001/* 002 * Copyright (C) 2009 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 005 * in compliance with the License. You may obtain a copy of the License at 006 * 007 * http://www.apache.org/licenses/LICENSE-2.0 008 * 009 * Unless required by applicable law or agreed to in writing, software distributed under the License 010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express 011 * or implied. See the License for the specific language governing permissions and limitations under 012 * the License. 013 */ 014 015package com.google.common.cache; 016 017import static com.google.common.base.Preconditions.checkArgument; 018import static com.google.common.base.Preconditions.checkNotNull; 019import static com.google.common.base.Preconditions.checkState; 020 021import com.google.common.annotations.GwtCompatible; 022import com.google.common.annotations.GwtIncompatible; 023import com.google.common.base.Ascii; 024import com.google.common.base.Equivalence; 025import com.google.common.base.MoreObjects; 026import com.google.common.base.Supplier; 027import com.google.common.base.Suppliers; 028import com.google.common.base.Ticker; 029import com.google.common.cache.AbstractCache.SimpleStatsCounter; 030import com.google.common.cache.AbstractCache.StatsCounter; 031import com.google.common.cache.LocalCache.Strength; 032import com.google.errorprone.annotations.CheckReturnValue; 033import com.google.j2objc.annotations.J2ObjCIncompatible; 034import java.util.ConcurrentModificationException; 035import java.util.IdentityHashMap; 036import java.util.Map; 037import java.util.concurrent.ConcurrentHashMap; 038import java.util.concurrent.TimeUnit; 039import java.util.logging.Level; 040import java.util.logging.Logger; 041import org.checkerframework.checker.nullness.qual.Nullable; 042 043/** 044 * A builder of {@link LoadingCache} and {@link Cache} instances having any combination of the 045 * following features: 046 * 047 * <ul> 048 * <li>automatic loading of entries into the cache 049 * <li>least-recently-used eviction when a maximum size is exceeded 050 * <li>time-based expiration of entries, measured since last access or last write 051 * <li>keys automatically wrapped in {@code WeakReference} 052 * <li>values automatically wrapped in {@code WeakReference} or {@code SoftReference} 053 * <li>notification of evicted (or otherwise removed) entries 054 * <li>accumulation of cache access statistics 055 * </ul> 056 * 057 * <p>These features are all optional; caches can be created using all or none of them. By default 058 * cache instances created by {@code CacheBuilder} will not perform any type of eviction. 059 * 060 * <p>Usage example: 061 * 062 * <pre>{@code 063 * LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder() 064 * .maximumSize(10000) 065 * .expireAfterWrite(Duration.ofMinutes(10)) 066 * .removalListener(MY_LISTENER) 067 * .build( 068 * new CacheLoader<Key, Graph>() { 069 * public Graph load(Key key) throws AnyException { 070 * return createExpensiveGraph(key); 071 * } 072 * }); 073 * }</pre> 074 * 075 * <p>Or equivalently, 076 * 077 * <pre>{@code 078 * // In real life this would come from a command-line flag or config file 079 * String spec = "maximumSize=10000,expireAfterWrite=10m"; 080 * 081 * LoadingCache<Key, Graph> graphs = CacheBuilder.from(spec) 082 * .removalListener(MY_LISTENER) 083 * .build( 084 * new CacheLoader<Key, Graph>() { 085 * public Graph load(Key key) throws AnyException { 086 * return createExpensiveGraph(key); 087 * } 088 * }); 089 * }</pre> 090 * 091 * <p>The returned cache is implemented as a hash table with similar performance characteristics to 092 * {@link ConcurrentHashMap}. It implements all optional operations of the {@link LoadingCache} and 093 * {@link Cache} interfaces. The {@code asMap} view (and its collection views) have <i>weakly 094 * consistent iterators</i>. This means that they are safe for concurrent use, but if other threads 095 * modify the cache after the iterator is created, it is undefined which of these changes, if any, 096 * are reflected in that iterator. These iterators never throw {@link 097 * ConcurrentModificationException}. 098 * 099 * <p><b>Note:</b> by default, the returned cache uses equality comparisons (the {@link 100 * Object#equals equals} method) to determine equality for keys or values. However, if {@link 101 * #weakKeys} was specified, the cache uses identity ({@code ==}) comparisons instead for keys. 102 * Likewise, if {@link #weakValues} or {@link #softValues} was specified, the cache uses identity 103 * comparisons for values. 104 * 105 * <p>Entries are automatically evicted from the cache when any of {@linkplain #maximumSize(long) 106 * maximumSize}, {@linkplain #maximumWeight(long) maximumWeight}, {@linkplain #expireAfterWrite 107 * expireAfterWrite}, {@linkplain #expireAfterAccess expireAfterAccess}, {@linkplain #weakKeys 108 * weakKeys}, {@linkplain #weakValues weakValues}, or {@linkplain #softValues softValues} are 109 * requested. 110 * 111 * <p>If {@linkplain #maximumSize(long) maximumSize} or {@linkplain #maximumWeight(long) 112 * maximumWeight} is requested entries may be evicted on each cache modification. 113 * 114 * <p>If {@linkplain #expireAfterWrite expireAfterWrite} or {@linkplain #expireAfterAccess 115 * expireAfterAccess} is requested entries may be evicted on each cache modification, on occasional 116 * cache accesses, or on calls to {@link Cache#cleanUp}. Expired entries may be counted by {@link 117 * Cache#size}, but will never be visible to read or write operations. 118 * 119 * <p>If {@linkplain #weakKeys weakKeys}, {@linkplain #weakValues weakValues}, or {@linkplain 120 * #softValues softValues} are requested, it is possible for a key or value present in the cache to 121 * be reclaimed by the garbage collector. Entries with reclaimed keys or values may be removed from 122 * the cache on each cache modification, on occasional cache accesses, or on calls to {@link 123 * Cache#cleanUp}; such entries may be counted in {@link Cache#size}, but will never be visible to 124 * read or write operations. 