
693      }
694    }
695    return true;
696  }
697
698  private static <E> ObjectCountHashMap<E> counts(Collection<E> collection) {
699    ObjectCountHashMap<E> map = new ObjectCountHashMap<>();
700    for (E e : collection) {
701      map.put(e, map.get(e) + 1);
702    }
703    return map;
704  }
705}