125 * 126 * <p>Certain cache configurations will result in the accrual of periodic maintenance tasks which 127 * will be performed during write operations, or during occasional read operations in the absence of 128 * writes. The {@link Cache#cleanUp} method of the returned cache will also perform maintenance, but 129 * calling it should not be necessary with a high throughput cache. Only caches built with 130 * {@linkplain #removalListener removalListener}, {@linkplain #expireAfterWrite expireAfterWrite}, 131 * {@linkplain #expireAfterAccess expireAfterAccess}, {@linkplain #weakKeys weakKeys}, {@linkplain 132 * #weakValues weakValues}, or {@linkplain #softValues softValues} perform periodic maintenance. 133 * 134 * <p>The caches produced by {@code CacheBuilder} are serializable, and the deserialized caches 135 * retain all the configuration properties of the original cache. Note that the serialized form does 136 * <i>not</i> include cache contents, but only configuration. 137 * 138 * <p>See the Guava User Guide article on <a 139 * href="https://github.com/google/guava/wiki/CachesExplained">caching</a> for a higher-level 140 * explanation. 141 * 142 * @param <K> the most general key type this builder will be able to create caches for. This is 143 * normally {@code Object} unless it is constrained by using a method like {@code 144 * #removalListener} 145 * @param <V> the most general value type this builder will be able to create caches for. This is 146 * normally {@code Object} unless it is constrained by using a method like {@code 147 * #removalListener} 148 * @author Charles Fry 149 * @author Kevin Bourrillion 150 * @since 10.0 151 */ 152@GwtCompatible(emulated = true) 153public final class CacheBuilder<K, V> { 154 private static final int DEFAULT_INITIAL_CAPACITY = 16; 155 private static final int DEFAULT_CONCURRENCY_LEVEL = 4; 156 157 @SuppressWarnings("GoodTime") // should be a java.time.Duration 158 private static final int DEFAULT_EXPIRATION_NANOS = 0; 159 160 @SuppressWarnings("GoodTime") // should be a java.time.Duration 161 private static final int DEFAULT_REFRESH_NANOS = 0; 162 163 static final Supplier<? extends StatsCounter> NULL_STATS_COUNTER = 164 Suppliers.ofInstance( 165 new StatsCounter() { 166 @Override 167 public void recordHits(int count) {} 168 169 @Override 170 public void recordMisses(int count) {} 171 172 @SuppressWarnings("GoodTime") // b/122668874 173 @Override 174 public void recordLoadSuccess(long loadTime) {} 175 176 @SuppressWarnings("GoodTime") // b/122668874 177 @Override 178 public void recordLoadException(long loadTime) {} 179 180 @Override 181 public void recordEviction() {} 182 183 @Override 184 public CacheStats snapshot() { 185 return EMPTY_STATS; 186 } 187 }); 188 static final CacheStats EMPTY_STATS = new CacheStats(0, 0, 0, 0, 0, 0); 189 190 static final Supplier<StatsCounter> CACHE_STATS_COUNTER = 191 new Supplier<StatsCounter>() { 192 @Override 193 public StatsCounter get() { 194 return new SimpleStatsCounter(); 195 } 196 }; 197 198 enum NullListener implements RemovalListener<Object, Object> { 199 INSTANCE; 200 201 @Override 202 public void onRemoval(RemovalNotification<Object, Object> notification) {} 203 } 204 205 enum OneWeigher implements Weigher<Object, Object> { 206 INSTANCE; 207 208 @Override 209 public int weigh(Object key, Object value) { 210 return 1; 211 } 212 } 213 214 static final Ticker NULL_TICKER = 215 new Ticker() { 216 @Override 217 public long read() { 218 return 0; 219 } 220 }; 221 222 private static final Logger logger = Logger.getLogger(CacheBuilder.class.getName()); 223 224 static final int UNSET_INT = -1; 225 226 boolean strictParsing = true; 227 228 int initialCapacity = UNSET_INT; 229 int concurrencyLevel = UNSET_INT; 230 long maximumSize = UNSET_INT; 231 long maximumWeight = UNSET_INT; 232 @Nullable Weigher<? super K, ? super V> weigher; 233 234 @Nullable Strength keyStrength; 235 @Nullable Strength valueStrength; 236 237 @SuppressWarnings("GoodTime") // should be a java.time.Duration 238 long expireAfterWriteNanos = UNSET_INT; 239 240 @SuppressWarnings("GoodTime") // should be a java.time.Duration 241 long expireAfterAccessNanos = UNSET_INT; 242 243 @SuppressWarnings("GoodTime") // should be a java.time.Duration 244 long refreshNanos = UNSET_INT; 245 246 @Nullable Equivalence<Object> keyEquivalence; 247 @Nullable Equivalence<Object> valueEquivalence; 248 249 @Nullable RemovalListener<? super K, ? super V> removalListener; 250 @Nullable Ticker ticker; 251 252 Supplier<? extends StatsCounter> statsCounterSupplier = NULL_STATS_COUNTER; 253 254 private CacheBuilder() {} 255 256 /** 257 * Constructs a new {@code CacheBuilder} instance with default settings, including strong keys, 258 * strong values, and no automatic eviction of any kind. 259 * 260 * <p>Note that while this return type is {@code CacheBuilder<Object, Object>}, type parameters on 261 * the {@link #build} methods allow you to create a cache of any key and value type desired. 262 */ 263 @CheckReturnValue 264 public static CacheBuilder<Object, Object> newBuilder() { 265 return new CacheBuilder<>(); 266 } 267 268 /** 269 * Constructs a new {@code CacheBuilder} instance with the settings specified in {@code spec}. 270 * 271 * @since 12.0 272 */ 273 @GwtIncompatible // To be supported 274 @CheckReturnValue 275 public static CacheBuilder<Object, Object> from(CacheBuilderSpec spec) { 276 return spec.toCacheBuilder().lenientParsing(); 277 } 278 279 /** 280 * Constructs a new {@code CacheBuilder} instance with the settings specified in {@code spec}. 281 * This is especially useful for command-line configuration of a {@code CacheBuilder}. 282 * 283 * @param spec a String in the format specified by {@link CacheBuilderSpec} 284 * @since 12.0 285 */ 286 @GwtIncompatible // To be supported 287 @CheckReturnValue 288 public static CacheBuilder<Object, Object> from(String spec) { 289 return from(CacheBuilderSpec.parse(spec)); 290 } 291 292 /** 293 * Enables lenient parsing. Useful for tests and spec parsing. 294 * 295 * @return this {@code CacheBuilder} instance (for chaining) 296 */ 297 @GwtIncompatible // To be supported 298 CacheBuilder<K, V> lenientParsing() { 299 strictParsing = false; 300 return this; 301 } 302 303 /** 304 * Sets a custom {@code Equivalence} strategy for comparing keys. 305 * 306 * <p>By default, the cache uses {@link Equivalence#identity} to determine key equality when 307 * {@link #weakKeys} is specified, and {@link Equivalence#equals()} otherwise. 308 * 309 * @return this {@code CacheBuilder} instance (for chaining) 310 */ 311 @GwtIncompatible // To be supported 312 CacheBuilder<K, V> keyEquivalence(Equivalence<Object> equivalence) { 313 checkState(keyEquivalence == null, "key equivalence was already set to %s", keyEquivalence); 314 keyEquivalence = checkNotNull(equivalence); 315 return this; 316 } 317 318 Equivalence<Object> getKeyEquivalence() { 319 return MoreObjects.firstNonNull(keyEquivalence, getKeyStrength().defaultEquivalence()); 320 } 321 322 /** 323 * Sets a custom {@code Equivalence} strategy for comparing values. 324 * 325 * <p>By default, the cache uses {@link Equivalence#identity} to determine value equality when 326 * {@link #weakValues} or {@link #softValues} is specified, and {@link Equivalence#equals()} 327 * otherwise. 328 * 329 * @return this {@code CacheBuilder} instance (for chaining) 330 */ 331 @GwtIncompatible // To be supported 332 CacheBuilder<K, V> valueEquivalence(Equivalence<Object> equivalence) { 333 checkState( 334 valueEquivalence == null, "value equivalence was already set to %s", valueEquivalence); 335 this.valueEquivalence = checkNotNull(equivalence); 336 return this; 337 } 338 339 Equivalence<Object> getValueEquivalence() { 340 return MoreObjects.firstNonNull(valueEquivalence, getValueStrength().defaultEquivalence()); 341 } 342 343 /** 344 * Sets the minimum total size for the internal hash tables. For example, if the initial capacity 345 * is {@code 60}, and the concurrency level is {@code 8}, then eight segments are created, each 346 * having a hash table of size eight. Providing a large enough estimate at construction time 347 * avoids the need for expensive resizing operations later, but setting this value unnecessarily 348 * high wastes memory. 349 * 350 * @return this {@code CacheBuilder} instance (for chaining) 351 * @throws IllegalArgumentException if {@code initialCapacity} is negative 352 * @throws IllegalStateException if an initial capacity was already set 353 */ 354 public CacheBuilder<K, V> initialCapacity(int initialCapacity) { 355 checkState( 356 this.initialCapacity == UNSET_INT, 357 "initial capacity was already set to %s", 358 this.initialCapacity); 359 checkArgument(initialCapacity >= 0); 360 this.initialCapacity = initialCapacity; 361 return this; 362 } 363 364 int getInitialCapacity() { 365 return (initialCapacity == UNSET_INT) ? DEFAULT_INITIAL_CAPACITY : initialCapacity; 366 } 367 368 /** 369 * Guides the allowed concurrency among update operations. Used as a hint for internal sizing. The 370 * table is internally partitioned to try to permit the indicated number of concurrent updates 371 * without contention. Because assignment of entries to these partitions is not necessarily 372 * uniform, the actual concurrency observed may vary. Ideally, you should choose a value to 373 * accommodate as many threads as will ever concurrently modify the table. Using a significantly 374 * higher value than you need can waste space and time, and a significantly lower value can lead 375 * to thread contention. But overestimates and underestimates within an order of magnitude do not 376 * usually have much noticeable impact. A value of one permits only one thread to modify the cache 377 * at a time, but since read operations and cache loading computations can proceed concurrently, 378 * this still yields higher concurrency than full synchronization. 379 * 380 * <p>Defaults to 4. <b>Note:</b>The default may change in the future. If you care about this 381 * value, you should always choose it explicitly. 382 * 383 * <p>The current implementation uses the concurrency level to create a fixed number of hashtable 384 * segments, each governed by its own write lock. The segment lock is taken once for each explicit 385 * write, and twice for each cache loading computation (once prior to loading the new value, and 386 * once after loading completes). Much internal cache management is performed at the segment 387 * granularity. For example, access queues and write queues are kept per segment when they are 388 * required by the selected eviction algorithm. As such, when writing unit tests it is not 389 * uncommon to specify {@code concurrencyLevel(1)} in order to achieve more deterministic eviction 390 * behavior. 391 * 392 * <p>Note that future implementations may abandon segment locking in favor of more advanced 393 * concurrency controls. 394 * 395 * @return this {@code CacheBuilder} instance (for chaining) 396 * @throws IllegalArgumentException if {@code concurrencyLevel} is nonpositive 397 * @throws IllegalStateException if a concurrency level was already set 398 */ 399 public CacheBuilder<K, V> concurrencyLevel(int concurrencyLevel) { 400 checkState( 401 this.concurrencyLevel == UNSET_INT, 402 "concurrency level was already set to %s", 403 this.concurrencyLevel); 404 checkArgument(concurrencyLevel > 0); 405 this.concurrencyLevel = concurrencyLevel; 406 return this; 407 } 408 409 int getConcurrencyLevel() { 410 return (concurrencyLevel == UNSET_INT) ? DEFAULT_CONCURRENCY_LEVEL : concurrencyLevel; 411 } 412 413 /** 414 * Specifies the maximum number of entries the cache may contain. 415 * 416 * <p>Note that the cache <b>may evict an entry before this limit is exceeded</b>. For example, in 417 * the current implementation, when {@code concurrencyLevel} is greater than {@code 1}, each 418 * resulting segment inside the cache <i>independently</i> limits its own size to approximately 419 * {@code maximumSize / concurrencyLevel}. 420 * 421 * <p>When eviction is necessary, the cache evicts entries that are less likely to be used again. 422 * For example, the cache may evict an entry because it hasn't been used recently or very often. 423 * 424 * <p>If {@code maximumSize} is zero, elements will be evicted immediately after being loaded into 425 * cache. This can be useful in testing, or to disable caching temporarily. 426 * 427 * <p>This feature cannot be used in conjunction with {@link #maximumWeight}. 428 * 429 * @param maximumSize the maximum size of the cache 430 * @return this {@code CacheBuilder} instance (for chaining) 431 * @throws IllegalArgumentException if {@code maximumSize} is negative 432 * @throws IllegalStateException if a maximum size or weight was already set 433 */ 434 public CacheBuilder<K, V> maximumSize(long maximumSize) { 435 checkState( 436 this.maximumSize == UNSET_INT, "maximum size was already set to %s", this.maximumSize); 437 checkState( 438 this.maximumWeight == UNSET_INT, 439 "maximum weight was already set to %s", 440 this.maximumWeight); 441 checkState(this.weigher == null, "maximum size can not be combined with weigher"); 442 checkArgument(maximumSize >= 0, "maximum size must not be negative"); 443 this.maximumSize = maximumSize; 444 return this; 445 } 446 447 /** 448 * Specifies the maximum weight of entries the cache may contain. Weight is determined using the 449 * {@link Weigher} specified with {@link #weigher}, and use of this method requires a 450 * corresponding call to {@link #weigher} prior to calling {@link #build}. 451 * 452 * <p>Note that the cache <b>may evict an entry before this limit is exceeded</b>. For example, in 453 * the current implementation, when {@code concurrencyLevel} is greater than {@code 1}, each 454 * resulting segment inside the cache <i>independently</i> limits its own weight to approximately 455 * {@code maximumWeight / concurrencyLevel}. 456 * 457 * <p>When eviction is necessary, the cache evicts entries that are less likely to be used again. 458 * For example, the cache may evict an entry because it hasn't been used recently or very often. 459 * 460 * <p>If {@code maximumWeight} is zero, elements will be evicted immediately after being loaded 461 * into cache. This can be useful in testing, or to disable caching temporarily. 462 * 463 * <p>Note that weight is only used to determine whether the cache is over capacity; it has no 464 * effect on selecting which entry should be evicted next. 465 * 466 * <p>This feature cannot be used in conjunction with {@link #maximumSize}. 467 * 468 * @param maximumWeight the maximum total weight of entries the cache may contain 469 * @return this {@code CacheBuilder} instance (for chaining) 470 * @throws IllegalArgumentException if {@code maximumWeight} is negative 471 * @throws IllegalStateException if a maximum weight or size was already set 472 * @since 11.0 473 */ 474 @GwtIncompatible // To be supported 475 public CacheBuilder<K, V> maximumWeight(long maximumWeight) { 476 checkState( 477 this.maximumWeight == UNSET_INT, 478 "maximum weight was already set to %s", 479 this.maximumWeight); 480 checkState( 481 this.maximumSize == UNSET_INT, "maximum size was already set to %s", this.maximumSize); 482 checkArgument(maximumWeight >= 0, "maximum weight must not be negative"); 483 this.maximumWeight = maximumWeight; 484 return this; 485 } 486 487 /** 488 * Specifies the weigher to use in determining the weight of entries. Entry weight is taken into 489 * consideration by {@link #maximumWeight(long)} when determining which entries to evict, and use 490 * of this method requires a corresponding call to {@link #maximumWeight(long)} prior to calling 491 * {@link #build}. Weights are measured and recorded when entries are inserted into the cache, and 492 * are thus effectively static during the lifetime of a cache entry. 493 * 494 * <p>When the weight of an entry is zero it will not be considered for size-based eviction 495 * (though it still may be evicted by other means). 496 * 497 * <p><b>Important note:</b> Instead of returning <em>this</em> as a {@code CacheBuilder} 498 * instance, this method returns {@code CacheBuilder<K1, V1>}. From this point on, either the 499 * original reference or the returned reference may be used to complete configuration and build 500 * the cache, but only the "generic" one is type-safe. That is, it will properly prevent you from 501 * building caches whose key or value types are incompatible with the types accepted by the 502 * weigher already provided; the {@code CacheBuilder} type cannot do this. For best results, 503 * simply use the standard method-chaining idiom, as illustrated in the documentation at top, 504 * configuring a {@code CacheBuilder} and building your {@link Cache} all in a single statement. 505 * 506 * <p><b>Warning:</b> if you ignore the above advice, and use this {@code CacheBuilder} to build a 507 * cache whose key or value type is incompatible with the weigher, you will likely experience a 508 * {@link ClassCastException} at some <i>undefined</i> point in the future. 509 * 510 * @param weigher the weigher to use in calculating the weight of cache entries 511 * @return this {@code CacheBuilder} instance (for chaining) 512 * @throws IllegalArgumentException if {@code size} is negative 513 * @throws IllegalStateException if a maximum size was already set 514 * @since 11.0 515 */ 516 @GwtIncompatible // To be supported 517 public <K1 extends K, V1 extends V> CacheBuilder<K1, V1> weigher( 518 Weigher<? super K1, ? super V1> weigher) { 519 checkState(this.weigher == null); 520 if (strictParsing) { 521 checkState( 522 this.maximumSize == UNSET_INT, 523 "weigher can not be combined with maximum size", 524 this.maximumSize); 525 } 526 527 // safely limiting the kinds of caches this can produce 528 @SuppressWarnings("unchecked") 529 CacheBuilder<K1, V1> me = (CacheBuilder<K1, V1>) this; 530 me.weigher = checkNotNull(weigher); 531 return me; 532 } 533 534 long getMaximumWeight() { 535 if (expireAfterWriteNanos == 0 || expireAfterAccessNanos == 0) { 536 return 0; 537 } 538 return (weigher == null) ? maximumSize : maximumWeight; 539 } 540 541 // Make a safe contravariant cast now so we don't have to do it over and over. 542 @SuppressWarnings("unchecked") 543 <K1 extends K, V1 extends V> Weigher<K1, V1> getWeigher() { 544 return (Weigher<K1, V1>) MoreObjects.firstNonNull(weigher, OneWeigher.INSTANCE); 545 } 546 547 /** 548 * Specifies that each key (not value) stored in the cache should be wrapped in a {@link 549 * WeakReference} (by default, strong references are used). 550 * 551 * <p><b>Warning:</b> when this method is used, the resulting cache will use identity ({@code ==}) 552 * comparison to determine equality of keys. Its {@link Cache#asMap} view will therefore 553 * technically violate the {@link Map} specification (in the same way that {@link IdentityHashMap} 554 * does). 555 * 556 * <p>Entries with keys that have been garbage collected may be counted in {@link Cache#size}, but 557 * will never be visible to read or write operations; such entries are cleaned up as part of the 558 * routine maintenance described in the class javadoc. 559 * 560 * @return this {@code CacheBuilder} instance (for chaining) 561 * @throws IllegalStateException if the key strength was already set 562 */ 563 @GwtIncompatible // java.lang.ref.WeakReference 564 public CacheBuilder<K, V> weakKeys() { 565 return setKeyStrength(Strength.WEAK); 566 } 567 568 CacheBuilder<K, V> setKeyStrength(Strength strength) { 569 checkState(keyStrength == null, "Key strength was already set to %s", keyStrength); 570 keyStrength = checkNotNull(strength); 571 return this; 572 } 573 574 Strength getKeyStrength() { 575 return MoreObjects.firstNonNull(keyStrength, Strength.STRONG); 576 } 577 578 /** 579 * Specifies that each value (not key) stored in the cache should be wrapped in a {@link 580 * WeakReference} (by default, strong references are used). 581 * 582 * <p>Weak values will be garbage collected once they are weakly reachable. This makes them a poor 583 * candidate for caching; consider {@link #softValues} instead. 584 * 585 * <p><b>Note:</b> when this method is used, the resulting cache will use identity ({@code ==}) 586 * comparison to determine equality of values. 587 * 588 * <p>Entries with values that have been garbage collected may be counted in {@link Cache#size}, 589 * but will never be visible to read or write operations; such entries are cleaned up as part of 590 * the routine maintenance described in the class javadoc. 591 * 592 * @return this {@code CacheBuilder} instance (for chaining) 593 * @throws IllegalStateException if the value strength was already set 594 */ 595 @GwtIncompatible // java.lang.ref.WeakReference 596 public CacheBuilder<K, V> weakValues() { 597 return setValueStrength(Strength.WEAK); 598 } 599 600 /** 601 * Specifies that each value (not key) stored in the cache should be wrapped in a {@link 602 * SoftReference} (by default, strong references are used). Softly-referenced objects will be 603 * garbage-collected in a <i>globally</i> least-recently-used manner, in response to memory 604 * demand. 605 * 606 * <p><b>Warning:</b> in most circumstances it is better to set a per-cache {@linkplain 607 * #maximumSize(long) maximum size} instead of using soft references. You should only use this 608 * method if you are well familiar with the practical consequences of soft references. 609 * 610 * <p><b>Note:</b> when this method is used, the resulting cache will use identity ({@code ==}) 611 * comparison to determine equality of values. 612 * 613 * <p>Entries with values that have been garbage collected may be counted in {@link Cache#size}, 614 * but will never be visible to read or write operations; such entries are cleaned up as part of 615 * the routine maintenance described in the class javadoc. 616 * 617 * @return this {@code CacheBuilder} instance (for chaining) 618 * @throws IllegalStateException if the value strength was already set 619 */ 620 @GwtIncompatible // java.lang.ref.SoftReference 621 public CacheBuilder<K, V> softValues() { 622 return setValueStrength(Strength.SOFT); 623 } 624 625 CacheBuilder<K, V> setValueStrength(Strength strength) { 626 checkState(valueStrength == null, "Value strength was already set to %s", valueStrength); 627 valueStrength = checkNotNull(strength); 628 return this; 629 } 630 631 Strength getValueStrength() { 632 return MoreObjects.firstNonNull(valueStrength, Strength.STRONG); 633 } 634 635 /** 636 * Specifies that each entry should be automatically removed from the cache once a fixed duration 637 * has elapsed after the entry's creation, or the most recent replacement of its value. 638 * 639 * <p>When {@code duration} is zero, this method hands off to {@link #maximumSize(long) 640 * maximumSize}{@code (0)}, ignoring any otherwise-specified maximum size or weight. This can be 641 * useful in testing, or to disable caching temporarily without a code change. 642 * 643 * <p>Expired entries may be counted in {@link Cache#size}, but will never be visible to read or 644 * write operations. Expired entries are cleaned up as part of the routine maintenance described 645 * in the class javadoc. 646 * 647 * @param duration the length of time after an entry is created that it should be automatically 648 * removed 649 * @return this {@code CacheBuilder} instance (for chaining) 650 * @throws IllegalArgumentException if {@code duration} is negative 651 * @throws IllegalStateException if the time to live or time to idle was already set 652 * @throws ArithmeticException for durations greater than +/- approximately 292 years 653 * @since 25.0 654 */ 655 @J2ObjCIncompatible 656 @GwtIncompatible // java.time.Duration 657 @SuppressWarnings("GoodTime") // java.time.Duration decomposition 658 public CacheBuilder<K, V> expireAfterWrite(java.time.Duration duration) { 659 return expireAfterWrite(toNanosSaturated(duration), TimeUnit.NANOSECONDS); 660 } 661 662 /** 663 * Specifies that each entry should be automatically removed from the cache once a fixed duration 664 * has elapsed after the entry's creation, or the most recent replacement of its value. 665 * 666 * <p>When {@code duration} is zero, this method hands off to {@link #maximumSize(long) 667 * maximumSize}{@code (0)}, ignoring any otherwise-specified maximum size or weight. This can be 668 * useful in testing, or to disable caching temporarily without a code change. 669 * 670 * <p>Expired entries may be counted in {@link Cache#size}, but will never be visible to read or 671 * write operations. Expired entries are cleaned up as part of the routine maintenance described 672 * in the class javadoc. 673 * 674 * <p>If you can represent the duration as a {@link java.time.Duration} (which should be preferred 675 * when feasible), use {@link #expireAfterWrite(Duration)} instead. 676 * 677 * @param duration the length of time after an entry is created that it should be automatically 678 * removed 679 * @param unit the unit that {@code duration} is expressed in 680 * @return this {@code CacheBuilder} instance (for chaining) 681 * @throws IllegalArgumentException if {@code duration} is negative 682 * @throws IllegalStateException if the time to live or time to idle was already set 683 */ 684 @SuppressWarnings("GoodTime") // should accept a java.time.Duration 685 public CacheBuilder<K, V> expireAfterWrite(long duration, TimeUnit unit) { 686 checkState( 687 expireAfterWriteNanos == UNSET_INT, 688 "expireAfterWrite was already set to %s ns", 689 expireAfterWriteNanos); 690 checkArgument(duration >= 0, "duration cannot be negative: %s %s", duration, unit); 691 this.expireAfterWriteNanos = unit.toNanos(duration); 692 return this; 693 } 694 695 @SuppressWarnings("GoodTime") // nanos internally, should be Duration 696 long getExpireAfterWriteNanos() { 697 return (expireAfterWriteNanos == UNSET_INT) ? DEFAULT_EXPIRATION_NANOS : expireAfterWriteNanos; 698 } 699 700 /** 701 * Specifies that each entry should be automatically removed from the cache once a fixed duration 702 * has elapsed after the entry's creation, the most recent replacement of its value, or its last 703 * access. Access time is reset by all cache read and write operations (including {@code 704 * Cache.asMap().get(Object)} and {@code Cache.asMap().put(K, V)}), but not by {@code 705 * containsKey(Object)}, nor by operations on the collection-views of {@link Cache#asMap}}. So, 706 * for example, iterating through {@code Cache.asMap().entrySet()} does not reset access time for 707 * the entries you retrieve. 708 * 709 * <p>When {@code duration} is zero, this method hands off to {@link #maximumSize(long) 710 * maximumSize}{@code (0)}, ignoring any otherwise-specified maximum size or weight. This can be 711 * useful in testing, or to disable caching temporarily without a code change. 712 * 713 * <p>Expired entries may be counted in {@link Cache#size}, but will never be visible to read or 714 * write operations. Expired entries are cleaned up as part of the routine maintenance described 715 * in the class javadoc. 716 * 717 * @param duration the length of time after an entry is last accessed that it should be 718 * automatically removed 719 * @return this {@code CacheBuilder} instance (for chaining) 720 * @throws IllegalArgumentException if {@code duration} is negative 721 * @throws IllegalStateException if the time to idle or time to live was already set 722 * @throws ArithmeticException for durations greater than +/- approximately 292 years 723 * @since 25.0 724 */ 725 @J2ObjCIncompatible 726 @GwtIncompatible // java.time.Duration 727 @SuppressWarnings("GoodTime") // java.time.Duration decomposition 728 public CacheBuilder<K, V> expireAfterAccess(java.time.Duration duration) { 729 return expireAfterAccess(toNanosSaturated(duration), TimeUnit.NANOSECONDS); 730 } 731 732 /** 733 * Specifies that each entry should be automatically removed from the cache once a fixed duration 734 * has elapsed after the entry's creation, the most recent replacement of its value, or its last 735 * access. Access time is reset by all cache read and write operations (including {@code 736 * Cache.asMap().get(Object)} and {@code Cache.asMap().put(K, V)}), but not by {@code 737 * containsKey(Object)}, nor by operations on the collection-views of {@link Cache#asMap}. So, for 738 * example, iterating through {@code Cache.asMap().entrySet()} does not reset access time for the 739 * entries you retrieve. 740 * 741 * <p>When {@code duration} is zero, this method hands off to {@link #maximumSize(long) 742 * maximumSize}{@code (0)}, ignoring any otherwise-specified maximum size or weight. This can be 743 * useful in testing, or to disable caching temporarily without a code change. 744 * 745 * <p>Expired entries may be counted in {@link Cache#size}, but will never be visible to read or 746 * write operations. Expired entries are cleaned up as part of the routine maintenance described 747 * in the class javadoc. 748 * 749 * <p>If you can represent the duration as a {@link java.time.Duration} (which should be preferred 750 * when feasible), use {@link #expireAfterAccess(Duration)} instead. 751 * 752 * @param duration the length of time after an entry is last accessed that it should be 753 * automatically removed 754 * @param unit the unit that {@code duration} is expressed in 755 * @return this {@code CacheBuilder} instance (for chaining) 756 * @throws IllegalArgumentException if {@code duration} is negative 757 * @throws IllegalStateException if the time to idle or time to live was already set 758 */ 759 @SuppressWarnings("GoodTime") // should accept a java.time.Duration 760 public CacheBuilder<K, V> expireAfterAccess(long duration, TimeUnit unit) { 761 checkState( 762 expireAfterAccessNanos == UNSET_INT, 763 "expireAfterAccess was already set to %s ns", 764 expireAfterAccessNanos); 765 checkArgument(duration >= 0, "duration cannot be negative: %s %s", duration, unit); 766 this.expireAfterAccessNanos = unit.toNanos(duration); 767 return this; 768 } 769 770 @SuppressWarnings("GoodTime") // nanos internally, should be Duration 771 long getExpireAfterAccessNanos() { 772 return (expireAfterAccessNanos == UNSET_INT) 773 ? DEFAULT_EXPIRATION_NANOS 774 : expireAfterAccessNanos; 775 } 776 777 /** 778 * Specifies that active entries are eligible for automatic refresh once a fixed duration has 779 * elapsed after the entry's creation, or the most recent replacement of its value. The semantics 780 * of refreshes are specified in {@link LoadingCache#refresh}, and are performed by calling {@link 781 * CacheLoader#reload}. 782 * 783 * <p>As the default implementation of {@link CacheLoader#reload} is synchronous, it is 784 * recommended that users of this method override {@link CacheLoader#reload} with an asynchronous 785 * implementation; otherwise refreshes will be performed during unrelated cache read and write 786 * operations. 787 * 788 * <p>Currently automatic refreshes are performed when the first stale request for an entry 789 * occurs. The request triggering refresh will make a blocking call to {@link CacheLoader#reload} 790 * and immediately return the new value if the returned future is complete, and the old value 791 * otherwise. 792 * 793 * <p><b>Note:</b> <i>all exceptions thrown during refresh will be logged and then swallowed</i>. 794 * 795 * @param duration the length of time after an entry is created that it should be considered 796 * stale, and thus eligible for refresh 797 * @return this {@code CacheBuilder} instance (for chaining) 798 * @throws IllegalArgumentException if {@code duration} is negative 799 * @throws IllegalStateException if the refresh interval was already set 800 * @throws ArithmeticException for durations greater than +/- approximately 292 years 801 * @since 25.0 802 */ 803 @J2ObjCIncompatible 804 @GwtIncompatible // java.time.Duration 805 @SuppressWarnings("GoodTime") // java.time.Duration decomposition 806 public CacheBuilder<K, V> refreshAfterWrite(java.time.Duration duration) { 807 return refreshAfterWrite(toNanosSaturated(duration), TimeUnit.NANOSECONDS); 808 } 809 810 /** 811 * Specifies that active entries are eligible for automatic refresh once a fixed duration has 812 * elapsed after the entry's creation, or the most recent replacement of its value. The semantics 813 * of refreshes are specified in {@link LoadingCache#refresh}, and are performed by calling {@link 814 * CacheLoader#reload}. 815 * 816 * <p>As the default implementation of {@link CacheLoader#reload} is synchronous, it is 817 * recommended that users of this method override {@link CacheLoader#reload} with an asynchronous 818 * implementation; otherwise refreshes will be performed during unrelated cache read and write 819 * operations. 820 * 821 * <p>Currently automatic refreshes are performed when the first stale request for an entry 822 * occurs. The request triggering refresh will make a blocking call to {@link CacheLoader#reload} 823 * and immediately return the new value if the returned future is complete, and the old value 824 * otherwise. 825 * 826 * <p><b>Note:</b> <i>all exceptions thrown during refresh will be logged and then swallowed</i>. 827 * 828 * <p>If you can represent the duration as a {@link java.time.Duration} (which should be preferred 829 * when feasible), use {@link #refreshAfterWrite(Duration)} instead. 830 * 831 * @param duration the length of time after an entry is created that it should be considered 832 * stale, and thus eligible for refresh 833 * @param unit the unit that {@code duration} is expressed in 834 * @return this {@code CacheBuilder} instance (for chaining) 835 * @throws IllegalArgumentException if {@code duration} is negative 836 * @throws IllegalStateException if the refresh interval was already set 837 * @since 11.0 838 */ 839 @GwtIncompatible // To be supported (synchronously). 840 @SuppressWarnings("GoodTime") // should accept a java.time.Duration 841 public CacheBuilder<K, V> refreshAfterWrite(long duration, TimeUnit unit) { 842 checkNotNull(unit); 843 checkState(refreshNanos == UNSET_INT, "refresh was already set to %s ns", refreshNanos); 844 checkArgument(duration > 0, "duration must be positive: %s %s", duration, unit); 845 this.refreshNanos = unit.toNanos(duration); 846 return this; 847 } 848 849 @SuppressWarnings("GoodTime") // nanos internally, should be Duration 850 long getRefreshNanos() { 851 return (refreshNanos == UNSET_INT) ? DEFAULT_REFRESH_NANOS : refreshNanos; 852 } 853 854 /** 855 * Specifies a nanosecond-precision time source for this cache. By default, {@link 856 * System#nanoTime} is used. 857 * 858 * <p>The primary intent of this method is to facilitate testing of caches with a fake or mock 859 * time source. 860 * 861 * @return this {@code CacheBuilder} instance (for chaining) 862 * @throws IllegalStateException if a ticker was already set 863 */ 864 public CacheBuilder<K, V> ticker(Ticker ticker) { 865 checkState(this.ticker == null); 866 this.ticker = checkNotNull(ticker); 867 return this; 868 } 869 870 Ticker getTicker(boolean recordsTime) { 871 if (ticker != null) { 872 return ticker; 873 } 874 return recordsTime ? Ticker.systemTicker() : NULL_TICKER; 875 } 876 877 /** 878 * Specifies a listener instance that caches should notify each time an entry is removed for any 879 * {@linkplain RemovalCause reason}. Each cache created by this builder will invoke this listener 880 * as part of the routine maintenance described in the class documentation above. 881 * 882 * <p><b>Warning:</b> after invoking this method, do not continue to use <i>this</i> cache builder 883 * reference; instead use the reference this method <i>returns</i>. At runtime, these point to the 884 * same instance, but only the returned reference has the correct generic type information so as 885 * to ensure type safety. For best results, use the standard method-chaining idiom illustrated in 886 * the class documentation above, configuring a builder and building your cache in a single 887 * statement. Failure to heed this advice can result in a {@link ClassCastException} being thrown 888 * by a cache operation at some <i>undefined</i> point in the future. 889 * 890 * <p><b>Warning:</b> any exception thrown by {@code listener} will <i>not</i> be propagated to 891 * the {@code Cache} user, only logged via a {@link Logger}. 892 * 893 * @return the cache builder reference that should be used instead of {@code this} for any 894 * remaining configuration and cache building 895 * @return this {@code CacheBuilder} instance (for chaining) 896 * @throws IllegalStateException if a removal listener was already set 897 */ 898 @CheckReturnValue 899 public <K1 extends K, V1 extends V> CacheBuilder<K1, V1> removalListener( 900 RemovalListener<? super K1, ? super V1> listener) { 901 checkState(this.removalListener == null); 902 903 // safely limiting the kinds of caches this can produce 904 @SuppressWarnings("unchecked") 905 CacheBuilder<K1, V1> me = (CacheBuilder<K1, V1>) this; 906 me.removalListener = checkNotNull(listener); 907 return me; 908 } 909 910 // Make a safe contravariant cast now so we don't have to do it over and over. 911 @SuppressWarnings("unchecked") 912 <K1 extends K, V1 extends V> RemovalListener<K1, V1> getRemovalListener() { 913 return (RemovalListener<K1, V1>) 914 MoreObjects.firstNonNull(removalListener, NullListener.INSTANCE); 915 } 916 917 /** 918 * Enable the accumulation of {@link CacheStats} during the operation of the cache. Without this 919 * {@link Cache#stats} will return zero for all statistics. Note that recording stats requires 920 * bookkeeping to be performed with each operation, and thus imposes a performance penalty on 921 * cache operation. 922 * 923 * @return this {@code CacheBuilder} instance (for chaining) 924 * @since 12.0 (previously, stats collection was automatic) 925 */ 926 public CacheBuilder<K, V> recordStats() { 927 statsCounterSupplier = CACHE_STATS_COUNTER; 928 return this; 929 } 930 931 boolean isRecordingStats() { 932 return statsCounterSupplier == CACHE_STATS_COUNTER; 933 } 934 935 Supplier<? extends StatsCounter> getStatsCounterSupplier() { 936 return statsCounterSupplier; 937 } 938 939 /** 940 * Builds a cache, which either returns an already-loaded value for a given key or atomically 941 * computes or retrieves it using the supplied {@code CacheLoader}. If another thread is currently 942 * loading the value for this key, simply waits for that thread to finish and returns its loaded 943 * value. Note that multiple threads can concurrently load values for distinct keys. 944 * 945 * <p>This method does not alter the state of this {@code CacheBuilder} instance, so it can be 946 * invoked again to create multiple independent caches. 947 * 948 * @param loader the cache loader used to obtain new values 949 * @return a cache having the requested features 950 */ 951 @CheckReturnValue 952 public <K1 extends K, V1 extends V> LoadingCache<K1, V1> build( 953 CacheLoader<? super K1, V1> loader) { 954 checkWeightWithWeigher(); 955 return new LocalCache.LocalLoadingCache<>(this, loader); 956 } 957 958 /** 959 * Builds a cache which does not automatically load values when keys are requested. 960 * 961 * <p>Consider {@link #build(CacheLoader)} instead, if it is feasible to implement a {@code 962 * CacheLoader}. 963 * 964 * <p>This method does not alter the state of this {@code CacheBuilder} instance, so it can be 965 * invoked again to create multiple independent caches. 966 * 967 * @return a cache having the requested features 968 * @since 11.0 969 */ 970 @CheckReturnValue 971 public <K1 extends K, V1 extends V> Cache<K1, V1> build() { 972 checkWeightWithWeigher(); 973 checkNonLoadingCache(); 974 return new LocalCache.LocalManualCache<>(this); 975 } 976 977 private void checkNonLoadingCache() { 978 checkState(refreshNanos == UNSET_INT, "refreshAfterWrite requires a LoadingCache"); 979 } 980 981 private void checkWeightWithWeigher() { 982 if (weigher == null) { 983 checkState(maximumWeight == UNSET_INT, "maximumWeight requires weigher"); 984 } else { 985 if (strictParsing) { 986 checkState(maximumWeight != UNSET_INT, "weigher requires maximumWeight"); 987 } else { 988 if (maximumWeight == UNSET_INT) { 989 logger.log(Level.WARNING, "ignoring weigher specified without maximumWeight"); 990 } 991 } 992 } 993 } 994 995 /** 996 * Returns a string representation for this CacheBuilder instance. The exact form of the returned 997 * string is not specified. 998 */ 999 @Override 1000 public String toString() { 1001 MoreObjects.ToStringHelper s = MoreObjects.toStringHelper(this); 1002 if (initialCapacity != UNSET_INT) { 1003 s.add("initialCapacity", initialCapacity); 1004 } 1005 if (concurrencyLevel != UNSET_INT) { 1006 s.add("concurrencyLevel", concurrencyLevel); 1007 } 1008 if (maximumSize != UNSET_INT) { 1009 s.add("maximumSize", maximumSize); 1010 } 1011 if (maximumWeight != UNSET_INT) { 1012 s.add("maximumWeight", maximumWeight); 1013 } 1014 if (expireAfterWriteNanos != UNSET_INT) { 1015 s.add("expireAfterWrite", expireAfterWriteNanos + "ns"); 1016 } 1017 if (expireAfterAccessNanos != UNSET_INT) { 1018 s.add("expireAfterAccess", expireAfterAccessNanos + "ns"); 1019 } 1020 if (keyStrength != null) { 1021 s.add("keyStrength", Ascii.toLowerCase(keyStrength.toString())); 1022 } 1023 if (valueStrength != null) { 1024 s.add("valueStrength", Ascii.toLowerCase(valueStrength.toString())); 1025 } 1026 if (keyEquivalence != null) { 1027 s.addValue("keyEquivalence"); 1028 } 1029 if (valueEquivalence != null) { 1030 s.addValue("valueEquivalence"); 1031 } 1032 if (removalListener != null) { 1033 s.addValue("removalListener"); 1034 } 1035 return s.toString(); 1036 } 1037 1038 /** 1039 * Returns the number of nanoseconds of the given duration without throwing or overflowing. 1040 * 1041 * <p>Instead of throwing {@link ArithmeticException}, this method silently saturates to either 1042 * {@link Long#MAX_VALUE} or {@link Long#MIN_VALUE}. This behavior can be useful when decomposing 1043 * a duration in order to call a legacy API which requires a {@code long, TimeUnit} pair. 1044 */ 1045 @GwtIncompatible // java.time.Duration 1046 @SuppressWarnings("GoodTime") // duration decomposition 1047 private static long toNanosSaturated(java.time.Duration duration) { 1048 // Using a try/catch seems lazy, but the catch block will rarely get invoked (except for 1049 // durations longer than approximately +/- 292 years). 1050 try { 1051 return duration.toNanos(); 1052 } catch (ArithmeticException tooBig) { 1053 return duration.isNegative() ? Long.MIN_VALUE : Long.MAX_VALUE; 1054 } 1055 } 1056}